

PII: S0040-4039(97)00440-1

A Convenient and Economical Method for the Preparation of DIP-Chloride[™] and Its Application in the Asymmetric Reduction of Aralkyl Ketones

Mangzhu Zhao*, Anthony O. King, Robert D. Larsen, Thomas R. Verhoeven and Paul J. Reider

Process Research Department, Merck Research Laboratories, Merck & Co. Inc., P.O. Box 2000, Rahway, NJ 07065, USA

Abstract: A convenient and economical in situ preparation of DIP-ChlorideTM from NaBH₄, BCl₃ and α -pinene is described. Its application in the asymmetric reduction of representative aralkyl ketones is presented. © 1997 Elsevier Science Ltd.

Asymmetric synthesis is especially important for the pharmaceutical industry due to the often dramatic differences in the pharmacological behaviors of enantiomers. *B*-Chlorodiisopinocampheylborane (Ipc₂BCl or DIP-ChlorideTM) has been demonstrated to be an excellent reagent for the asymmetric reduction of aralkyl ketones¹. In this paper, we wish to report a new, convenient and economical method for the preparation of DIP-Chloride from NaBH₄, BCl₃ and α -pinene.

DIP-ChlorideTM can be prepared by several reported methods. The first method^{1c} developed by H. C. Brown entails reaction of BH₃•SMe₂ with α -pinene followed by treatment of the resultant Ipc₂BH with HCl to give Ipc₂BCl. The second method² involves reaction of BH₂Cl•SMe₂ and α -pinene to prepare Ipc₂BCl directly. However, both BH₃•SMe₂ and BH₂Cl•SMe₂ are expensive and environmentally unfriendly particularly on an industrial scale. Therefore, other alternatives for the preparation of Ipc₂BCl were investigated.

Since NaBH₄ is one of the cheapest sources of hydride, we examined its use in the preparation of the chiral reducing agent Ipc₂BCl. It is well known that BH₃ can be prepared *in situ* from NaBH₄ and BF₃ etherate. It has also been reported by H. C. Brown³ that reaction of α -pinene with the *in situ* generated BH₃ gives Ipc₂BH. We found that treatment of the Ipc₂BH prepared in this manner with BCl₃ instead of HCl also gave Ipc₂BCl (eq. 1). In this method all of the hydrides in NaBH₄ are used and the formation of H₂ gas is avoided.

NaBH₄ +
$$\alpha$$
-pinene $\xrightarrow{BF_3E_2O}$ Ipc₂BH $\xrightarrow{BCl_3}$ Ipc₂BCl (eq. 1)

However, we found that this protocol was particularly sensitive to overcharge of NaBH₄. With 20% overcharge of NaBH₄, the enantiomeric purity of the chiral alcohol 2^{2b} decreased from 95% to ~30% ee (eq. 2).

Since NaBH₄ itself does not reduce ketone 1 under the reaction conditions (-20 °C, THF), we suspected that reduction of the substrate by the BH₃ and/or BH₂Cl generated from excess NaBH₄ and BCl₃ was responsible for the poor enantioselectivity. Whereas ~10% α -pinene remains under normal conditions, no α -pinene was detected in this case. Addition of sufficient α -pinene should trap these borane species and cure this problem. Indeed, the reaction proceeded with high enantioselectivity (93–95%) when 20% excess α -pinene was added even with 20% overcharge of NaBH₄. The above observation also implied that BH₃ or BH₂Cl could be prepared directly from NaBH₄ and BCl₃ without the mediation of BF₃ etherate. As a matter of fact, addition of a BCl₃ solution in heptane to a mixture of NaBH₄ and α -pinene in diglyme at -10 °C followed by warming to 40 °C gave the Ipc₂BCl directly (eq. 3). Substituting diglyme with DME, in order to facilitate the recovery of the solvents and α -pinene, presented no problem. The procedure failed completely in THF or diethyl ether, however. Although it has been reported that Ipc₂BCl can be prepared from LiBH₄ and BCl₃ in diethyl ether⁴, the high cost of LiBH₄ limits its use on a commercial scale.

NaBH₄ +
$$\alpha$$
-pinene $\xrightarrow{BCl_3}$ Ipc₂BCl (eq. 3)

The procedure for the preparation of Ipc_2BCl is described as follows: To a 250-mL roundbottomed flask was added sodium borohydride (1.89 g, 50 mmol). Dimethoxyethane (30 mL) and (*R*)-(+)- α -pinene (85% ee, 31.6 mL, 200 mmol) were added under nitrogen and the mixture was cooled to – 10 °C. A solution of boron trichloride (52.5 mL, 1.0 M in heptane) was added at a rate such that the temperature of the reaction mixture did not exceed 10 °C (15 min.). The mixture was stirred at 10 °C for 15 min., room temperature for 1 h and then 40 °C for 1 h to give the chiral reducing agent Ipc₂BCl.

Using the Ipc₂BCl prepared in this manner for the reduction of oxo ester 1 afforded the hydroxy ester 2 in essentially quantitative yield and 94–97% ee. The optical purity can be easily upgraded to >99.5% ee by crystallization. To a slurry of oxo ester 1 (25.08g, 55 mmol) in THF (200 mL) at -25 °C was added the Ipc₂BCl prepared above. The mixture was aged at -25 °C for 5 h, then 0 °C for 1 h and then quenched with PhCHO (15 mL). The reaction mixture was heated to 40 °C to release all of the α -pinene then poured into 31% K₂CO₃ (80 mL) at rt. with vigorous stirring. The organic layer was separated and washed with brine (40 mL). After concentrating the organic layer to 1/3 of its original volume, water was added (3 mL) followed by heptane (120 mL) at 50 °C. The mixture was cooled to rt. and aged for 2 h. Filtration followed by washing the product cake (5/1 heptane/THF) and drying, afforded 24.6 g of the hydroxy ester 2 as its monohydrate (93% yield, >99.5% ee).

Next, we examined the effectiveness of the *in situ* prepared Ipc₂BCl for the asymmetric reduction of a number of aralkyl ketones (see the table). It is clear that the *in situ* prepared Ipc₂BCl from 85% ee α -pinene gives comparable results to pure Ipc₂BCl prepared from 98% ee α -pinene. It is interesting that 2-methoxy acetophenone is reduced much faster than acetophenone (entry 5), while the 3- and 4-methoxy isomers and 3,4-dimethoxy acetophenone are reduced much more slowly (entry 6–8). This indicates that the reaction rate is more affected by chelation than by electronic effect.

It should be emphasized that 85% ee α -pinene was used instead of the expensive 97% ee material to take advantage of the asymmetric amplification reported from our labs.^{2b,5} The enantiomeric purity of the chiral alcohols obtained were as high as 97% ee with Ipc₂BCl prepared from 85% ee α -pinene. To rationalize this asymmetric amplification, we have proposed the following hypothesis:^{2b,5} a) the ratio of (+,+)/(+,-)/(-,-)Ipc₂BCl formed is in accordance to statistics. b) (+,-) isomer is essentially unreactive.

c) (+,+) and (-,-) isomers give perfect asymmetric induction. If all these assumptions hold true, then 70% ee (+)- α -pinene (+/-= 85/15) should give the Ipc₂BCl in the following proportions: (+,+)/(+,-)/(-,-) = 72/26/2. The maximum % ee for the reduction would be 94.5%. This agrees very well with the experimental result (93% ee for the reduction of 1). Reduction of the oxo ester 1 with Ipc₂BCl prepared from racemic α -pinene also supported this hypothesis. In this case, the reaction essentially stopped after ~50% conversion at -20 °C and proceeded further only very slowly.

However, a closer examination revealed significant deviation from the calculation based on the above hypothesis (see the graph). The initial enantiomeric purity of 2 (at 10-20% conversion) was even better than the maximum values calculated especially with $\sim 30\%$ ee α -pinene. It was particularly striking that the initial % ee of 2 was as high as 90% using Ipc₂BCl from 50% ee α -pinene, whereas the calculation indicated 80%. Even with 30% ee α -pinene, the initial % ee of 2 was as high as 74% while calculation indicated only 55%. As expected, the enantioselectivity decreased gradually with the progress of the reaction. This decrease is due to the fact that the (+,-)-Ipc₂BCl, although much less active than the (+,+) or (-,-) isomers, reduces the ketone slowly and non stereoselectively. As the active reagents are gradually depleted, the relative contribution from the (+,-)-Ipc,BCl increases resulting in lower enantioselectivity. Coincidentally, the final % ee (18 h at -25 °C with 10-20% excess of the ketone 1) came fairly close to the calculation. The reason for the large deviation of the initial % ee from the calculation is not clear. But Kagan's recent paper⁷ offers evidence that the non random formation of the three Ipc,BCl species may be responsible for the observed non linear effect since mixtures of independently prepared (+,+)/(-,-) Ipc₂BCl do exhibit linearity between the % ee of the Ipc₂BCl and the reduction products.

In conclusion, we have developed a very convenient and economical method for the preparation of Ipc_2BCl from NaBH₄, BCl₃ and α -pinene. The *in situ* prepared reagent has been demonstrated to be as effective as pure Ipc_2BCl for the reduction of aralkyl ketones. Additionally, by taking advantage of the asymmetric amplification, up to 97% ee of the chiral alcohols can be obtained by using cheap 85% ee α -pinene instead of the much more expensive 98% material.

entry	/ substrate	conditions	product	yield	% ee
1		-25 °C, 6 h	OH OH	95.3 (72)	96 (97)
2		-25 °C, overnight	С	100 (62)	99 (97)
3°	0 ¹	-25 °C, 6 days		81.7 (68)	89(90)
4 ^c	ĊŎ	-25 °C, 2 days		88.1 (70)	88 (87)
5	MeO O	-25 °C, 1 h	MeO OH	100	97 (92)
6	MeO	-25 °C, 18 h	MeO.	93.9	95
7	MeO	-25 °C, 23 h (91% conversion)	MeO	90.7	87
8	MeO MeO	-25 °C, 1 day		94.6	94
9		-25 °C, 15 h		93.8 (90)	94 (98)
10 ^c	S.	-25 °C, 2 days	S OH	94.6 (85)	93 (91)

Table. Asymmetric Reduction of Aralkyl Ketones

a) Authentic sample of the racemic alcohols were obtained from reduction of the corresponding ketones by NaBH₄ or purchased commercially. The configurations of the products are based on the prediction according to the literature. b) The yield and % ee in parentheses were the results reported by H. C. Brown^{1a,6} with 98% ee Ipc₂BCI. All other yields and % ee were determined by HPLC with reverse phase column (Zorbax SB-Phenyl) and normal phase chiral columns (Chiralcel OD, OB or OJ), respectively. c) Ipc₂BCI amount was doubled to speed up the reaction.

References:

- (a) Brown H. C.; Chandrasekharan J.; Ramachandran P. V. J. Am. Chem. Soc. 1988, 110, 1539.
 (b) Brown H. C.; Srebnik M.; Ramachandran P. V. J. Org. Chem. 1989, 54, 1577-1583.
 - (c) Brown H. C.; Chandrasekharan J.; Ramachandran P. V. J. Org. Chem. 1985, 50, 5446.
- (a) Bir, G.; Kaufmann, D. Tetrahedron Lett. 1987, 28, 777.
 (b) King, A. O.; Corley, E. G.; Anderson, R. K.; Larsen, R. D.; Verhoeven, T. R.; Reider, P. J.; Xiang, Y. B. Belley M.; Leblanc, Y.; Labelle, M.; Prasit, P.; Zamboni, R. J. J. Org. Chem. 1993, 58, 3731.
 (c) Shinkai, I.; King, A. O.; Larsen, R. D. Pure & Appl. Chem. 1994, 66, 1551.
- 3. Brown, H. C.; Ayyangar, N. R.; Zweifel, G. J. Am. Chem. Soc. 1964, 86, 393.
- 4. (a) Brown, H. C.; Tierney, P. A. J. Am. Chem. Soc. 1958, 80, 1552.
- (b) Brown, H.C.; Ravindran, N. J. Am. Chem. Soc. 1972, 94, 2112.
- 5. Simpson, P.; Tschaen, D.; Verhoeven, T. R. Syn. Commun. 1991, 21, 1705.
- 6. Ramachandran, P. V.; Gong, B.; Brown, H. C. Tetrahedron Lett. 1994, 35, 2141.
- 7. Girard, C; Kagan, H. B. Tetrahedron Asymmetry, 1995, 6, 1881.

(Received in USA 6 February 1997; accepted 27 February 1997)