Organic \& Biomolecular Chemistry

This article can be cited before page numbers have been issued, to do this please use: T. K. M. SHING, K. W. Wu, H. T. Wu and Q. Xiao, Org. Biomol. Chem., 2014, DOI: 10.1039/C4OB02219J.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms \& Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

ARTICLE

Syntheses of Arabinose-derived Pyrrolidine Catalysts and Their Applications in Intramolecular Diels-Alder Reactions

Tony K. M. Shing, * Kwun W. Wu, Ho T. Wu, Qicai Xiao,

Received ooth January 2012, Accepted ooth January 2012

DOI: 10.1039/x0xx00000x
www.rsc.org/

Abstract

Six chiral hydroxylated pyrrolidine catalysts were synthesized from commercially available D-arabinose in seven steps. Various aromatic substituents α to the amine can be introduced readily by a Grignard reaction, which enables facile optimization of the catalyst performance. The stereoselectivities of these catalysts have been assessed by comparing with those of MacMillan's imidazolidinone on a known intramolecular Diels-Alder (IMDA) reaction of a triene. Two additional IMDA reactions of symmetrical dienals with concomitant desymmetrisation further established the potential use of these novel amine catalysts. These pyrrolidines are valuable catalysts for other synthetic transformations.

Introduction

Enantioselective organocatalysis, which signifies the use of small chiral organic molecules to promote different chemical transformations in a stereoselective manner, is a research area that has received widespread attention over the past decade. ${ }^{1}$ Nowadays, organocatalysis has become a vast and interconnected field of catalysis, which produces a large volume of research work with intriguing prospectives. Organocatalysis has established itself as a vital role in asymmetric catalysis, complementing enzymes and organometallic catalysis. ${ }^{2}$

Among the different classes of organocatalysis, aminocatalysis was first reckoned to have a general catalysis concept. Two representative classes of chiral amine catalysts are MacMillan's imidazolidinone organocatalysts (1) and Jørgensen's diarylprolinol silyl ether organocatalysts (2) (Figure 1). MacMillan's catalysts were synthesized from L-phenylalanine ${ }^{3 a}$ and the diarylprolinol ethers were derived from L-proline ${ }^{5}$; both of these catalyst classes have demonstrated impressive results in a large array of chemical transformations, including DielsAlder reaction, ${ }^{3 \mathrm{a}, 6,7}$ aldol reaction, ${ }^{8 \mathrm{a}}$ epoxidation, ${ }^{9}$ cyclopropanation, ${ }^{10}$ enal hydrogenation, ${ }^{11}$ Friedel-Crafts alkylation, ${ }^{12}$ Mannich reaction, ${ }^{8 b}$ Michael reaction, ${ }^{13}$ 1,3dipolar cycloadddition, ${ }^{8 \mathrm{c}}$ domino reaction ${ }^{14}$ and halogation. ${ }^{15}$

1

2

Fig. 1 Chiral amine catalysts.

Inspired by the powerful capabilities of aminocatalysis, our group has initiated a project to develop new chiral pyrrolidines with a mono-aryl group that would complement the existing diarylprolinol ether and imidazolidinone catalysis. With a glance of the aforementioned amine catalysts, we believe that modification of MacMillan's catalysts should not be easily performed on the phenyl group of the amino acid; whereas modification on proline was possible on the acid functionality and afforded a series of diaryl prolinol derivatives. However, reactions catalyzed by diaryl prolinols could be sluggish due to the bulky diaryl substituents and the corresponding mono-aryl prolinol derivatives are not readily accessible. As a result, the feature in our catalyst design is that the aryl group can be easily modified in adjusting the electronic or steric demand of the blocking group, via different substituents on the phenyl ring.

Results and Discussion

D-Arabinose was conveniently chosen as the starting material because of its built-in chirality and its ready commercial availability in large quantities for both enantiomers. The synthetic scheme is shown below (Scheme 1):

Scheme 1 Synthesis of hemiaminal 6.

The hydroxyl groups at C-3,4 of d -arabinose (3) were first selectively protected by kinetic acetonation. The 1,2 -diol unit underwent glycol cleavage oxidation and the subsequent basic hydrolysis smoothly generated 2,3-O-isopropylidene-Derythrose (5) with 60% overall yield in three steps. Lactol 5 was then converted into hemiaminal 6 by reacting with benzylamine in the presence of $3 \AA$ molecular sieves prior to Grignard reaction. Such conversion was made because direct Grignard reaction on lactol 5 resulted in poor regio- and diastereoselectively. In contrast, Grignard reaction of the common intermediate hemiaminal 6 smoothly furnished amines 7-12 regio and stereospecifically. Mesylation of the free alcohol followed by facile intramolecular substitution reaction gave tertiary amines 13-18 in good yields. (Scheme 2).

$$
\begin{array}{ll}
\text { 7, }=\text { benzyl, } 58 \% &
\end{array}
$$

Scheme 2 Syntheses of protected pyrrolidines.

The stereochemical outcome of the Grignard addition can be rationalized by an α-chelation model, where the metal center is chelated with the oxygen and nitrogen functionalities, β attack is more favourable to give amines $\mathbf{7 - 1 2}$ due to steric hindrance of the isopropylidene ring. Such a stereospecific addition on imine not only provided the desired stereochemistry, but also a more accessible and simple approach to introduce the monoaryl group on the catalyst without any rearrangement problem (Figure 2).

Fig. 2 Proposed Grignard addition pathway.

Finally, the N-benzyl group of the amines 13-17 was deprotected by hydrogenolysis in the presence of 10% Pd-oncharcoal to give the chiral pyrrolidine catalysts 19-23. Amine 18 on the other hand, underwent dehalogenation and an alternative strategy using α-chloroethyl chloroformate ${ }^{16}$ was employed to obtain the desired amine catalyst 24 (Scheme 3).

Scheme 3 Syntheses of pyrrolidine catalysts 19-24.

With the chiral pyrrolidine catalysts in hand, we first compared them with MacMillan's imidazolidinone 1, following his published enantioselective intramolecular Diels-Alder reaction (IMDA) (Scheme 4). ${ }^{6}$ The results indicated that although the enantioselectivities of our amine catalysts were not as superior as those of MacMillan's catalyst, satisfactory enantiocontrol could be attained.

Scheme 4 Chiral amine catalysed asymmetric IMDA reactions.

On the other hand, Hong ${ }^{17}$ and Christmann ${ }^{18}$ have applied Jørgensen's catalyst in enantioselective IMDA reaction of dienals to create bicyclic ring systems. In view of the potential of functionalized bicyclic ring systems, we designed and synthesized two hydroxylated dienals and applied our amine catalysts in enantioselective IMDA reactions with concomitant desymmetrization. Dienals $\mathbf{2 8}$ and $\mathbf{3 1}$ were prepared from ethyl formate and ethyl glycolate via standard transformations, respectively (see Supporting Information for details). Several solvents and co-acids were evaluated and it was found that chloroform and o-nitrobenzoic acid gave the best results. The results of the IMDA reactions are shown below:

Table 1. Chiral Pyrrolidine catalysed Intramolecular Diels-Alder Reactions of dienal 28 with concomitant desymmetrization.

Entry a	Catalyst	R	Temp	Reaction Time	Yield $(\%)^{\mathrm{b}}$	$e e$ $(\%)^{\mathrm{c}}$
1	$\mathbf{1 9}$	benzyl	rt	20 h	11	90
2	$\mathbf{2 0}$	biphenylmethyl	rt	21 h	10	86
3	$\mathbf{2 1}$	$2-$ naphthylmethyl	rt	16 h	9	90
4	$\mathbf{2 2}$	p-Me-benzyl	rt	20 h	13	87
5	$\mathbf{2 3}$	p-OMe-benzyl	rt	20 h	9	88
6	$\mathbf{2 4}$	p-Cl-benzyl	rt	20 h	12	87

${ }^{\text {a }}$ All IMDA reactions were carried out at 0.1 M .
${ }^{\mathrm{b}}$ Isolated yield.
${ }^{\text {c }}$ Enantioselectivity was determined by HPLC using a chiral column.

Table 2. Chiral Pyrrolidine catalysed Intramolecular Diels-Alder Reactions of dienal $\mathbf{3 1}$ with concomitant desymmetrization .

Entry $^{\mathrm{a}}$	Catalyst	R	Temp	Reaction Time	Yield $(\%)^{\mathrm{a}}$	$e e$ $(\%)^{\mathrm{b}}$
1	$\mathbf{1 9}$	benzyl	rt	9 h	16	82
2	$\mathbf{2 0}$	biphenylmethyl	rt	9 h	16	77
3	$\mathbf{2 1}$	$2-$ naphthylmethyl	rt	9 h	15	81
4	$\mathbf{2 2}$	p-Me-benzyl	rt	16 h	20	80
5	$\mathbf{2 3}$	p-OMe-benzyl	rt	8 h	17	77
6	$\mathbf{2 4}$	p-Cl-benzyl	rt	8 h	18	78

${ }^{\text {a }}$ All IMDA reactions were carried out at 0.1 M .
${ }^{\mathrm{b}}$ Isolated yield.
${ }^{\text {c }}$ Enantioselectivity was determined by HPLC using chiral column.

Among the six amine catalysts screened, amines 19 ($\mathrm{R}=$ benzyl) and 21 ($\mathrm{R}=2$-naphthylmethyl) displayed comparatively better
chiral induction in both IMDA reactions, despite the generally poor chemical yields. The low yields are attributed to the instability of both the starting material and the cycloadduct in the IMDA reactions, as both were found decomposing before reaction completion.

Vinylogous enamine activated IMDA reactions are assumed and the proposed catalytic cycle is illustrated in Figure 3 using hydroxylated dienal 28 and amine 19 as an example. Amine 19 would condense with an aldehyde function in 28 to form enamine 34, via a trans-trans iminium ion, with the carbon chain pointing away from the bulky benzyl group in order to minimize steric repulsion. It is expected that the π - system of the enamine is relatively open at the α-face and thus is ready for endo-approach of the enol moiety from the bottom face by steric control. β-Elimination of the cycloadduct $\mathbf{3 5}$ gives a thermodynamically stable dienal system 29 and liberates amine 19. It is reasonable to rationalize that the amine catalyst would assist this elimination via the formation of an iminium ion with the remaining aldehyde group either before or after the IMDA reaction.

Fig. 3. Proposed catalytic cycle of
asymmetric IMDA reaction of $\mathbf{2 8}$.

Conclusion

To summarize, the extraordinary potential of the new pyrrolidine catalysts $\mathbf{1 9 - 2 4}$ should not be dismissed just because of the low yields obtained from the current IMDA reactions of dienals. Facile modification of the aromatic unit and the ready availability of both enantiomers of the pyrrolidine catalysts provide a very flexible and practical platform to tackle amine catalyzed reactions. Application of our amine catalysts to different reaction types involving enamine and iminium ion activation modes is underway.

Experimental section

General Information

Melting points were measured with a Reichert apparatus in Celsius degrees and are uncorrected. Optical rotations were obtained operating at 589 nm . Infrared (IR) spectra were recorded as thin films on potassium bromide discs. Nuclear magnetic resonance (NMR) spectra were measured with at 400.19 MHz (${ }^{1} \mathrm{H}$) or at $100.62 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$ in CDCl_{3} solutions, unless stated otherwise. All chemical shifts were recorded in ppm relative to tetramethylsilane ($\delta=0.0$). Spin-spin coupling constants (J value) recorded in Hz were measured directly from the spectra. MS and HRMS were measured on a ESI-MS instrument with a magnetic sector analyzer. All reactions were monitored by analytical thin-layer chromatography (TLC) on aluminium-precoated plates of silica gel 60 F 254 with detection by spraying with $5 \%(\mathrm{w} / \mathrm{v})$ dodecamolybdophosphoric acid in ethanol or $5 \%(\mathrm{w} / \mathrm{v})$ ninhydrin in ethanol, and subsequent heating. Silica gel 60 (230-400 mesh) was used for flash chromatography. All reagents and solvents were general reagent grade unless otherwise stated. DMF was dried by magnesium sulfate, filtered, and the filtrate was then distilled under reduced pressure. THF was freshly distilled from $\mathrm{Na} /$ benzophenone ketyl under nitrogen. $\mathrm{Et}_{2} \mathrm{O}$ was freshly distilled from $\mathrm{K} /$ benzophenone ketyl under nitrogen. Dichloromethane and chloroform were freshly distilled from $\mathrm{P}_{2} \mathrm{O}_{5}$ under nitrogen. Other reagents were purchased from commercial suppliers and were used without purification.

General procedure for glycol cleavage reaction. NaIO_{4} (3 eq.) was dissolved in a minimum amount of hot water $\left(\sim 80^{\circ} \mathrm{C}\right)$ and to this solution was added silica gel (230-400 mesh, $10 \times$ weight of diol) with vigorous swirling and shaking. The mixture was suspended in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and then a solution of diol (1 eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added. After vigorous stirring at room temperature for 1 h , the mixture was filtered. The filtrate was concentrated under reduced pressure to give the aldehyde product.

Generation of benzylmagnesium bromide/chloride. To a suspension of magnesium powder (150 mmol) in THF (50 mL) was added 1,2-dibromoethane (0.36 mL) and the mixture was stirred at room temperature for 15 min . A solution of benzyl halide (50.0 mmol) in THF (50 mL) was added dropwise to the mixture at a rate to maintain a gentle reflux of the THF. After the addition of the benzyl halide solution, the mixture was heated under reflux for 2 h and then cooled down for use. The concentration of the benzylmagnesium bromide/ chloride solution generated was around 0.5 M .

Lactol 5. To a milky suspension of dry d-arabinose 3 (5.55 g , $37.0 \mathrm{mmol})$ in DMF $(50 \mathrm{~mL})$ were added 2,2dimethoxypropane ($13.6 \mathrm{~mL}, 110 \mathrm{mmol}$) and $\mathrm{TsOH}(629 \mathrm{mg}$, 3.70 mmol) at room temperature. The solution became clear
after being stirred at room temperature for 15 min . The resultant solution was stirred at room temperature for another 18 h . The reaction was quenched by dropwise addition of $\mathrm{Et}_{3} \mathrm{~N}$ until $\mathrm{pH} \sim 7$ (test by pH paper). The solution was concentrated under reduced pressure to afford the crude 4. Following by the glycol cleavage procedure, the crude 4 was converted to colourless oil. The powdered $\mathrm{K}_{2} \mathrm{CO}_{3}(2.66 \mathrm{~g}, 19.2 \mathrm{mmol})$ was added to the solution of crude mixture in $\mathrm{MeOH}(50 \mathrm{~mL})$. The mixture was stirred at room temperature for 24 h . The resultant mixture was filtered through a pad of silica gel that was eluted with $\mathrm{Et}_{2} \mathrm{O}$. Concentration of the filtrate followed by flash chromatography (Hexane: $\mathrm{Et}_{2} \mathrm{O}, 3: 2$) yielded lactol 5 (3.54 g , 60%) as a colourless oil: $[\alpha]_{\mathrm{D}}^{20}-59.4\left(\mathrm{c} 2.45, \mathrm{CHCl}_{3}\right)\left\{\right.$ lit. $43[\alpha]_{\mathrm{D}}^{25}$ -79.3 (c $0.925, \mathrm{CHCl}_{3}$) ; Rf 0.3 (Hexane: $\mathrm{Et}_{2} \mathrm{O}, 1: 2$); IR (thin film) $3438,2986,2940,1378,1214,1071,989,856 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (major anomer) $\delta 1.30(3 \mathrm{H}, \mathrm{s}), 1.45(3 \mathrm{H}, \mathrm{s}), 3.37(1 \mathrm{H}, \mathrm{br}$ s), $3.98-4.06(2 \mathrm{H}, \mathrm{m}), 4.55(1 \mathrm{H}, \mathrm{d}, J=5.9 \mathrm{~Hz}), 4.82(1 \mathrm{H}, \mathrm{dd}, J$ $=5.8,3.7 \mathrm{~Hz}), 5.39(1 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\delta 25.0,26.5,72.2,80.2$, 85.4, 102.1, 112.6; MS (ESI) m/z (relative intensity) 183 ([M+ $\left.\mathrm{Na}]^{+}, 100\right)$; HRMS (ESI) calcd for $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$183.0628, found 183.0831.

Imine 6. To a solution of lactol $5(5.74 \mathrm{~g}, 35.8 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ were added $\mathrm{BnNH}_{2}(39 \mathrm{~mL} .358 \mathrm{mmol})$ and $3 \AA$ molecular sieves (ca. 22 g) at room temperature. The reaction mixture was stirred at room temperature for 24 h until the disappearance of the starting material as shown on TLC. The mixture was filtered and the residue was washed with EtOAc. Concentration of the filtrate followed by flash column chromatography (hexane:EtOAc, 3:1) produced imine 6 (8.60 $\mathrm{g}, 96 \%$) as a white solid: $\mathrm{mp} 58-59{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}-34.0(\mathrm{c} 2.22$, CHCl_{3}); Rf 0.33 (hexane:EtOAc, 1:1); IR (thin film) 3673, 3456, 3269, 3028, 2932, 2858, 1461, 1376, 1270, 1209, 1102, 1057, 992, 859, $702 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 1.31(0.87 \mathrm{H}, \mathrm{s}), 1.33(3 \mathrm{H}$, s), $1.5(3.8 \mathrm{H}, \mathrm{s}), 3.42(1 \mathrm{H}, \mathrm{dd}, J=11,3.2 \mathrm{~Hz}), 3.77(0.29 \mathrm{H}, \mathrm{d}, J$ $=13.3 \mathrm{~Hz}), 3.89(0.29 \mathrm{H}, \mathrm{d}, J=13.3 \mathrm{~Hz}), 3.93-3.99(2.58 \mathrm{H}, \mathrm{m})$, $4.15(1 \mathrm{H}, \mathrm{d}, J=13.3 \mathrm{~Hz}), 4.29(1 \mathrm{H}, \mathrm{d}, J=3.3 \mathrm{~Hz}), 4.40(0.29$ $\mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}), 4.50(1 \mathrm{H}, \mathrm{dd}, J=6,3.5 \mathrm{~Hz}), 4.68(1 \mathrm{H}, \mathrm{dd}, J=$ $6,3.6 \mathrm{~Hz}), 4.77-4.82(0.58 \mathrm{H}, \mathrm{m}), 7.23-7.41(6.45 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\delta 24.5,24.8,25.9,26.3,49.2,50.1,68.7,70.5,79.2,79.8$, 80.5, 85.2, 91.3, 94.4, 111.9, 112.3, 128.2, 128.2, 128.2, 128.4, 139.6, 139.9; MS (ESI) m/z (relative intensity) 250 ([M] ${ }^{+}, 100$), 251 (23), 252 (2); HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{3}[\mathrm{M}]^{+}$ 250.1438 , found 250.1440 .

Amine 7 (R=benzyl). To a stirred solution of a 0.5 M THF solution of benzylmagnesium bromide ($4.7 \mathrm{~mL}, 2.34 \mathrm{mmol}$) was added imine $6(56.2 \mathrm{mg}, 0.225 \mathrm{mmol})$ in dry THF (4.3 mL) dropwise at $-20{ }^{\circ} \mathrm{C}$ under N_{2}. After the addition, the mixture was allowed to rise to room temperature and stirred for a further 13 h . The mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and the aqueous phase was extracted with EtOAc ($3 \times$ 20 mL). The combined organic extracts were dried over anhydrous MgSO_{4}, and filtered. The filtrate was concentrated under reduced pressure and the residue was purified by flash chromatography (hexane: $\left.\mathrm{Et}_{2} \mathrm{O}, 1: 1\right)$ to afford amine $7(44.5 \mathrm{mg}$,
58%) as a colourless oil: $[\alpha]_{\mathrm{D}}^{20}-34.6$ (c 1.98, CHCl_{3}); Rf 0.22 (hexane: $\mathrm{Et}_{2} \mathrm{O}, 1: 2$); IR (thin film) 3678, 3653, 3457, 3270, 3063, 3028, 2985, 2930 1495, 1455, 1214, 1061, $745 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 1.34(3 \mathrm{H}, \mathrm{s}), 1.53(3 \mathrm{H}, \mathrm{s}), 2.77(1 \mathrm{H}, \mathrm{dd}, J=13.1,9.7$ $\mathrm{Hz}), 3.03(1 \mathrm{H}, \mathrm{ddd}, J=9.6,4.6,1.4 \mathrm{~Hz}), 3.35(1 \mathrm{H}, \mathrm{dd}, J=13.1$, $4.6 \mathrm{~Hz}), 3.56(1 \mathrm{H}, \mathrm{dd}, J=12.8,2.2 \mathrm{~Hz}), 3.73(1 \mathrm{H}, \mathrm{dd}, J=12.8$, $4.9 \mathrm{~Hz}), 3.88(1 \mathrm{H}, \mathrm{d}, J=12.3 \mathrm{~Hz}), 3.96-4.00(1 \mathrm{H}, \mathrm{m}), 4.06$ $(1 \mathrm{H}, \mathrm{d}, J=12.3 \mathrm{~Hz}), 4.15(1 \mathrm{H}, \mathrm{dd}, J=7.2,1.5 \mathrm{~Hz}), 7.19-7.38$ $(10 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\delta 24.7\left(\mathrm{CH}_{3}\right), 26.7\left(\mathrm{CH}_{3}\right), 37.3\left(\mathrm{CH}_{2}\right), 50.5$ $\left(\mathrm{CH}_{2}\right), 56.5(\mathrm{CH}), 60.6\left(\mathrm{CH}_{2}\right), 76.3(\mathrm{CH}), 77.7(\mathrm{CH}), 107.5(\mathrm{C})$, $126.5(\mathrm{CH}), 127.6(\mathrm{CH}), 128.6(\mathrm{CH}), 128.7(\mathrm{CH}), 128.7(\mathrm{CH})$, 129.2 (CH), 138.1 (C), 138.6 (C); MS (ESI) m / z (relative intensity) $342\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right), 343$ (24), 344 (4); HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+} 342.2064$, found 342.2059.

Amine 8 ($\mathbf{R}=$ biphenylmethyl). Following the general procedure for generation of benzylic zinc reagent, the 4(bromomethyl)biphenyl ($850 \mathrm{mg}, 3.44 \mathrm{mmol}$) was converted into the biphenylmethyl zinc reagent at $25^{\circ} \mathrm{C}$ in 2 h . To a stirred solution of a 0.31 M THF solution of biphenylmethyl zinc bromide ($11.1 \mathrm{~mL}, 3.44 \mathrm{mmol}$) was added imine 6 (87.7 $\mathrm{mg}, 0.336 \mathrm{mmol}$) in dry THF (29 mL) dropwise at $-20{ }^{\circ} \mathrm{C}$ under N_{2}. After the addition, the mixture was allowed to rise to room temperature and stirred for a further 24 h . The mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and the aqueous phase was extracted with EtOAc $(3 \times 20 \mathrm{~mL})$. The combined organic extracts were dried over anhydrous MgSO_{4}, and filtered. The filtrate was concentrated under reduced pressure and the residue was purified by flash chromatography (hexane: $\mathrm{Et}_{2} \mathrm{O}, 1: 1$) to afford amine $8(102 \mathrm{mg}, 73 \%)$ as a colourless oil: $[\alpha]_{\mathrm{D}}^{20}-48.6$ (c 2.11, CHCl_{3}); $\mathrm{R}_{f} 0.15$ (hexane: $\mathrm{Et}_{2} \mathrm{O}, 1: 2$); IR (thin film) 3677, 3653, 3423, 3205, 3026, 2984, 2931, 1486, 1451, 1375, 1248, 1214, 1137, 1055, $754 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 1.36(3 \mathrm{H}, \mathrm{s}), 1.55(3 \mathrm{H}, \mathrm{s}), 2.81(1 \mathrm{H}, \mathrm{dd}, J$ $=13.0,9.8 \mathrm{~Hz}), 3.06(1 \mathrm{H}, \mathrm{ddd}, J=9.7,4.6,1.2 \mathrm{~Hz}), 3.39(1 \mathrm{H}$, dd, $J=13.1,4.5 \mathrm{~Hz}), 3.58(1 \mathrm{H}, \mathrm{dd}, J=12.8,2.0 \mathrm{~Hz}), 3.75(1 \mathrm{H}$, dd, $J=12.8,4.9 \mathrm{~Hz}), 3.90(1 \mathrm{H}, \mathrm{d}, J=12.3 \mathrm{~Hz}), 3.99-4.02(1 \mathrm{H}$, m), $4.09(1 \mathrm{H}, \mathrm{d}, J=12.3 \mathrm{~Hz}), 4.20(1 \mathrm{H}, \mathrm{dd}, J=7.2,1.4 \mathrm{~Hz})$, $7.28-7.39(8 \mathrm{H}, \mathrm{m}), 7.44-7.48(2 \mathrm{H}, \mathrm{m}), 7.56-7.62(4 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\delta 24.8\left(\mathrm{CH}_{3}\right), 26.7\left(\mathrm{CH}_{3}\right), 37.0\left(\mathrm{CH}_{2}\right), 50.6\left(\mathrm{CH}_{2}\right), 56.6$ $(\mathrm{CH}), 60.6\left(\mathrm{CH}_{2}\right), 76.4(\mathrm{CH}), 77.8(\mathrm{CH}), 107.6(\mathrm{C}), 126.9$ $(\mathrm{CH}), 127.3(\mathrm{CH}), 127.4(\mathrm{CH}), 127.6(\mathrm{CH}), 128.7(\mathrm{CH}), 128.7$ $(\mathrm{CH}), 128.8(\mathrm{CH}), 129.7(\mathrm{CH}), 137.7(\mathrm{C}), 138.2(\mathrm{C}), 139.4(\mathrm{C})$, 140.7 (C); MS (ESI) m / z (relative intensity) $418\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$, 419 (35), 420 (5); HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$ 418.2377, found 418.2369.

Amine 9 ($\mathbf{R =}$ 2-naphthylmethyl). To a stirred solution of a $0.25 \mathrm{M} \mathrm{Et}_{2} \mathrm{O}$ solution of 2-naphthylmethylmagnesium bromide $(146 \mathrm{~mL}, 36.5 \mathrm{mmol})$ was added imine $6(910 \mathrm{mg}, 3.65 \mathrm{mmol})$ in dry THF $(20 \mathrm{~mL})$ dropwise at $-20^{\circ} \mathrm{C}$ under N_{2}. After the addition, the mixture was allowed to rise to room temperature and stirred for a further 24 h . The mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and the aqueous phase was extracted with EtOAc $(3 \times 50 \mathrm{~mL})$. The combined organic extracts were dried over anhydrous MgSO_{4}, and filtered. The filtrate was
concentrated under reduced pressure and the residue was purified by flash chromatography (hexane: $\mathrm{Et}_{2} \mathrm{O}, 1: 1$) to afford amine $9(816 \mathrm{mg}, 57 \%)$ as a white solid: $\mathrm{mp} 98-99^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}-$ 46.6 (c 1.28, CHCl_{3}); Rf 0.15 (hexane: $\mathrm{Et}_{2} \mathrm{O}, 1: 2$); IR (thin film) 3666, 3642, 2983, 2928, 1453, 1375, 1248, 1214, 1139, 1053, $817,748,701 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 1.33(3 \mathrm{H}, \mathrm{s}), 1.55(3 \mathrm{H}, \mathrm{s}), 2.93$ $(1 \mathrm{H}, \mathrm{dd}, J=13.0,9.7 \mathrm{~Hz}), 3.13(1 \mathrm{H}, \mathrm{ddd}, J=9.6,4.6,1.4 \mathrm{~Hz})$, $3.51(1 \mathrm{H}, \mathrm{dd}, J=13.0,4.6 \mathrm{~Hz}), 3.57(1 \mathrm{H}, \mathrm{dd}, J=12.8,2.1 \mathrm{~Hz})$, $3.74(1 \mathrm{H}, \mathrm{dd}, J=12.8,4.9 \mathrm{~Hz}), 3.91(1 \mathrm{H}, \mathrm{d}, J=12.3 \mathrm{~Hz}), 3.94-$ $3.96(1 \mathrm{H}, \mathrm{m}), 4.10(1 \mathrm{H}, \mathrm{d}, J=12.3 \mathrm{~Hz}), 4.18(1 \mathrm{H}, \mathrm{dd}, J=7.2$, $1.6 \mathrm{~Hz}), 7.30-7.52(8 \mathrm{H}, \mathrm{m}), 7.65(1 \mathrm{H}, \mathrm{s}), 7.79-7.85(3 \mathrm{H}, \mathrm{m})$; ${ }^{13} \mathrm{C}$ NMR $\delta 24.8\left(\mathrm{CH}_{3}\right), 26.7\left(\mathrm{CH}_{3}\right), 37.5\left(\mathrm{CH}_{2}\right), 50.7\left(\mathrm{CH}_{2}\right)$, $56.6(\mathrm{CH}), 60.6(\mathrm{CH} 2), 76.4(\mathrm{CH}), 77.8(\mathrm{CH}), 107.6(\mathrm{C}), 125.6$ $(\mathrm{CH}), 126.3(\mathrm{CH}), 127.4(\mathrm{CH}), 127.5(\mathrm{CH}), 127.6(\mathrm{CH}), 127.7$ $(\mathrm{CH}), 127.8(\mathrm{CH}), 128.4(\mathrm{CH}), 128.7(\mathrm{CH}), 128.7(\mathrm{CH}), 132.2$ (C), 133.6 (C), 136.1 (C), 138.2 (C); MS (ESI) m/z (relative intensity) 392 ([M+H], 100), 393 (27), 394 (5); HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+} 392.2220$, found 392.2214.

Amine 10 ($\mathbf{R}=\boldsymbol{p}$-Me-benzyl). To a stirred solution of a 0.5 M THF solution of p-methylbenzylmagnesium bromide (7.0 mL , $3.33 \mathrm{mmol})$ was added imine $6(52.7 \mathrm{mg}, 0.211 \mathrm{mmol})$ in dry THF (2 mL) dropwise at $-20^{\circ} \mathrm{C}$ under N_{2}. After the addition, the mixture was allowed to rise to room temperature and stirred for a further 17 h . The mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and the aqueous phase was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organic extracts were dried over anhydrous MgSO_{4}, and filtered. The filtrate was concentrated under reduced pressure and the residue was purified by flash chromatography (hexane: $\mathrm{Et}_{2} \mathrm{O}, 1: 1$) to afford amine 10 ($27.3 \mathrm{mg}, 50 \%$) as a colourless oil: $[\alpha]_{\mathrm{D}}^{20}-33.0$ (c 1.13, CHCl_{3}); Rf 0.18 (hexane: $\mathrm{Et}_{2} \mathrm{O}, 1: 2$); IR (thin film) 3415, 3335, 2984, 2926, 1701, 1513, 1456, 1375, 1214, 1046, 808, $746 \mathrm{~cm}-$ $1 ;{ }^{1} \mathrm{H}$ NMR $\delta 1.31(3 \mathrm{H}, \mathrm{s}), 1.51(3 \mathrm{H}, \mathrm{s}), 2.34(3 \mathrm{H}, \mathrm{s}), 2.70(1 \mathrm{H}$, $\mathrm{dd}, J=13.1,9.8 \mathrm{~Hz}), 2.97(1 \mathrm{H}, \mathrm{ddd}, J=9.7,4.6,1.6 \mathrm{~Hz}), 3.30$ $(1 \mathrm{H}, \mathrm{dd}, J=13.1,4.6 \mathrm{~Hz}), 3.53(1 \mathrm{H}, \mathrm{dd}, J=12.8,2.1 \mathrm{~Hz}), 3.70$ $(1 \mathrm{H}, \mathrm{dd}, J=12.8,4.8 \mathrm{~Hz}), 3.85(1 \mathrm{H}, \mathrm{d}, J=12.3 \mathrm{~Hz}), 3.94-3.97$ $(1 \mathrm{H}, \mathrm{m}), 4.05(1 \mathrm{H}, \mathrm{d}, J=12.3 \mathrm{~Hz}), 4.14(1 \mathrm{H}, \mathrm{dd}, J=7.2,1.6$ $\mathrm{Hz}), 7.06(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.12(2 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 7.27-$ $7.35(5 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\delta 21.1\left(\mathrm{CH}_{3}\right), 24.8\left(\mathrm{CH}_{3}\right), 26.7\left(\mathrm{CH}_{3}\right)$, $36.9\left(\mathrm{CH}_{2}\right), 50.6\left(\mathrm{CH}_{2}\right), 56.7(\mathrm{CH}), 60.6\left(\mathrm{CH}_{2}\right), 76.4(\mathrm{CH}), 77.8$ $(\mathrm{CH}), 107.5(\mathrm{C}), 127.6(\mathrm{CH}), 128.7(\mathrm{CH}), 128.7(\mathrm{CH}), 129.2$ (CH), 129.4 (CH), 135.5 (C), 136.1 (C), 138.2 (C); MS (ESI) m / z (relative intensity) $356\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right), 357$ (25), 358 (4); HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+} 356.2220$, found 356.2210.

Amine 11 ($\mathbf{R = \boldsymbol { p } - \mathrm { OM } \text { -benzyl). To a stirred solution of a } 0 . 5 \mathrm { M } , ~}$ THF solution of p-methoxybenzylmagnesium chloride $(5.0 \mathrm{~mL}$, $5.01 \mathrm{mmol})$ was added imine $6(53.5 \mathrm{mg}, 0.214 \mathrm{mmol})$ in dry THF (1 mL) dropwise at $-20^{\circ} \mathrm{C}$ under N_{2}. After the addition, the mixture was allowed to rise to room temperature and stirred for a further 17 h . The mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and the aqueous phase was extracted with EtOAc $(3 \times 20 \mathrm{~mL})$. The combined organic extracts were dried over anhydrous MgSO_{4}, and filtered. The filtrate was
concentrated under reduced pressure and the residue was purified by flash chromatography (hexane: $\mathrm{Et}_{2} \mathrm{O}, 1: 1$) to afford amine 11 ($21.1 \mathrm{mg}, 26 \%$) as a colourless oil: $[\alpha]_{\mathrm{D}}^{20}-35.9$ (c 3.17, CHCl_{3}); Rf 0.13 (hexane: $\mathrm{Et}_{2} \mathrm{O}, 1: 2$); IR (thin film) 3312, 2985, 2929, 1612, 1512, 1457, 1247, 1037, $747 \mathrm{~cm}-1 ;{ }^{1} \mathrm{H}$ NMR $\delta 1.32$ $(3 \mathrm{H}, \mathrm{s}), 1.51(3 \mathrm{H}, \mathrm{s}), 2.69(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=13.2,9.7 \mathrm{~Hz}), 2.95(1 \mathrm{H}$, ddd, $J=9.6,4.6,1.4 \mathrm{~Hz}), 3.26(1 \mathrm{H}, \mathrm{dd}, J=13.2,4.6 \mathrm{~Hz}), 3.54$ $(1 \mathrm{H}, \mathrm{dd}, J=12.8,2.1 \mathrm{~Hz}), 3.70(1 \mathrm{H}, \mathrm{dd}, J=12.8,4.8 \mathrm{~Hz}), 3.79$ $(3 \mathrm{H}, \mathrm{s}), 3.84(1 \mathrm{H}, \mathrm{d}, J=12.3 \mathrm{~Hz}), 3.94-3.98(1 \mathrm{H}, \mathrm{m}), 4.04(1 \mathrm{H}$, d, $J=12.3 \mathrm{~Hz}), 4.14(1 \mathrm{H}, \mathrm{dd}, J=7.2,1.5 \mathrm{~Hz}), 6.85(2 \mathrm{H}, \mathrm{d}, J=$ $8.6 \mathrm{~Hz}), 7.09(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 7.28-7.36(5 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\delta 24.8\left(\mathrm{CH}_{3}\right), 26.7\left(\mathrm{CH}_{3}\right), 36.4\left(\mathrm{CH}_{2}\right), 50.6\left(\mathrm{CH}_{2}\right), 55.2\left(\mathrm{CH}_{3}\right)$, $56.6(\mathrm{CH}), 60.6(\mathrm{CH} 2), 76.3(\mathrm{CH}), 77.8(\mathrm{CH}), 107.5(\mathrm{C}), 114.1$ $(\mathrm{CH}), 127.5(\mathrm{CH}), 128.6(\mathrm{CH}), 128.7(\mathrm{CH}), 130.2(\mathrm{CH}), 130.5$ (C), 138.2 (C), 158.2 (C); MS (ESI) m/z (relative intensity) 372 ($[\mathrm{M}+\mathrm{H}]^{+}, 100$), 373 (25), 374 (5); HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+} 372.2169$, found 372.2173.

Amine 12 ($\mathbf{R}=\boldsymbol{p}$-Cl-benzyl). To a stirred solution of a 0.5 M THF solution of p-chlorobenzyl magnesium bromide (4.2 mL , 2.08 mmol) was added imine $6(52 \mathrm{mg}, 0.206 \mathrm{mmol})$ in dry THF (4 mL) dropwise at $-20^{\circ} \mathrm{C}$ under N_{2}. After the addition, the mixture was allowed to rise to room temperature and stirred for a further 24 h . The mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and the aqueous phase was extracted with $\mathrm{EtOAc}(3 \times 20 \mathrm{~mL})$. The combined organic extracts were dried over anhydrous MgSO_{4}, and filtered. The filtrate was concentrated under reduced pressure and the residue was purified by flash chromatography (hexane: $\mathrm{Et}_{2} \mathrm{O}, 1: 1$) to afford amine 12 ($35.8 \mathrm{mg}, 46 \%$) as a colourless oil: $[\alpha]_{\mathrm{D}}^{20}-33.8$ (c 2.59, CHCl_{3}); Rf 0.13 (hexane: $\mathrm{Et}_{2} \mathrm{O}, 1: 2$); IR (thin film) 3316,3028 , 2983, 2927, 1491, 1452, 1376, 1247, 1214, 1087, 1051, 813 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 1.29(3 \mathrm{H}, \mathrm{s}), 1.49(3 \mathrm{H}, \mathrm{s}), 2.71(1 \mathrm{H}, \mathrm{dd}, J=$ $13.2,9.8 \mathrm{~Hz}), 2.96(1 \mathrm{H}, \mathrm{ddd}, J=9.6,4.6,1.5 \mathrm{~Hz}), 3.28(1 \mathrm{H}, \mathrm{dd}$, $J=13.2,4.6 \mathrm{~Hz}), 3.53(1 \mathrm{H}, \mathrm{dd}, J=12.8,2.1 \mathrm{~Hz}), 3.71(1 \mathrm{H}, \mathrm{dd}$, $J=12.8,4.9 \mathrm{~Hz}), 3.84(1 \mathrm{H}, \mathrm{d}, J=12.3 \mathrm{~Hz}), 3.94-3.98(1 \mathrm{H}$, m), $4.02-4.07(2 \mathrm{H}, \mathrm{m}), 7.09(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 7.25-7.37(7 \mathrm{H}$, $\mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\delta 24.7\left(\mathrm{CH}_{3}\right), 26.7\left(\mathrm{CH}_{3}\right), 36.7\left(\mathrm{CH}_{2}\right), 50.6$ $\left(\mathrm{CH}_{2}\right), 56.5(\mathrm{CH}), 60.6\left(\mathrm{CH}_{2}\right), 76.3(\mathrm{CH}), 77.7(\mathrm{CH}), 107.7(\mathrm{C})$, $127.7(\mathrm{CH}), 128.6(\mathrm{CH}), 128.8(\mathrm{CH}), 128.9(\mathrm{CH}), 130.6(\mathrm{CH})$, 132.4 (C), 137.1 (C), 138.0 (C); MS (ESI) m/z (relative intensity) 376 ([M+H] ${ }^{+}$, 100), 377 (25), 378 (36), 379 (8), 380 (2); HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{NO}_{3} \mathrm{Cl}[\mathrm{M}+\mathrm{H}]^{+}$376.1674, found 376.1680 .

Amine 13 (R=benzyl). To a solution of amine $7(1.37 \mathrm{~g}, 4.00$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(53 \mathrm{~mL})$ and then triethylamine $(2.4 \mathrm{~mL}, 17.6$ mmol) and methanesulfonyl chloride ($0.68 \mathrm{~mL}, 8.81 \mathrm{mmol}$) were added under N_{2} at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 1 h and quenched with saturated NaHCO_{3} solution. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$. The combined organic extracts were washed with brine, dried over anhydrous MgSO_{4}, and filtered. The filtrate was concentrated under reduced pressure and the residue was purified by flash chromatography (hexane: $\mathrm{Et}_{2} \mathrm{O}, 1: 1$) to afford amine $\mathbf{1 3}$ (1.06 g , 82%) as a colourless oil: $[\alpha]_{\mathrm{D}}^{20}-156.4$ (c $1.94, \mathrm{CHCl}_{3}$); Rf 0.23
(hexane: $\mathrm{Et}_{2} \mathrm{O}, 6: 1$); IR (thin film) 3027, 2982, 2932, 2787, 1451, 1373, 1210, 1133, 1102, 1033, 739, $700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR δ $1.42(3 \mathrm{H}, \mathrm{s}), 1.73(3 \mathrm{H}, \mathrm{s}), 2.08(1 \mathrm{H}, \mathrm{dd}, J=11.2,4.7 \mathrm{~Hz}), 2.41$ $(1 \mathrm{H}, \mathrm{dt}, J=10.1,4.0 \mathrm{~Hz}), 3.01(1 \mathrm{H}, \mathrm{dd}, J=13.2,3.6 \mathrm{~Hz}), 3.14-$ $3.22(2 \mathrm{H}, \mathrm{m}), 3.27(1 \mathrm{H}, \mathrm{d}, J=13.5 \mathrm{~Hz}), 4.28(1 \mathrm{H}, \mathrm{d}, J=13.5$ $\mathrm{Hz}), 4.45(1 \mathrm{H}, \mathrm{dd}, J=6.4,4.5 \mathrm{~Hz}), 4.57(1 \mathrm{H}, \mathrm{dd}, J=6.4,4.8$ $\mathrm{Hz}), 7.28-7.46(10 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\delta 25.8\left(\mathrm{CH}_{3}\right), 26.5\left(\mathrm{CH}_{3}\right)$, $33.3\left(\mathrm{CH}_{2}\right), 57.1(\mathrm{CH} 2), 59.9\left(\mathrm{CH}_{2}\right), 70.2(\mathrm{CH}), 77.5(\mathrm{CH})$, $80.4(\mathrm{CH}), 111.0(\mathrm{C}), 125.9(\mathrm{CH}), 126.8(\mathrm{CH}), 128.2(\mathrm{CH})$, $128.5(\mathrm{CH}), 129.5(\mathrm{CH}), 138.6$ (C), 139.6 (C); MS (ESI) m/z (relative intensity) $324\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right), 325$ (20), 326 (3); HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 324.1958$, found 324.1962.

Amine 14 ($\mathbf{R}=$ =biphenylmethyl). To a solution of amine $\mathbf{8}$ $(1.24 \mathrm{~g}, 2.98 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ and then triethylamine $(1.8 \mathrm{~mL}, 13.1 \mathrm{mmol})$ and methanesulfonyl chloride $(0.51 \mathrm{~mL}$, 6.55 mmol) were added under N_{2} at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 1 h and quenched with saturated NaHCO_{3} solution. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 30$ mL). The combined organic extracts were washed with brine, dried over anhydrous MgSO_{4}, and filtered. The filtrate was concentrated under reduced pressure and the residue was purified by flash chromatography (hexane: $\mathrm{Et}_{2} \mathrm{O}, 1: 1$) to afford amine $14(1.06 \mathrm{~g}, 88 \%)$ as a white solid: $\mathrm{mp} 120-121^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}$ -153.6 (c 1.30, CHCl_{3}); $\mathrm{R}_{f} 0.20$ (hexane: $\mathrm{Et}_{2} \mathrm{O}, 6: 1$); IR (thin film) $3659,3471,2943,2767,1439,1375,1211,746 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 1.38(3 \mathrm{H}, \mathrm{s}), 1.68(3 \mathrm{H}, \mathrm{s}), 2.06(1 \mathrm{H}, \mathrm{dd}, J=11.1,4.7$ $\mathrm{Hz}), 2.40(1 \mathrm{H}, \mathrm{dt}, J=10.2,4.0 \mathrm{~Hz}), 3.00(1 \mathrm{H}, \mathrm{dd}, J=13.2,3.5$ $\mathrm{Hz}), 3.12(1 \mathrm{H}, \mathrm{d}, J=11.2 \mathrm{~Hz}), 3.18(1 \mathrm{H}, \mathrm{dd}, J=13.0,10.5 \mathrm{~Hz})$, $3.24(1 \mathrm{H}, \mathrm{d}, J=13.5 \mathrm{~Hz}), 4.25(1 \mathrm{H}, \mathrm{d}, J=13.5 \mathrm{~Hz}), 4.44-4.47$ $(1 \mathrm{H}, \mathrm{m}), 4.54-4.57(1 \mathrm{H}, \mathrm{m}), 7.27-7.64(14 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR δ $25.9\left(\mathrm{CH}_{3}\right), 26.6\left(\mathrm{CH}_{3}\right), 33.1\left(\mathrm{CH}_{2}\right), 57.2\left(\mathrm{CH}_{2}\right), 59.9\left(\mathrm{CH}_{2}\right)$, $70.2(\mathrm{CH}), 77.6(\mathrm{CH}), 80.5(\mathrm{CH}), 111.2(\mathrm{C}), 126.9(\mathrm{CH}), 127.0$ $(\mathrm{CH}), 127.1(\mathrm{CH}), 128.3(\mathrm{CH}), 128.6(\mathrm{CH}), 128.7(\mathrm{CH}), 130.0$ (CH), 138.8 (C), 138.9 (C), 141.1 (C); MS (ESI) m / z (relative intensity) $400\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right), 401$ (32), 402 (7); HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 400.2271$, found 400.2271 .

Amine 15 ($\mathbf{R}=\mathbf{2}$-naphthylmethyl). To a solution of amine 9 ($745 \mathrm{mg}, 1.90 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ and then triethylamine $(1.16 \mathrm{~mL}, 8.37 \mathrm{mmol})$ and methanesulfonyl chloride $(0.32 \mathrm{~mL}$, 4.19 mmol) were added under N_{2} at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h and quenched with saturated NaHCO_{3} solution. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}$ $(3 \times 30 \mathrm{~mL})$. The combined organic extracts were washed with brine, dried over anhydrous MgSO_{4}, and filtered. The filtrate was concentrated under reduced pressure and the residue was purified by flash chromatography (hexane: $\mathrm{Et}_{2} \mathrm{O}, 12: 1$) to afford amine 15 ($695 \mathrm{mg}, 98 \%$) as a colourless oil; $[\alpha]_{\mathrm{D}}^{20}-153.5$ (c 2.99, CHCl_{3}); Rf 0.33 (hexane: $\mathrm{Et}_{2} \mathrm{O}, 6: 1$); IR (thin film) 3054, 2980, 2932, 2787, 1601, 1449, 1372, 1271, 1209, 1131, 1093, $859,748 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 1.43(3 \mathrm{H}, \mathrm{s}), 1.78(3 \mathrm{H}, \mathrm{s}), 2.08(1 \mathrm{H}$, $\mathrm{dd}, J=11.2,4.7 \mathrm{~Hz}), 2.49(1 \mathrm{H}, \mathrm{dt}, J=10.2,4.0 \mathrm{~Hz}), 3.16-3.20$ $(2 \mathrm{H}, \mathrm{m}), 3.29(1 \mathrm{H}, \mathrm{d}, J=13.5 \mathrm{~Hz}), 3.36(1 \mathrm{H}, \mathrm{dd}, J=13.2,10.2$ $\mathrm{Hz}), 4.33(1 \mathrm{H}, \mathrm{d}, J=13.5 \mathrm{~Hz}), 4.44(1 \mathrm{H}, \mathrm{dd}, J=6.3,4.5 \mathrm{~Hz})$,
$4.56(1 \mathrm{H}, \mathrm{dd}, J=6.4,4.8 \mathrm{~Hz}), 7.34-7.61(8 \mathrm{H}, \mathrm{m}), 7.87-7.92$ $(4 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\delta 25.8\left(\mathrm{CH}_{3}\right), 26.5\left(\mathrm{CH}_{3}\right), 33.5\left(\mathrm{CH}_{2}\right), 57.1$ $\left(\mathrm{CH}_{2}\right), 59.9\left(\mathrm{CH}_{2}\right), 70.2(\mathrm{CH}), 77.5(\mathrm{CH}), 80.4(\mathrm{CH}), 111.0(\mathrm{C})$, $125.2(\mathrm{CH}), 125.8(\mathrm{CH}), 126.8(\mathrm{CH}), 127.5(\mathrm{CH}), 127.6(\mathrm{CH})$, $127.7(\mathrm{CH}), 127.7(\mathrm{CH}), 128.2(\mathrm{CH}), 128.2(\mathrm{CH}), 128.5(\mathrm{CH})$, 132.0 (C), 133.5 (C), 137.2 (C), 138.7 (C); MS (ESI) m/z (relative intensity) $374\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right), 375$ (94), 376 (5); HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 374.2115$, found 274.2121.

Amine 16 ($\mathbf{R = p}$-Me-benzyl). To a solution of amine $\mathbf{1 0}$ (17.7 $\mathrm{mg}, 0.05 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.7 \mathrm{~mL})$ and then triethylamine $(0.03 \mathrm{~mL}, 0.22 \mathrm{mmol})$ and methanesulfonyl chloride (0.0085 $\mathrm{mL}, 0.11 \mathrm{mmol}$) were added under N_{2} at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1.5 h and quenched with saturated NaHCO_{3} solution. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$. The combined organic extracts were washed with brine, dried over anhydrous MgSO_{4}, and filtered. The filtrate was concentrated under reduced pressure and the residue was purified by flash chromatography (hexane: $\mathrm{Et}_{2} \mathrm{O}$, 12:1) to afford amine $\mathbf{1 6}(14.3 \mathrm{mg}, 85 \%)$ as a colourless oil: $[\alpha]_{\mathrm{D}}^{20}-149.3$ (c 1.79, CHCl_{3}); Rf 0.27 (hexane: $\mathrm{Et}_{2} \mathrm{O}, 6: 1$); IR (thin film) $3676,3651,3629,3211,3022,2983,2932,2863$, 2787, 1514, 1451, 1372, 1209, $942 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 1.35(3 \mathrm{H}$, s), $1.65(3 \mathrm{H}, \mathrm{s}), 2.02(1 \mathrm{H}, \mathrm{dd}, J=11.2,4.8 \mathrm{~Hz}), 2.31-2.36(4 \mathrm{H}$, m), $2.92(1 \mathrm{H}, \mathrm{dd}, J=13.2,3.7 \mathrm{~Hz}), 3.06-3.12(2 \mathrm{H}, \mathrm{m}), 3.20$ $(1 \mathrm{H}, \mathrm{d}, J=13.5 \mathrm{~Hz}), 4.22(1 \mathrm{H}, \mathrm{d}, J=13.5 \mathrm{~Hz}), 4.41(1 \mathrm{H}, \mathrm{dd}, J$ $=6.4,4.5 \mathrm{~Hz}), 4.53(1 \mathrm{H}, \mathrm{dd}, J=6.4,4.8 \mathrm{~Hz}), 7.13-7.40(9 \mathrm{H}$, m); ${ }^{13} \mathrm{C}$ NMR $\delta 21.1\left(\mathrm{CH}_{3}\right), 25.90\left(\mathrm{CH}_{3}\right), 26.5\left(\mathrm{CH}_{3}\right), 32.9$ $\left(\mathrm{CH}_{2}\right), 57.2\left(\mathrm{CH}_{2}\right), 60.0(\mathrm{CH} 2), 70.4(\mathrm{CH}), 77.6(\mathrm{CH}), 80.5$ $(\mathrm{CH}), 111.1(\mathrm{C}), 126.8(\mathrm{CH}), 128.2(\mathrm{CH}), 128.6(\mathrm{CH}), 129.0$ $(\mathrm{CH}), 129.4(\mathrm{CH}), 135.4$ (C), 136.6 (C), 138.8 (C); MS (ESI) m / z (relative intensity) $338\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right), 339$ (26), 340 (4); HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 338.2115$, found 338.2118 .

Amine 17 ($\mathbf{R}=\boldsymbol{p}$-OMe-benzyl). To a solution of amine $\mathbf{1 1}$ $(13.0 \mathrm{mg}, 0.0349 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ and then triethylamine ($0.02 \mathrm{~mL}, 0.153 \mathrm{mmol}$) and methanesulfonyl chloride ($0.0059 \mathrm{~mL}, 0.0767 \mathrm{mmol}$) were added under N_{2} at 0 ${ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h and quenched with saturated NaHCO_{3} solution. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$. The combined organic extracts were washed with brine, dried over anhydrous MgSO_{4}, and filtered. The filtrate was concentrated under reduced pressure and the residue was purified by flash chromatography (hexane: $\left.\mathrm{Et}_{2} \mathrm{O}, 12: 1\right)$ to afford amine $17(10.3 \mathrm{mg}, 83 \%)$ as a colourless oil; $[\alpha]_{\mathrm{D}}^{20}-145.7$ (c 2.58, CHCl_{3}); Rf 0.13 (hexane: $\mathrm{Et}_{2} \mathrm{O}, 6: 1$); IR (thin film) 3027, 2983, 2933, 2830, 2787, 1611, 1512, 1452, 1372, 1244, 1036, $835 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 1.34(3 \mathrm{H}, \mathrm{s}), 1.64(3 \mathrm{H}, \mathrm{s}), 2.02(1 \mathrm{H}, \mathrm{dd}, J=11.2,4.8 \mathrm{~Hz})$, $2.30(1 \mathrm{H}, \mathrm{dt}, J=10.3,4.0 \mathrm{~Hz}), 2.89(1 \mathrm{H}, \mathrm{dd}, J=13.3,3.7 \mathrm{~Hz})$, $3.02-3.09(2 \mathrm{H}, \mathrm{m}), 3.20(1 \mathrm{H}, \mathrm{d}, J=13.6 \mathrm{~Hz}), 3.81(3 \mathrm{H}, \mathrm{s}), 4.21$ $(1 \mathrm{H}, \mathrm{d}, J=13.6 \mathrm{~Hz}), 4.39(1 \mathrm{H}, \mathrm{dd}, J=6.4,4.5 \mathrm{~Hz}), 4.52(1 \mathrm{H}$, dd, $J=6.4,4.7 \mathrm{~Hz}), 6.87(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 7.24-7.37(7 \mathrm{H}$, m); ${ }^{13} \mathrm{C}$ NMR $\delta 25.9\left(\mathrm{CH}_{3}\right)$, $26.5\left(\mathrm{CH}_{3}\right), 32.4\left(\mathrm{CH}_{2}\right), 55.2$
$\left(\mathrm{CH}_{3}\right), 57.1\left(\mathrm{CH}_{2}\right), 60.0(\mathrm{CH} 2), 70.4(\mathrm{CH}), 77.5(\mathrm{CH}), 80.5$ $(\mathrm{CH}), 111.0(\mathrm{C}), 113.6(\mathrm{CH}), 126.8(\mathrm{CH}), 128.2(\mathrm{CH}), 128.6$ (CH), $130.4(\mathrm{CH}), 131.6$ (C), 138.7 (C), 157.9 (C); MS (ESI) m / z (relative intensity) $354\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right), 355$ (22), 356 (4); HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+} 342.2064$, found 342.2058.

Amine 18 ($\mathbf{R}=\mathbf{p}$-Cl-benzyl). To a solution of amine 12 (32.7 $\mathrm{mg}, 0.0869 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.1 \mathrm{~mL})$ and then triethylamine $(0.05 \mathrm{~mL}, 0.382 \mathrm{mmol})$ and methanesulfonyl chloride (0.015 $\mathrm{mL}, 0.191 \mathrm{mmol}$) were added under N_{2} at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h and quenched with saturated NaHCO_{3} solution. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}$ $(3 \times 30 \mathrm{~mL})$. The combined organic extracts were washed with brine, dried over anhydrous MgSO_{4}, and filtered. The filtrate was concentrated under reduced pressure and the residue was purified by flash chromatography (hexane: $\mathrm{Et}_{2} \mathrm{O}, 12: 1$) to afford amine 18 ($28.1 \mathrm{mg}, 90 \%$) as a colourless oil; $[\alpha]_{\mathrm{D}}^{20}-159.2$ (c $1.82, \mathrm{CHCl}_{3}$); $\mathrm{R}_{f} 0.17$ (hexane: $\mathrm{Et}_{2} \mathrm{O}, 12: 1$); IR (thin film) 3027, 2980. 2932, 2787, 1491, 1451, 1373, 1210, 1133, 1089, 862 , $743 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 1.32(3 \mathrm{H}, \mathrm{s}), 1.61(3 \mathrm{H}, \mathrm{s}), 2.03(1 \mathrm{H}, \mathrm{dd}, J$ $=11.2,4.8 \mathrm{~Hz}), 2.29(1 \mathrm{H}, \mathrm{dt}, J=10.4,4.1 \mathrm{~Hz}), 2.89(1 \mathrm{H}, \mathrm{dd}, J$ $=13.2,3.8 \mathrm{~Hz}), 3.01-3.08(2 \mathrm{H}, \mathrm{m}), 3.21(1 \mathrm{H}, \mathrm{d}, J=13.6 \mathrm{~Hz})$, $4.16(1 \mathrm{H}, \mathrm{d}, J=13.6 \mathrm{~Hz}), 4.33(1 \mathrm{H}, \mathrm{dd}, J=6.4,4.6 \mathrm{~Hz}), 4.51$ $(1 \mathrm{H}, \mathrm{dd}, J=6.4,4.7 \mathrm{~Hz}), 7.24-7.37(9 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\delta 25.8$ $\left(\mathrm{CH}_{3}\right), 26.5\left(\mathrm{CH}_{3}\right), 32.9\left(\mathrm{CH}_{2}\right), 57.1\left(\mathrm{CH}_{2}\right), 59.9\left(\mathrm{CH}_{2}\right), 70.1$ $(\mathrm{CH}), 77.5(\mathrm{CH}), 80.3(\mathrm{CH}), 111.2(\mathrm{C}), 126.9(\mathrm{CH}), 128.3$ $(\mathrm{CH}), 128.4(\mathrm{CH}), 128.6(\mathrm{CH}), 130.9(\mathrm{CH}), 131.8(\mathrm{C}), 138.0$ (C), 138.6 (C); MS (ESI) m / z (relative intensity) 358 ([M+H] , 100), 359 (24), 360 (34), 361 (9); HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{NO}_{3} \mathrm{Cl}[\mathrm{M}+\mathrm{H}]^{+} 358.1568$, found 358.1571.

Amine 19 (R=benzyl). To a solution of amine 13 (444 mg , $1.38 \mathrm{mmol})$ in t - $\mathrm{BuOH}(23 \mathrm{~mL})$ and water $(4.5 \mathrm{~mL})$ was added 10% Pd-on-charcoal ($147 \mathrm{mg}, 0.138 \mathrm{mmol}$) The mixture was activated with an atmosphere of H_{2} (balloon) by three times followed by stirring under the same H_{2} atmosphere at room temperature for another 48 h . The mixture was filtered and washed with EtOAc. The filtrate was concentrated under reduced pressure and the residue was purified by flash chromatography $\left(\mathrm{CHCl}_{3}: \mathrm{MeOH}, 20: 1\right)$ to afford amine 19 (293 $\mathrm{mg}, 91 \%)$ as a colourless oil: $[\alpha]_{\mathrm{D}}^{20}-93.4$ (c $\left.1.75, \mathrm{CHCl}_{3}\right) ; \mathrm{R}_{f}$ $0.40\left(\mathrm{CHCl}_{3}: \mathrm{MeOH}, 20: 1\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 1.32(3 \mathrm{H}, \mathrm{s}), 1.51(3 \mathrm{H}$, s), $1.93(1 \mathrm{H}, \mathrm{br}$ s), $2.60(1 \mathrm{H}, \mathrm{dd}, J=13.3,4 \mathrm{~Hz}), 2.81-2.89$ $(2 \mathrm{H}, \mathrm{m}), 2.95-3.01(1 \mathrm{H}, \mathrm{m}), 3.06(1 \mathrm{H}, \mathrm{d}, J=13.3 \mathrm{~Hz}), 4.40$ $(1 \mathrm{H}, \mathrm{dd}, J=5.5,3.5 \mathrm{~Hz}), 4.62(1 \mathrm{H}, \mathrm{dd}, J=5.5,4.0 \mathrm{~Hz}), 7.18-$ $7.32(5 \mathrm{H}, \mathrm{m})$; ${ }^{13} \mathrm{C}$ NMR $\delta 23.9\left(\mathrm{CH}_{3}\right), 25.8\left(\mathrm{CH}_{3}\right), 34.7\left(\mathrm{CH}_{2}\right)$, $53.1\left(\mathrm{CH}_{2}\right), 65.5(\mathrm{CH}), 81.1(\mathrm{CH}), 81.8(\mathrm{CH}), 110.3(\mathrm{C}), 126.0$ $(\mathrm{CH}), 128.2(\mathrm{CH}), 129.0(\mathrm{CH}), 139.5(\mathrm{C}) ; \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}$ (relative intensity) $234\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right), 235$ (15), 236 (2); HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$234.1489, found 234.1489.

Amine 20 ($\mathbf{R = b i p h e n y l m e t h y l) . ~ T o ~ a ~ s o l u t i o n ~ o f ~ a m i n e ~} 14$ ($367 \mathrm{mg}, 0.917 \mathrm{mmol}$) in t - $\mathrm{BuOH}(30 \mathrm{~mL}$) and water $(6 \mathrm{~mL})$ was added 10% Pd-on-charcoal ($97.6 \mathrm{mg}, 0.0917 \mathrm{mmol}$) The
mixture was activated with an atmosphere of H_{2} (balloon) by three times followed by stirring under the same H_{2} atmosphere at room temperature for another 72 h . The mixture was filtered and washed with EtOAc. The filtrate was concentrated under reduced pressure and the residue was purified by flash chromatography $\left(\mathrm{CHCl}_{3}: \mathrm{MeOH}, 20: 1\right)$ to afford amine 20 (250 $\mathrm{mg}, 88 \%)$ as a white solid: $\mathrm{mp} 89-90^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}-92.9(c 1.10$, $\left.\mathrm{CHCl}_{3}\right) ; \mathrm{R}_{f} 0.33\left(\mathrm{CHCl}_{3}: \mathrm{MeOH}, 20: 1\right)$; IR (thin film) 3671, 3648, 3027, 2982, 2927, 2860, 1488, 1376, 1269, 1207, 1080, 1036, 853, $762 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 1.34(3 \mathrm{H}, \mathrm{s}), 1.54(3 \mathrm{H}, \mathrm{s}), 2.06$ $(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.62(1 \mathrm{H}, \mathrm{dd}, J=13.4,4.0 \mathrm{~Hz}), 2.86-2.94(2 \mathrm{H}, \mathrm{m})$, $3.00-3.06(1 \mathrm{H}, \mathrm{m}), 3.09(1 \mathrm{H}, \mathrm{d}, J=13.3 \mathrm{~Hz}), 4.47(1 \mathrm{H}, \mathrm{dd}, J=$ $5.4,3.4 \mathrm{~Hz}), 4.66(1 \mathrm{H}, \mathrm{dd}, J=5.5,4.0 \mathrm{~Hz}), 7.31-7.53(9 \mathrm{H}, \mathrm{m})$; ${ }^{13} \mathrm{C}$ NMR $\delta 24.0\left(\mathrm{CH}_{3}\right), 25.9\left(\mathrm{CH}_{3}\right), 34.4\left(\mathrm{CH}_{2}\right), 53.3\left(\mathrm{CH}_{2}\right)$, $65.6(\mathrm{CH}), 81.3(\mathrm{CH}), 82.0(\mathrm{CH}), 110.4(\mathrm{C}), 127.0(\mathrm{CH}), 127.0$ $(\mathrm{CH}), 127.1(\mathrm{CH}), 128.7(\mathrm{CH}), 129.5(\mathrm{CH}), 138.8(\mathrm{C}), 139.1$ (C), 141.1 (C); MS (ESI) m / z (relative intensity) 310 ([M+H] , 100), 311 (23), 312 (3); HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+} 310.1802$, found 310.1801.

Amine 21 ($\mathbf{R = 2}$-naphthylmethyl). To a solution of amine $\mathbf{1 5}$ $(41.4 \mathrm{mg}, 0.111 \mathrm{mmol})$ in $t-\mathrm{BuOH}(1.6 \mathrm{~mL})$ and water $(0.4 \mathrm{~mL})$ was added 10% Pd-on-charcoal ($11.8 \mathrm{mg}, 0.0111 \mathrm{mmol}$) The mixture was activated with an atmosphere of H_{2} (balloon) by three times followed by stirring under the same H_{2} atmosphere at room temperature for another 48 h . The mixture was filtered and washed with EtOAc. The filtrate was concentrated under reduced pressure and the residue was purified by flash chromatography $\left(\mathrm{CHCl}_{3}: \mathrm{MeOH}, 20: 1\right)$ to afford amine 21 (30.5 $\mathrm{mg}, 97 \%$) as a colourless oil: $[\alpha]_{\mathrm{D}}^{20}-102.3$ (c 1.03, CHCl_{3}); Rf $0.33\left(\mathrm{CHCl}_{3}: \mathrm{MeOH}, 20: 1\right)$; IR (thin film) 3051, 2981, 2929 , 2860, 1441, 1375, 1269, 1206, 1162, 1036, 985, 858, 819, 749 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 1.33(3 \mathrm{H}, \mathrm{s}), 1.55(3 \mathrm{H}, \mathrm{s}), 2.26(1 \mathrm{H}, \mathrm{br} \mathrm{s})$, $2.61(1 \mathrm{H}, \mathrm{dd}, J=13.3,3.8 \mathrm{~Hz}), 2.92-2.96(1 \mathrm{H}, \mathrm{m}), 3.02-3.18$ $(3 \mathrm{H}, \mathrm{m}), 4.42-4.45(1 \mathrm{H}, \mathrm{m}), 4.63-4.65(1 \mathrm{H}, \mathrm{m}), 7.40-7.79(7 \mathrm{H}$, m); ${ }^{13} \mathrm{C}$ NMR $\delta 24.0\left(\mathrm{CH}_{3}\right)$, $25.9\left(\mathrm{CH}_{3}\right), 34.9\left(\mathrm{CH}_{2}\right), 53.2$ $\left(\mathrm{CH}_{2}\right), 65.3(\mathrm{CH}), 81.2(\mathrm{CH}), 81.9(\mathrm{CH}), 110.4(\mathrm{C}), 125.3$ $(\mathrm{CH}), 125.9(\mathrm{CH}), 127.4(\mathrm{CH}), 127.5(\mathrm{CH}), 127.6(\mathrm{CH}), 127.7$ (CH), 127.9 (CH), 132.2 (C), 133.6 (C), 137.1 (C); MS (ESI) m / z (relative intensity) 284 ([M+H]+, 100), 285 (23), 286 (3); HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 284.1645$, found 284.1641.

Amine 22 ($\mathbf{R = p}$-Me-benzyl). To a solution of amine 16 (46.9 $\mathrm{mg}, 0.139 \mathrm{mmol})$ in t-BuOH $(3.3 \mathrm{~mL})$ and water $(0.7 \mathrm{~mL})$ was added 10% Pd-on-charcoal ($148 \mathrm{mg}, 0.139 \mathrm{mmol}$) The mixture was activated with an atmosphere of H_{2} (balloon) by three times followed by stirring under the same H_{2} atmosphere at room temperature for another 24 h . The mixture was filtered and washed with EtOAc. The filtrate was concentrated under reduced pressure and the residue was purified by flash chromatography $\left(\mathrm{CHCl}_{3}: \mathrm{MeOH}, 20: 1\right)$ to afford amine 22 (33.5 $\mathrm{mg}, 97 \%$) as a colourless oil: $[\alpha]_{\mathrm{D}}^{20}-93.6$ (c 1.51, CHCl_{3}); Rf $0.36\left(\mathrm{CHCl}_{3}: \mathrm{MeOH}, 20: 1\right)$; IR (thin film) 3671, 3270, 2982, 2925, 2862, 1647, 1515, 1450, 1376, 1269, 1208, 1163, 1081, $1036,818 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 1.31(3 \mathrm{H}, \mathrm{s}), 1.51(3 \mathrm{H}, \mathrm{s}), 2.16(1 \mathrm{H}$,
br s), $2.31(3 \mathrm{H}, \mathrm{s}), 2.58(1 \mathrm{H}, \mathrm{dd}, J=13.3,4.0 \mathrm{~Hz}), 2.78-2.85$ $(2 \mathrm{H}, \mathrm{m}), 2.91-2.97(1 \mathrm{H}, \mathrm{m}), 3.06(1 \mathrm{H}, \mathrm{d}, J=13.3 \mathrm{~Hz}), 4.41$ $(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=5.5,3.3 \mathrm{~Hz}), 4.62(1 \mathrm{H}, \mathrm{dd}, J=5.5,4.1 \mathrm{~Hz}), 7.10$ $(2 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 7.19(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 21.0$ $\left(\mathrm{CH}_{3}\right), 23.9\left(\mathrm{CH}_{3}\right), 25.9\left(\mathrm{CH}_{3}\right), 34.2\left(\mathrm{CH}_{2}\right), 53.1(\mathrm{CH} 2), 65.7$ $(\mathrm{CH}), 81.2(\mathrm{CH}), 81.9(\mathrm{CH}), 110.3(\mathrm{C}), 128.9(\mathrm{CH}), 129.0$ (CH), 135.5 (C), 136.4 (C); MS (ESI) m / z (relative intensity) $248\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right), 249$ (18), 250 (2); HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 248.1645$, found 248.1647.

Amine 23 ($\mathbf{R}=\mathbf{p}$-OMe-benzyl). To a solution of amine $\mathbf{1 7}$ $(41.5 \mathrm{mg}, 0.118 \mathrm{mmol})$ in $t-\mathrm{BuOH}(1.7 \mathrm{~mL})$ and water $(0.3 \mathrm{~mL})$ was added 10% Pd-on-charcoal ($12.5 \mathrm{mg}, 0.0118 \mathrm{mmol}$) The mixture was activated with an atmosphere of H_{2} (balloon) by three times followed by stirring under the same H_{2} atmosphere at room temperature for another 12 h . The mixture was filtered and washed with EtOAc. The filtrate was concentrated under reduced pressure and the residue was purified by flash chromatography $\left(\mathrm{CHCl}_{3}: \mathrm{MeOH}, 20: 1\right)$ to afford amine 23 (27.3 $\mathrm{mg}, 88 \%$) as a pale yellow oil: $[\alpha]_{\mathrm{D}}^{20}-89.5$ (c $1.06, \mathrm{CHCl}_{3}$); Rf $0.27\left(\mathrm{CHCl}_{3}: \mathrm{MeOH}, 20: 1\right)$; IR (thin film) 2983, 2929, 2831, 1649, 1513, 1459, 1246, 1036, $833 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 1.31(3 \mathrm{H}$, s), $1.50(3 \mathrm{H}, \mathrm{s}), 2.13(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.59(1 \mathrm{H}, \mathrm{dd}, J=13.3,3.9 \mathrm{~Hz})$, $2.76-2.83(2 \mathrm{H}, \mathrm{m}), 2.88-2.95(1 \mathrm{H}, \mathrm{m}), 3.06(1 \mathrm{H}, \mathrm{d}, J=13.3$ $\mathrm{Hz}), 3.78(3 \mathrm{H}, \mathrm{s}), 4.41(1 \mathrm{H}, \mathrm{dd}, J=5.4,3.3 \mathrm{~Hz}), 4.62(1 \mathrm{H}, \mathrm{dd}, J$ $=5.4,4.1 \mathrm{~Hz}), 6.83(2 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 7.21(2 \mathrm{H}, \mathrm{d}, J=8.6$ $\mathrm{Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 24.0\left(\mathrm{CH}_{3}\right), 25.9\left(\mathrm{CH}_{3}\right), 33.8\left(\mathrm{CH}_{2}\right), 53.2$ $\left(\mathrm{CH}_{2}\right), 55.2\left(\mathrm{CH}_{3}\right), 65.8(\mathrm{CH}), 81.2(\mathrm{CH}), 81.9(\mathrm{CH}), 110.4(\mathrm{C})$, $113.8(\mathrm{CH}), 130.0(\mathrm{CH}), 131.6(\mathrm{C}), 158.0(\mathrm{C}) ; \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}$ (relative intensity) $264\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right), 265$ (17), 266 (2); HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$264.1594, found 264.1600.

Amine 24 ($\mathbf{R}=\boldsymbol{p}$-Cl-benzyl). To a solution of amine $\mathbf{1 8}$ (30 mg , $0.0838 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.6 \mathrm{~mL})$ was added chloroethylchloroformate $(0.0135 \mathrm{~mL}, 0.126 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ under N2. The solution was stirred at $0^{\circ} \mathrm{C}$ for 13 h and the solvent was removed under reduced pressure. The residue was redissolved in $\mathrm{MeOH}(1 \mathrm{~mL})$ and the mixture was then heated to reflux for 2 h . The reaction mixture was concentrated under reduced pressure and the crude residue was directly purified by flash chromatography $\left(\mathrm{CHCl}_{3}: \mathrm{MeOH}, 20: 1\right)$ to afford amine 24 ($7.1 \mathrm{mg}, 32 \%$) as a colourless oil: $[\alpha]_{\mathrm{D}}^{20}-95.2\left(\mathrm{c} 0.36, \mathrm{CHCl}_{3}\right.$); Rf $0.33\left(\mathrm{CHCl}_{3}: \mathrm{MeOH}, 20: 1\right)$; IR (thin film) 2982, 2929, 2845, 1491, 1376, 1270, 1207, 1165, 1080, 1036, 983, $856 \mathrm{~cm}^{-1} ; 1 \mathrm{H}$ NMR $\delta 1.31(3 \mathrm{H}, \mathrm{s}), 1.50(3 \mathrm{H}, \mathrm{s}), 1.83(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.60(1 \mathrm{H}, \mathrm{dd}$, $J=13.4,3.8 \mathrm{~Hz}), 2.77-2.86(2 \mathrm{H}, \mathrm{m}), 2.92-2.97(1 \mathrm{H}, \mathrm{m}), 3.07$ $(1 \mathrm{H}, \mathrm{d}, J=13.3 \mathrm{~Hz}), 4.39(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=5.2,3.6 \mathrm{~Hz}), 4.64(1 \mathrm{H}$, dd, $J=5.2,4.3 \mathrm{~Hz}), 7.20-7.25(4 \mathrm{H}, \mathrm{m}) ; 13 \mathrm{C}$ NMR $\delta 24.0$ $\left(\mathrm{CH}_{3}\right), 25.9\left(\mathrm{CH}_{3}\right), 34.1\left(\mathrm{CH}_{2}\right), 53.2\left(\mathrm{CH}_{2}\right), 65.5(\mathrm{CH}), 81.1$ $(\mathrm{CH}), 81.9(\mathrm{CH}), 110.5(\mathrm{C}), 128.5(\mathrm{CH}), 130.5(\mathrm{CH}), 132.0(\mathrm{C})$, 138.0 (C); MS (ESI) m/z (relative intensity) 268 ([M+H] ${ }^{+}$, 100), 269 (16), 270 (30), 271 (6); HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}_{3} \mathrm{Cl}[\mathrm{M}+\mathrm{H}]^{+} 268.1099$, found 268.1105.

Dienol 30. To a solution of the anime $19(9.3 \mathrm{mg}, 0.04 \mathrm{mmol})$ and $o-\mathrm{NO}_{2}$-benzoic acid $(6.7 \mathrm{mg}, 0.04 \mathrm{mmol})$ in a $\mathrm{CHCl}_{3}(0.5$ $\mathrm{mL})$ was added dienal $28(62.4 \mathrm{mg}, 0.201 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(1.5$ mL) at room temperature and stirred at same temperature for 20 h until the disappearance of the starting material as shown on TLC. The reaction mixture was filtered through a thin pad of silica gel and the filtrate was concentrated under reduced pressure. The residue was redissolved in EtOH (2 mL) and $\mathrm{NaBH}_{4}(6.3 \mathrm{mg}, 0.168 \mathrm{mmol})$ was added to crude product at 0 ${ }^{\circ} \mathrm{C}$ for 1 h . The mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and the aqueous phase was extracted with EtOAc ($3 \times$ 10 mL). The combined organic extracts were dried over anhydrous MgSO_{4}, and filtered. The filtrate was concentrated under reduced pressure and the residue was purified by flash chromatography (hexane:EtOAc, 10:1) gave dienol 30 (6.4 mg , 11%) as a colourless oil: $\mathrm{R}_{f} 0.40$ (hexane:EtOAc, 3:1); IR (thin film) $3357,3028,2928,2857,1464,1367,1252,1105,1037$, $835,773 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 0.02-0.03(6 \mathrm{H}, \mathrm{m}), 0.87(9 \mathrm{H}, \mathrm{s})$, $1.35-1.50(2 \mathrm{H}, \mathrm{m}), 1.62-1.83(5 \mathrm{H}, \mathrm{m}), 1.99-2.07(1 \mathrm{H}, \mathrm{m})$, 2.48-2.56 ($1 \mathrm{H}, \mathrm{m}$), 4.08-4.09 ($1 \mathrm{H}, \mathrm{m}$), 4.18-4.26 ($2 \mathrm{H}, \mathrm{m}$), 5.58 $(1 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}), 5.59-5.94(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR (MeOD) $\delta-$ $4.73\left(\mathrm{CH}_{3}\right), 18.9(\mathrm{C}), 23.9\left(\mathrm{CH}_{2}\right), 26.3\left(\mathrm{CH}_{3}\right), 34.9\left(\mathrm{CH}_{2}\right), 35.2$ $(\mathrm{CH}), 41.1\left(\mathrm{CH}_{2}\right), 42.4(\mathrm{CH}), 63.8\left(\mathrm{CH}_{2}\right), 68.5(\mathrm{CH}), 121.8$ $(\mathrm{CH}), 125.2(\mathrm{CH}), 133.8(\mathrm{CH}), 142.6(\mathrm{C})$; MS (EI) m / z (relative intensity) 294 ([M] ${ }^{+}, 100$); HRMS (EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{Si}$ $[\mathrm{M}]^{+}$294.2010, found 294.2009.

Dienol 33. To a solution of the anime $19(6.8 \mathrm{mg}, 0.029 \mathrm{mmol})$ and $o-\mathrm{NO}_{2}$-benzoic acid $(4.9 \mathrm{mg}, 0.029 \mathrm{mmol})$ in a $\mathrm{CHCl}_{3}(0.5$ mL) was added dienal 31 ($39.4 \mathrm{mg}, 0.148 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}(1$ mL) at room temperature and stirred at same temperature for 9 h until the disappearance of the starting material as shown on TLC. The reaction mixture was filtered through a thin pad of silica gel and the filtrate was concentrated under reduced pressure. The residue was redissolved in EtOH (1.5 mL) and $\mathrm{NaBH}_{4}(6.3 \mathrm{mg}, 0.168 \mathrm{mmol})$ was added to crude product at 0 ${ }^{\circ} \mathrm{C}$ for 1 h . The mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and the aqueous phase was extracted with EtOAc ($3 \times$ 10 mL). The combined organic extracts were dried over anhydrous MgSO_{4}, and filtered. The filtrate was concentrated under reduced pressure and the residue was purified by flash chromatography (hexane:EtOAc, 5:1) gave dienol 33 (5.9 mg , 16%) as a white solid: $\mathrm{mp} 61-62^{\circ} \mathrm{C}$; Rf 0.26 (hexane:EtOAc, $4: 1$); IR (thin film) $3284,3025,2983,2918,2857,1437,1374$, 1257, 1206, 1164, 1049, 1001, 874, $713 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 1.38$ $(6 \mathrm{H}, \mathrm{s}), 1.59-1.70(3 \mathrm{H}, \mathrm{m}), 1.85-1.92(2 \mathrm{H}, \mathrm{m}), 1.99-2.06(2 \mathrm{H}$, m), 2.43-2.51 ($1 \mathrm{H}, \mathrm{m}$), $3.74(2 \mathrm{H}, \mathrm{s}), 4.17-4.26(2 \mathrm{H}, \mathrm{m}), 5.58-$ $5.61(1 \mathrm{H}, \mathrm{m}), 5.93-5.95(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\delta 24.5\left(\mathrm{CH}_{2}\right), 27.4$ $\left(\mathrm{CH}_{3}\right), 27.5\left(\mathrm{CH}_{3}\right), 36.1\left(\mathrm{CH}_{2}\right), 36.2(\mathrm{CH}), 40.5(\mathrm{CH}), 41.9$ (CH2), 64.1 (CH2), 74.8 (CH2), 80.5 (C), 109.4 (C), 121.4 (CH), 124.1 (CH), $132.9(\mathrm{CH}), 141.1(\mathrm{C}) ; \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}$ (relative intensity) $250\left([\mathrm{M}]^{+}, 100\right)$; HRMS (EI) calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{3}[\mathrm{M}]^{+}$ 250.1563 , found 250.1563 .

Acknowledgements

This research has been supported by a Hong Kong RGC GRF grant (ref. number 403510).

Notes and references

${ }^{a}$ Department of Chemistry and Center of Novel Functional Molecules, The Chinese University of Hong Kong, Shatin, Hong Kong, China. Email: tonyshing@cuhk.edu.hk
\dagger Electronic Supplementary Information (ESI) available: [Experimental data, detailed synthetic schemes, procedures and chemical characterization data (${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, HPLC spectra)]. See DOI: 10.1039/b000000x/

1 Z. G. Hajos and D. R. Parrish, J. Org. Chem. 1974, 39, 1615.
2 Comprehensive Asymmetric Catalysis, E.N. Jacobsen, A. Pfaltz and H. Yamamoto, Eds; Springer: Hiedelberg, 1999.; Asymmetric Organocatalysis. Top. Curr.Chem. vol 291, B. List, Ed; Springer: Berlin, 2009.
3 K. A. Ahrendt, C. J. Broths and D. W. C. MacMillan, J. Am. Chem. Soc. 2000, 122, 4243; W. S. Jen, J. J. M. Wiener and D. W. C. MacMillan, J. Am. Chem. Soc. 2000, 122, 9874.
4 D. W. C. MacMillan, Nature. 2008, 455, 304; S. Bertelsen and K. A. Jørgensen, Chem. Soc. Rev. 2009, 38, 2178.; C. F. Barbas III, Angew. Chem. In. Ed. 2008, 47, 42.; A. Dondoni and M. Alessandro, Angew. Chem. In. Ed. 2008, 47, 4638.
5 J. Franzén, M. Marigo, D. Fielenbach, T. C. Wabnitz, A. Kjærsgaard and K. A. Jørgensen, J. Am. Chem. Soc. 2005, 127, 18296.
6 R. M. Wilson, W. S. Jen and D. W. C. MacMillan, J. Am. Chem. Soc. 2005, 127, 11616.
7 Z. Jia, H. Jiang, J. L. Li, B. Gschwend, Q. Z. Li, X. Yin, J. Grouleff, Y. C. Chen and K. A. Jørgensen, J. Am. Chem. Soc. 2011, 133, 5056.

8 B. List, R. A. Lerner and C. F. Barbas, J. Am. Chem. Soc. 2000, 122, 2395.; B. List, J. Am. Chem. Soc. 2000, 122, 9336.; W. Notz and B. List, J. Am. Chem. Soc. 2000, 122, 7386.
9 M. Marigo, J. Franzen, T. B. Poulsen, W. Zhuang and K. A. Jørgensen, J. Am. Chem. Soc. 2005, 127, 6964.
10 R. K. Kunz and D. W. C. MacMillan, J. Am. Chem. Soc. 2005, 127, 3240.

11 S. G. Ouellet, J. B. Tuttle and D. W. C. MacMillan, J. Am. Chem. Soc. 2005, 127, 32.; J. W. Yang, M. T. Hechavarria Fonseca and B. List, Angew. Chem. In. Ed. 2005, 44, 108.
12 S. Lee and D. W. C. MacMillan, J. Am. Chem. Soc. 2007, 129, 15438.

13 A. Córdova, W. Notz and C. F. Barbas III, J. Org. Chem. 2002, 67, 301.

14 D. Enders, M. R. M. Hüttl, C. Grondal and G. Raabe, Nature. 2006, 441, 861.; A. Carlone, S. Cabrera, M. Marigo and K. A. Jørgensen, Angew. Chem. In. Ed. 2007, 46, 1101.
15 M. P. Brochu, S. P. Brown and D. W. C. MacMillan, J. Am. Chem. Soc. 2004, 126, 4108.; N. Halland, A. Braunton, S. Bechmann, M. Marigo and K.. A. Jørgensen, J. Am. Chem. Soc. 2004, 126, 4790.; T. D. Beeson and D. W. C. MacMillan, J. Am. Chem. Soc. 2005, 127, 8826.; M. Marigo, D. Fielenbach, A. Braunton, A. Kjærsgaard and K. A. Jørgensen, Angew. Chem. In. Ed. 2005, 44, 3703.

16 M. Koreeda, and J. I. Luengo, J. Org. Chem. 1984, 49, 2081.
17 B. C. Hong, H. C. Tseng and S. H. Chen, Tetrahedron 2007, 63, 2840.
18 R. M. de Figueiredo, R. Frohlich and M. Christmann, Angew. Chem. Int. Ed. 2008, 47, 1450.

