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Abstract
This paper focuses on the thermal behavior of mixtures of ammonium dinitramide (ADN) and amine nitrates. Because

some mixtures of ADN and amine nitrate exhibit low melting points and high-energy content, they represent potential

liquid propellants for spacecraft. This study focused on the melting behavior and thermal-decomposition mechanisms in the

condensed phase of ADN/amine nitrate mixtures during heating. We measured the melting point and exothermal behavior

during constant-rate heating using differential scanning calorimetry and performed thermogravimetry–differential thermal

analysis–mass spectrometry (TG–DTA–MS) to analyze the thermal behavior and evolved gases of ADN/amine nitrate

mixtures during simultaneous heating to investigate their reaction mechanisms. Results showed that the melting point of

ADN was significantly lowered upon the addition of amine nitrate with relatively low molecular volume and low melting

point. TG–DTA–MS results showed that the onset temperature of the thermal decomposition of ADN/amine nitrates was

similar to that of pure ADN. Furthermore, during thermal decomposition in the condensed phase, ADN produced highly

acidic products that promoted exothermic reactions, and we observed the nitration and nitrosation of amines from the

dissociation of amine nitrates.

Keywords Ammonium dinitramide � Amine nitrate � Energetic ionic liquid propellant � Thermal analysis �
Evolved-gas analysis

Introduction

Energetic materials are currently evaluated with regard to

their performance and their current or potential impact on

health and the environment [1, 2]. Hydrazine is widely

used as a liquid monopropellant for the attitude control of

rockets and space satellites because it readily decomposes

to form hot gases in the presence of catalysts and can be

stored at room temperature. However, this compound is

also highly toxic and generates combustible vapors, mak-

ing it difficult to handle and reducing its operability for

spacecraft. To address these issues, replacing hydrazine

with a less toxic monopropellant would be beneficial.

Herein, we focused on ammonium dinitramide (ADN),

which has attracted attention as a novel environmentally

friendly (or ‘‘green’’) oxidizer for solid rocket propellants;

ADN has replaced ammonium perchlorate because it pos-

sesses high oxygen balance, can provide suitable energy

levels, and is a halogen-free compound [2, 3]. ADN-based

liquid propellants are deemed potential replacements for

hydrazine [4–9]. ADN can generate more energy than

hydrazine while being less toxic, and because the melting

point of ADN is 92 �C [4–7], it exists as a solid at room

temperature and must be transitioned from solid to liquid

before use. Previous studies reported that ADN could be

dissolved in water and/or methanol to allow its use as a

liquid propellant [8, 9]. These propellants are close to being

suitable for use in real-world applications, but continue to
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face challenges related to ignition and combustion owing to

the presence of the solvent. A previous study described the

successful preparation of ADN-based liquids at room

temperature by forming a eutectic mixture with solid fuels,

monomethylamine nitrate (MMAN), and urea, with kinet-

ics analysis revealing that the liquid exhibited higher sta-

bility than pure ADN in the liquid phase [10]. Several

studies have investigated the eutectic behavior of energetic

materials [11–13] because many devices use a mixture of

energetic oxidizers and fuels. Eutectic mixtures such as

these are called deep eutectic solvents and share properties

with ionic liquids [14], which exhibit desirable character-

istics for liquid propellants, including low volatilities and

low liquidus temperatures [15]. Low volatility decreases

the risk of exposure during handling, as well as the threat

of explosion, and low liquidus temperatures enable the

preparation of high-energy liquid propellants based on the

absence of solvents. Previous studies of energetic ionic

liquid propellants (EILPs) indicate that their use in space-

craft requires proper design. In our previous study, we

observed that amine nitrates significantly decrease the

melting point of ADN [10, 16, 17]. In the present study, we

confirmed the thermal characteristics of ADN/amine

nitrates and investigated the influences of amine nitrates on

the mechanisms associated with ADN melting point and

thermal decomposition using differential scanning

calorimetry (DSC) and thermogravimetry–differential

thermal analysis–mass spectrometry (TG–DTA–MS) for

thermal and evolved-gas analyses. In the investigation of

energetic materials, DSC is generally used to understand

not only phase change behavior [11–13, 18] but also long

term stability [19] along with energy generation behavior

from condensed-phase reactions [20, 21]. TG–DTA–MS is

also used to analyze the thermal-decomposition mechanism

[16, 21–23].

Materials

ADN and amine nitrates, MMAN, dimethylamine nitrate

(DMAN), diethylamine nitrate (DEAN), trimethylamine

nitrate (TMAN), cyclohexylamine nitrate (CyAN), mono-

ethanolamine nitrate (MEAN), and ammonium nitrate

(AN) were used as samples. ADN was obtained from

Hosoya Pyro-engineering Co., Ltd. (Tokyo, Japan).

MMAN, TMAN, and MEAN were synthesized in our

laboratory. Methylamine (40%) aqueous solution,

trimethylamine (30%) aqueous solution, and ethanolamine

(Wako Pure Chemical Industries, Ltd., Osaka, Japan) were

reacted with nitric acid (1.38 g cm-3; Wako Pure Chemi-

cal Industries, Ltd.) and dried under vacuum. DMAN,

DEAN, and CyAN were obtained from Showa Chemical

Co., Ltd. (Tokyo, Japan), and AN was obtained from Wako

Pure Chemical Industries, Ltd. The purity of DMAN,

DEAN, and CyAN was over 98.5% and that of AN was

over 99.0%. The reagents were used without further

purification. The reagents were used without further

purification. ADN was mixed with each amine nitrate in a

1:1 mass ratio.

Experimental

The eutectic behaviors of ADN/amine nitrates under

heating were visually observed. Samples were prepared by

physically mixing 1 g of ADN and the amine nitrates in

glass bottles. The sample bottles were stored in a thermo-

static oven at 10 �C, 35 �C, and 60 �C for several hours

under atmospheric pressure to evaluate whether the sam-

ples melted. Since Sécordel [13] reported binary ADN-AN

phase diagrams, and as the calculated melting point showed

good agreement with experimental data under the

assumption of an ideal solution, the melting points of the

samples were compared using calculations from Le

Chatelier–Schröder’s equation [24]:

ADN: T ¼ 1

TfADN

� R

DHfADN

lnXADN

� ��1

ð1Þ

Additives: T ¼ 1

Tfadditive

� R

DHfadditive

ln 1 � XADNð Þ
� ��1

;

ð2Þ

where T is the melting point of the mixture, Tf is the

melting point of each element, DHf is the fusion heat for

each element, X is the molar ratio, and R is the gas con-

stant. Tf was defined as the onset temperature of the

endothermic peak of DSC measurements. The experimen-

tal melting point range obtained from the oven temperature

when a part or the entirety of the samples melted were

compared with the calculated eutectic point, i.e., the

intersection of Eqs. (1) and (2). The thermal behavior of

the samples was characterized using sealed-cell DSC (SC-

DSC; Shimadzu DSC-60 Plus; Shimadzu, Kyoto, Japan).

DSC was calibrated using the melting temperature and

enthalpy change for 99.99% indium. Samples containing

1 mg of either pure ADN or an ADN/amine nitrate mixture

were loaded into a high-pressure stainless steel cell. ADN

and amine nitrates were prepared by physically mixing

them in the cells. They were sealed under atmospheric air

and then heated from 30 to 350 �C at 5 K min-1. During

sample heating, the attendant mass loss and decomposition

gases were simultaneously analyzed using TG–DTA–MS.

The TG–DTA–MS apparatus comprised two units: a TG–

DTA instrument (NETZSCH TG–DTA 2000SE; Netzsch,

Selb, Germany) and a mass spectrometer (JEOL JMS-

Q1500GC; JEOL, Tokyo, Japan). Samples were loaded
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into open aluminum pans and heated to 350 �C at

5 K min-1 under helium flow (100 mL min-1). The

evolved gases were transferred to the mass spectrometer

operating at an oven temperature of 250 �C in electron-

impact ionization mode.

Results and discussion

Eutectic behavior

Table 1 shows a comparison of the eutectic behaviors of

ADN/amine nitrates between predictions from Eqs. (1) and

(2) and the experimental results. In this study, we deemed

that ADN and amine nitrates did not react during this

experiment because gas generation and a change in the

color of the liquid was not observed by sight. At 10 �C, the

states of ADN/TMAN, ADN/DEAN, ADN/CyAN, and

ADN/AN were solid, as shown in the predictions; however,

ADN/MMAN, ADN/DMAN, and ADN/MEAN were

partly liquid. This indicates that the eutectic point was

lower than that predicted from Le Chatelier–Schröder’s

equation, which includes thermodynamic parameters. This

result suggests that the depressed melting points of ADN/

MMAN, ADN/DMAN, and ADN/MEAN were controlled

by both thermodynamic factors and other parameters. One

possible explanation involves chemical interactions

between molecules. MMAN, DMAN, and MEAN have

comparatively small cations, and when these are mixed

with ADN, chemical interactions between methylamine,

dimethylamine, or ethanolamine cations and dinitramide

anions in ADN increase, with this interaction decreasing

the molecular balance of ADN to a higher degree than that

observed in other additives, thereby resulting in a signifi-

cant depression of the melting point. At 60 �C, the state of

all samples was partly or completely liquid. Amine nitrates

can lower the melting point of ADN to near its predicted

eutectic point according to Le Chatelier–Schröder’s equa-

tion by not being dependent upon the type of amine cation.

Thermal behavior

SC-DSC results for ADN, amine nitrates, and their mix-

tures are shown in Fig. 1. In the pure materials, one or two

exothermic peaks caused by thermal decomposition were

observed during heating. In the case of pure ADN, the

endotherm from the melting point was observed at 92 �C,

and two major exotherms from thermal decomposition

appeared between 135–210 �C (first peak) and 210–260 �C
(second peak). The first peak described the thermal

decomposition of ADN in the condensed phase to AN and

N2O [25–38] and appeared to be a collection of two peaks

at around 165 �C and 185 �C. At low temperature in the

first peak, the reaction likely involved dinitramic acid

(HDN) and NO, which are highly reactive materials

derived from ADN decomposition (Eqs. 3, 4) [38].

NHþ
4 NðNO2Þ�2 ! NH3 þ HNðNO2Þ2 ð3Þ

HNðNO2Þ2 ! HNO3 þ N2O ð4Þ

At high temperature in the first peak, the main reaction

of ADN decomposition occurred according to Eq. (5) [30].

NHþ
4 NðNO2Þ�2 ! NHþ

4 NO�
3 þ N2O ð5Þ

At the second peak, AN further decomposed to produce

the following gaseous products (Eq. 6) [25, 31].

NHþ
4 NO�

3 ! N2O þ 2H2O ð6Þ

In the case of pure amine nitrates, they decompose to

amine and nitric acid, followed by further decomposition of

these products [31, 32]. In the case of ADN/amine nitrate

mixtures, the endothermic peak from melting was not

observed; however, exothermic events began at 135 �C,

which was a temperature similar to that observed for pure

ADN. However, the initial exothermic reaction at the first

Table 1 Melting behaviors of ADN/amine nitrates

ADN MMAN DMAN TMAN DEAN MEAN CyAN AN

Melting point of

pure materials

(DSC)/�C

92 110 76 136 105 51 115 168

Melting point of

the mixture at

eutectic point

with ADN

(Calc.)/�C

92 28 31 53 52 45 69 47

State at 10 �C Solid Liquid ? Solid Liquid ? Solid Solid Solid Liquid ? Solid Solid Solid

State at 35 �C Solid Liquid Liquid ? Solid Liquid ? Solid Solid Liquid Solid Solid

State at 60 �C Solid Liquid Liquid ? Solid Liquid ? Solid Liquid ? Solid Liquid Liquid ? Solid Liquid
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peak (* 165 �C) was not observed. Because this inhibition

was observed upon the addition of all amine nitrates used

in this study, we observed that NO3
- inhibited the gener-

ation of highly reactive materials, such as HDN. Kazakov

[28] showed the equilibrium reaction of the dinitramide

anion in the presence of HNO3 (Eq. 7), which showed that

the generation of HDN is decreased by the addition of

amine nitrates. The reaction in Eq. (7) might describe one

of the explanations for ADN-based EILP having higher

stability relative to pure ADN liquid.

NðNO2Þ�2 þ HNO3 �HNðNO2Þ2 þ NO�
3 ð7Þ

The exotherms obtained from the decomposition of

amine nitrates varied by sample. In MMAN and DMAN,

exotherms were observed at higher temperatures than that

for the first peak and at the same temperature as that for the

decomposition of pure amines. On the other hand, no peaks

were observed for MEAN, TMAN, and CyAN following

the first peak. The second exothermic peak due to the

decomposition of AN was not observed for ADN/amine

nitrate mixtures even though AN is the main product of

ADN decomposition (Eq. 6). It is considered that ADN or

an intermediate product of its decomposition is consumed

during the reaction with amine nitrate, and hence, AN was

not generated during decomposition. The heat value per

ADN mass of the first peak was 1.8 kJ g-1 for pure ADN,

4.4 kJ g-1 for ADN/MMAN, 5.8 kJ g-1 for ADN/TMAN,

and 7.2 kJ g-1 for ADN/MEAN. The increase in the heat

value at the first peak for ADN/MMAN, ADN/TMAN, and

ADN/MEAN indicated that these types of amine nitrates

reacted with ADN in the condensed phase in the same

temperature range as that of the decomposition of ADN.

The presence or absence of an exotherm after the first peak

identifies a possible difference in the reactivity of amines

generated by dissociation or products from the reaction

between ADN and amines. Although the oxygen balances

of the mixtures were negative (ADN/TMAN: - 39.5%,

ADN/MEAN: - 12.9%), exothermic peaks were not

observed at the same temperatures as those of pure amine

nitrates in ADN/TMAN and ADN/MEAN. These results

show that TMAN and MEAN have especially high reac-

tivity with ADN. The degree of reaction between ADN and

DEAN could not be evaluated under these experimental

conditions because the exothermic peaks of DEAN

appeared in the same temperature range as that of ADN.

The ADN/AN mixture did not show an increase in the heat

value of the first peak. A previous study reported that AN

hardly dissociates to NH3 in the condensed phase [41];

therefore, AN did not react with ADN in the condensed

phase under this experimental condition.

Decomposition mechanism of ADN/amine nitrate
mixtures

The TG–DTA curves for ADN, MMAN, DMAN, TMAN,

ADN/MMAN, ADN/DMAN, and ADN/TMAN are shown

in Fig. 2. ADN exothermically decomposed with mass loss

at 135 �C and an endotherm was observed after the exo-

therm. MMAN showed endotherms with a mass loss

resulting from vaporization from 155 �C. DMAN showed a
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small endotherm with mass loss from 140 �C and two

exotherms from 150 �C. TMAN showed exotherms and

mass loss from 125 �C and endotherms derived from the

melting point in the middle of the exotherm. In the case of

ADN/amine nitrate mixtures, exotherms were observed

beginning at * 135 �C, which was the same temperature

as the onset temperature for ADN decomposition. In ADN/

MMAN and ADN/TMAN results, no endotherm or exo-

therm derived from pure MMAN and TMAN was

observed. The peak shapes for ADN/DMAN and ADN/

TMAN were sharper than those for pure ADN. Specifi-

cally, the peak shape for ADN/TMAN was the sharpest in

the ADN/amine nitrate samples. These results showed that

ADN and amine nitrates reacted exothermically in the

condensed phase, even in an open pan; furthermore, the

highest reactivities with ADN were observed in TMAN,

DMAN, and MMAN in descending order and in agreement

with the SC-DSC results. However, ADN and ADN/amine

nitrates showed one major exotherm, unlike the SC-DSC

results. One explanation is that the reaction products from

the exothermic reaction at 135 �C transferred to the gas

phase.

The MS spectra of evolved gas during the decomposi-

tion of each sample in each temperature range are shown in

Fig. 3. In the case of pure ADN, gaseous products with

mass/charge (m/z) ratios of 17, 18, 28, 30, 44, 46, and 63

were generated, which we attribute to an exothermic

reaction generating N2O (m/z = 44, 30, and 28), N2 (m/

z = 28), NO2 (m/z = 46 and 30), HNO3 (m/z = 63, 46, and

30), and H2O (m/z = 18 and 17). The main gas product

throughout the reaction was NO, which was derived from

ADN decomposition (Eq. 5). A gas with m/z = 63 (HNO3)

was generated later in the reaction, with AN being possibly

generated (Eq. 5) and dissociated in the gas phase. In the

case of MMAN, gaseous products with m/z = 18, 28, 30,

and 31 were observed in low temperature ranges and

immediately following the initiation of mass loss. This

suggested that MMAN dissociation to methylamine (m/

z = 30, 31, and 28) and nitric acid (m/z = 46, 30, and 63)

had occurred, as mentioned in previous studies [39, 40].

Although a peak at m/z = 63 was not observed, HNO3 was

consumed in the condensed phase reaction. The main

gaseous products in the high temperature range were m/

z = 17, 18, 27, 28, 29, 42, 43, 44, and 46. According to

previous studies [39, 40], these gaseous products were

likely derived from H2O (m/z = 18 and 17), N2 (m/z = 28),

CO2 (m/z = 44 and 28), N2O (m/z = 44, 30, and 28),

HCONH2 (m/z = 45, 29, 17, and 44), CH3ONO (m/z = 30,

29, 28, and 31), NO2 (m/z = 30 and 46), and HCN (m/

z = 27 and 26) and were generated by further decomposi-

tion of methylamine and nitric acid. Although the main

products in this study (generation of m/z = 42 and 43) were

not mentioned in previous studies, it is possible that these

peaks were derived from methyl diazohydroxide via

nitrosation of methylamine as follows:

H3CNH2 �!þHNO2

�H2O
H3NHNO ! H3CN=NOH ð8Þ

However, methyl diazohydroxide is unstable under

acidic conditions and decomposes to CH3
? and N imme-

diately after generation [42]:

H3CN ¼ NOH �!þHþ

�H2O
H3CN�N ! CHþ

3 þ N2 ð9Þ

Therefore, it is also possible that m/z = 42 and 43

identifies other species, such as isocyanic acid, fulminic

acid, or ethyleneimine. The main evolved gas from the

decomposition of ADN/MMAN rarely differed from that of

pure ADN and pure MMAN. This indicated that their

thermal decomposition also occurred in mixture form.

During the early stage of decomposition, monomethy-

lamine (m/z = 31) was not observed, as methylamine was

consumed by the reaction with ADN. The peak at m/

z = 76, which was thought to identify nitromethylamine or

methyl nitrate, appeared at a lower level in the main

reaction range. Nitromethylamine is generated via nitration

of methylamine:

H3CNH2 þ NOþ
2 ! H3CNHNO2 ð10Þ

NO2
? is an intermediate of HNO3 decomposition

[42, 43], and its generation is promoted under acidic con-

ditions. Nitromethylamine decomposes under acidic con-

ditions as follows [34]:

H3CNHNO2 þ Hþ ! CHþ
3 þ N2O þ H2O ð11Þ

Methyl nitrate is generated by the reaction of CH3
?

(Eqs. 9, 11) with NO3
- from ADN decomposition. The

peak at m/z = 42 became significantly lower as compared

with results observed for pure MMAN. Because ADN

decomposition produces acidic products such as HN(NO2)2

and HNO3, it is possible that the reactions described in

Eqs. (8) and (9) were promoted. The generation of gaseous

products at m/z = 59 and 81 was more substantial and

attributable to methyl formamide (m/z = 59, 30, and 28)

and 1,3,5-triazine (m/z = 81, 54, 28, and 27), respectively.

Methyl formamide is generated from the reaction between

CH3
? (Eqs. 9, 11) and formamide, and 1,3,5-triazine is

generated by the polymerization of three HCN molecules,

the formation of which is promoted by ADN. Additionally,

formamide and HCN are products of MMAN decomposi-

tion [40].

Evolved gas from DMAN contained N-nitrosodimethy-

lamine (m/z = 74, 42, 43, and 15) as a major decomposition

product, and dimethylamine (m/z = 45) was rarely

observed at the early stage of decomposition. These results

showed that DMAN initially dissociated to dimethylamine

Thermal behavior of ammonium dinitramide and amine nitrate mixtures
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and nitric acid and that dimethylamine underwent nitro-

sation by NO? from nitric acid.

ðCH3Þ2NH þ NOþ �!�Hþ
ðCH3Þ2NNO ð12Þ

Secondary N-nitrosoamine is relatively stable [44];

therefore, N-nitrosodimethylamine generated during

decomposition likely vaporized without further decompo-

sition. Because peaks derived from N,N-dimethylfor-

mamide (m/z = 73, 44, and 42) were also observed, the

DMAN-decomposition route is likely similar to that of

MMAN. The ADN/DMAN mixture generated N-

dimethylnitrosoamine and N2O, similar to results observed

from pure samples. This indicated that their subsequent

thermal decomposition also occurred, even in mixture

form, similar to ADN/MMAN. The difference from crude

ADN and DMAN was the generation of gas with m/z = 90,

which was attributed to N-nitrodimethylamine. The results

suggested that ADN promoted nitration of amines derived

from dissociation from amine nitrates. TMAN decompo-

sition generated trimethylamine (m/z = 58 and 59) mainly

from dissociation and, given the presence of trimethy-

lamine, underwent nitrosation to generate nitrosodimethy-

lamine (m/z = 74, 42, 43, and 15). In the ADN/TMAN

mixture, although nitrosodimethylamine was generated,

trimethylamine was rarely observed during decomposition.

These results showed that ADN promoted nitrosation of

amines from amine nitrates during the condensed phase.

Because the ratio of amines in evolved gas was higher than

MMAN and DMAN, a large amount of amines reacted

with ADN. This might explain why ADN/TMAN exhibited

significantly severe exothermic reactions according to SC-

DSC and TG–DTA results as compared with those

observed for pure ADN and TMAN.

The main scheme describing ADN/amine nitrate

decomposition when amines are represented by primary or

secondary aliphatic amines is shown in Fig. 4. The main

reaction in the condensed phase involves separate

decomposition of ADN and amine nitrate, even in the case

of their mixture. ADN generates highly acidic products,

such as HN(NO2)2 and HNO3, through decomposition,

with these products promoting nitration and nitrosation of

amines dissociated from amine nitrates. Nitroamine and

nitrosamine derived from primary amines are unstable and

further decompose to carbocations and gaseous products.

In the case of tertiary amine nitrates, secondary nitrosa-

mine was produced by reaction with NO?, with ADN

promoting this reaction.

Conclusions

In this study, we analyzed the thermal behavior and

evolved gas from ADN/amine nitrate mixtures to elucidate

their properties and decomposition characteristics. Adding

MMAN, DMAN, and MEAN, which have relatively low

molecular volumes and melting points, depressed the ADN

melting point, with the degree of melting-point depression

lower than that predicted from thermodynamic calculation.

Our results suggested that other factors also work between

ADN and the amine nitrates. The onset temperature of

thermal decomposition of ADN/amine nitrates was similar

to that of pure ADN. Nitrate anion inhibited increases in

HN(NO2)2 during the condensed phase, inhibiting the

generation of an exotherm during the early stage reaction.

Evolved-gas analysis revealed that thermal decomposition

of crude ADN and crude amine nitrate in the condensed

phase also occurred, even in mixture form. In the cases of

ADN/MMAN and ADN/DMAN, the decomposition of

crude materials represented the primary reaction, and

ADN/TMAN showed different reaction characteristics

from those for ADN and TMAN. Additionally, reactivity

between ADN and amine nitrates was dependent upon

amine levels derived from dissociation. The role of ADN

during condensed phase reactions involved the production

Fig. 4 Reaction scheme of ADN/amine nitrate mixtures in the condensed phase and that based on our results
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of highly acidic products, such as HN(NO2)2 and HNO3

and the promotion of nitration and nitrosation of amines

derived from the dissociation of amine nitrates, which is

thought to occur in mixtures of ADN and any aliphatic

amine nitrate.
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