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Abstract: An operationally simple cross-coupling reaction be-
tween aryl halides and alkyl halides with high selectivity has been
developed. The underlying domino process utilizes CoCl2/Me4-
DACH as a catalyst system. The methodology exhibits high sustain-
ability as it obviates the need for the pre-formation and handling of
stoichiometric amounts of hazardous Grignard compounds.
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Transition-metal catalyzed cross-coupling reactions have
matured to play a commanding role as carbon–carbon
bond forming reactions in organic synthesis.1 Especially,
palladium and nickel complexes have exhibited high cat-
alytic activity for a wide range of substrates and, thus,
prompted several industrial applications in the manufac-
ture of pharmaceuticals and materials.2 However, the high
costs3 of palladium catalysts have constricted a more gen-
eral use of such protocols in large scale productions, while
nickel catalysts are highly controversial due to their aller-
genic and cancerogenic toxicity.4 Furthermore, both met-
als usually require the presence of air-sensitive phosphine
ligands of high molecular weight. The nucleophilic com-
ponent in most cross-coupling protocols is a moisture-
sensitive organometallic species (M = Mg, B, Zn, Sn) that
must be prepared from organohalides in a separate, up-
stream operation. From an economic standpoint, there is
clearly a demand for more efficient cross-coupling meth-
odologies that obviate the need for complex and toxic cat-
alyst systems as well as sensitive and hazardous
reactants.5

Recent developments of cobalt-catalyzed cross-coupling
protocols have addressed some of these sustainability is-
sues. Oshima et al.6 and Cahiez et al.7 have reported on
highly active cobalt/amine catalyst systems that facilitate
cross-coupling between various organohalides and
Grignard reagents under mild conditions.8 However, we
especially wanted to devise a protocol that obviates the
need for the pre-formation and handling of stoichiometric
Grignard reagents. In view of industrial applications, the
employment of highly sensitive Grignard compounds still
imposes stringent and costly safety arrangements.9 Here
we report on an operationally simple one-pot protocol for
the direct cobalt-catalyzed cross-coupling of aryl halides
(1) and alkyl halides (2) to give substituted arenes (3)
(Scheme 1).

Scheme 1 Direct cobalt-catalyzed aryl–alkyl cross-coupling

Metal salts have been known to promote the formation of
Grignard species from the reaction of magnesium and an
organohalide.10 A sequential combination with a transi-
tion-metal catalyzed cross-coupling reaction would allow
a domino process to transform two electrophilic organo-
halides into their cross-coupling product. Based on this
concept, Gosmini et al. have recently reported on direct
cross-coupling reactions between sp2-hybridized organo-
halides.11 We set out to investigate the potential of various
metal salts to act as catalysts for the direct sp2–sp3 cross-
coupling of an aryl halide (sp2) with an alkyl halide (sp3)
in the presence of stoichiometric amounts of magnesium
as the reductant. Although electronically differentiated,12

metathesis [from Alkyl-MgX (kinetic) to ArMgX (ther-
modynamic)], competitive biaryl coupling, b-hydride
elimination, or hydrodehalogenation could reduce the se-
lectivity for the cross-coupling product. Gratifyingly, we
discovered that CoCl2 displays good activity and selectiv-
ity in such domino magnesiation–cross-coupling reac-
tions (Scheme 1), complementing our recent iron-
catalyzed procedure.13

Table 1 shows selected optimization experiments for the
model reaction of p-tolyl bromide (1a) with cyclohexyl
bromide (2a) to give 1-cyclohexyl-4-methylbenzene
(3a).14 The reaction seemed to be highly dependent on the
structure of the amine ligand. Generally, monodentate
amines exhibited poor selectivity, while pyridine gave
moderate cross-coupling selectivity. Biaryl formation was
dominant with 1,10-phenanthroline. The employment of
TMEDA and Me4-DACH resulted in comparable reactiv-
ities, with the latter being more selective for the cross-
coupling product and giving less biaryl. The generation of
ate complexes by addition of LiI did not lead to a superior
catalyst system.7c Unlike its iron counterpart,13 the cobalt-
catalyzed reaction requires only catalytic amounts of
ligand. With catalytic FeCl3, the presence of stoichiomet-
ric amounts of TMEDA assured a slow formation of the
intermediate Grignard species. Our observation that the
initiating Grignard formation is much slower in the pres-
ence of CoCl2 thus obviates the need for stoichiometric
amine addition.14,15 The optimized set of conditions in-
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volve reaction at 0 °C in THF solution with 5 mol%
CoCl2, 10 mol% Me4-DACH and stoichiometric amounts
of magnesium turnings. A slight excess of the aryl bro-
mide (1.2 equiv) proved beneficial.14

Table 2 shows a series of fifteen aryl halides and one al-
kenyl bromide that were subjected to direct cross-cou-
pling conditions in the presence of alkyl halides without
resorting to a laborious and costly pre-formation of the
sensitive Grignard compounds. Bromoarenes with alkyl,
alkoxy, amino, and fluoro substituents showed good reac-
tivity with both primary and secondary alkyl bromides. In
all cases, formation of the homocoupling products (biaryl,
bialkyl) was marginal (<15%). Isomerization of primary
alkyl bromides to the more stable secondary isomer was
not observed. With fluoro-substituted aryl bromides (see
3k,l), activation of the Ar–F bond was observed in minor
quantities (<10%).16 b-Bromostyrene, as a vinylic sub-
strate, exhibited moderate selectivity (3n). Low conver-
sions (<5%) were attained with ester and cyano moieties
in the arene or alkane component. Here, consumption of
the magnesium was largely inhibited, probably due to
surficial deactivation.17 The employment of alkyl chlo-
rides and aryl chlorides resulted in low conversions. 

We postulate a mechanism based upon the 17e– biarylco-
balt(0) catalyst species I that can be formed via an initial
reduction of the employed CoCl2 with arylmagnesium ha-

lide and collateral biaryl formation (Scheme 2).6c,8d,18 Re-
actions with pre-formed Grignard species suggest the
operation of an ArMgBr–RBr coupling.18b The oxidative
addition is likely to adopt a single electron transfer (SET)
pathway via carbon-centered free radical R· and complex
II. The 17e– species III undergoes reductive elimination
of the cross-coupling product and, upon further transmet-
allation (from ArMgBr), regenerates catalyst I. The rather
slow magnesiation of ArBr at 0 °C impedes the accumu-
lation of ArMgX and hence reduces the amount of homo-
biaryl formation (Ar2). Consistently, quenching experi-
ments have documented a constantly low concentration of
ArMgX over the course of the reaction (steady-state).14

We also performed an asymmetric reaction in the pres-
ence of enantiopure (R,R)-Me4-DACH as ligand
(Scheme 3).14 Employment of racemic 3-bromobutyl-
benzene19 and 2-bromoanisole gave the cross-coupling
product 3q with an enantiomeric excess of 20%.20

In summary, we have developed a new protocol for the di-
rect cross-coupling of aryl bromides and alkyl bromides
under mild conditions. The reaction is highly sustainable
as it obviates the pre-formation and handling of stoichio-
metric amounts of sensitive Grignard compounds. Despite
direct employment of two electrophilic organohalides, the
one-pot methodology leads to unexpectedly high selectiv-
ity for the cross-coupling product.

Table 1 Selected Optimization Experiments of the Model Reactiona

Temp (°C) Ligand (mol%)a CoCl2 (mol%) 1a/2a Yield 3a (4a) (%)b

0 –
Et3N (5)
DABCO (5)
py (5)
phen (5)
TMEDA (5)
Me4-DACH (5)

5 1:1 6 (15)
3 (22)

23 (18)
41 (17)

3 (50)
53 (12)
57 (5)

0 (1)
Me4-DACH (2.5)
(10)

1
2.5

10

1:1 5
62
55

–10
0

10

Me4-DACH (10) 5 1:1  2
69
56

0 Me4-DACH (10) 5 1:1.5
1:1.2
1.2:1
1.5:1

45
64
73
58

0 Me4-DACH (10) 5 1:1 54c

0 TMEDA (20) 5 1.2:1 56 (14)d

a DABCO = 1,4-diazabicyclo[2.2.2]octane, py = pyridine, phen = 1,10-phenanthroline, TMEDA = N,N,N¢,N¢-tetramethylethylenediamine, 
Me4-DACH = N,N,N¢,N¢-tetramethyl-1,2-diaminocyclohexane.
b GC yields.
c Mg powder (1.2 equiv).
d LiI (10 mol%) added.7c
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Scheme 2 Postulated mechanism

Scheme 3 Asymmetric cross-coupling: Reaction conditions: (a)
CoCl2 (5 mol%), (R,R)-Me4-DACH (10 mol%), Mg (1.2 equiv), THF,
3 h, 0 °C.

Supporting Information for this article is available online at
http://www.thieme-connect.com/ejournals/toc/synlett.

Table 2 Substrate Scope 14

X Y Product Yield of 3 (%)
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Br Br 3p <5

Table 2 Substrate Scope (continued)14
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