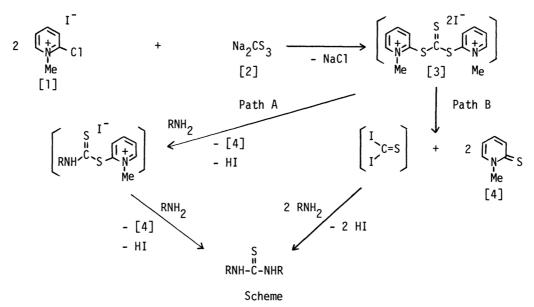
A CONVENIENT METHOD FOR THE PREPARATION OF N,N'-DISUBSTITUTED THIOUREAS USING 2-CHLOROPYRIDINIUM SALT, SODIUM TRITHIOCARBONATE AND AMINES


Yuji TAKIKAWA^{*}, Noriyuki INOUE, Ryu SATO[†], and Saburo TAKIZAWA Department of Applied Chemistry, Faculty of Engineering, Iwate University, Morioka, Iwate 020 † Department of Resource Chemistry, Faculty of Engineering, Iwate University, Morioka, Iwate 020

N,N'-Disubstituted thioureas were prepared in high yields by treating 2-chloropyridinium salt with sodium trithiocarbonate and subsequently adding amines.

The thiourea derivatives are prepared by the reactions of thiophosgene with amines¹⁾, CS_2 with amines²⁾, isothiocyanates with amines³⁾, and substituted guanidines with $H_2S^{4)}$. Each of these method, however, suffers disadvantages in that the thiophosgene possesses poisonous properties¹⁾, severe reaction conditions are required²⁾ and the thiourea derivatives are obtained in poor yields²⁾.

In this communication, we report a convenient method for the preparation of N,N'-disubstituted thioureas by the reactions of 2-chloropyridinium salt [1], Na_2CS_3 [2]⁵⁾, easily prepared from Na_2S and CS_2 , and amines. A typical procedure is described for the preparation of N,N'-dibenzylthiourea;

A solution of [1] (306 mg, 1.2 mmol) and [2] (77 mg, 0.5 mmol) in CH_2Cl_2 (5 ml) was stirred at room temperature for 0.5 hr. and, followed by adding benzylamine (235 mg, 2.2 mmol), it was then stirred at reflux for 3 hr. The reaction mixture was filtered, and after removal of the solvent, the residue was separated by silica gel column chromatography using ether as an eluent to afford N,N'-dibenzylthiourea and 1-methyl-2-pyridinethione [4] in quantitative yields. The results of the reactions with amines and diamines are shown in the Table.

Run	Amine	Solvent	Temp. (°C)	Time (hr)	RNH(C=S)NHR	- Yields(%) ^{b)} l-methyl-2-pyridinethione
1	n-propylamine	CH2C12	reflux	5	84	89
2	isopropylamine	CH2C12	reflux	8	70	94
3	n-butylamine	сн2с12	reflux	5	98	90
4	isobutylamine	ᢗнႠႨ៹	50	3	100	93
5	t-butylamine	DMSO	50	3	85	79
6	benzylamine	CH2C12	reflux	3	100	94
7	aniline	DMSO	30	0.5	91	78
8	4-chloroaniline	DMSO	40	0.5	90	c)
9	o-toluidine	DMSO	40	4	94	c)
10	p-toluidine	CH2C12	reflux	5	80	61
11	2-methoxyaniline	DMSO	40	1	92	93
12	4-methoxyaniline	DMS0	40	l min.	100	c)
13	2,6-dimethylaniline	DMSO	40	3 min.	62	c)
14	ethylenediamine	DMSO	40	0.5	88	88
15	o-phenylenediamine	DMSO	40	1	85	95

Table The results of the reaction with various amines^{a)}

a) 2-chloropyridinium salt [1]: 1.2 mmol, Na₂CS₃: 0.5 mmol, Amine: 2.2 mmol, Solvent: 5 ml.
b) Isolated yields.
c) Not determined.

The reaction with anilines having electron-donating substituents and aliphatic primary amines gave N,N'-disubstituted thioureas in high yields in CH_2Cl_2 or $CHCl_3$. In the reactions with primary amines having such steric hindrances as t-butylamine, o-toluidine and 2,6-dimethylaniline, the corresponding thioureas were obtained in high yields in DMSO. On the other hand, the solution of [1] and [2] in DMSO treated with diamines to afford cyclic thioureas in good yields. However, in the reactions with secondary amines such as dicyclohexylamine and piperidine, and with weakly basic amines such as p-nitroaniline, tetra- and pentachloroaniline, only [4] was formed but the corresponding thioureas were not obtained. A possible mechanism is shown in path A of the scheme. First, [1] reacts with [2] to afford a reactive intermediate [3]⁶⁾ easily, and then an amine attacks a carbon atom on thiocarbonyl group of [3] giving N,N'-disubstituted thiourea and [4]. Existence of the other path was also suggested because the reaction of [1] with [2] in CH_2CI_2 at reflux for 1 hr gived [4] in 28 % yields besides the quantitative formation of NaCl. Consequently, both path A and B would be considered as possible path of formation of N,N'-disubstituted thioureas.

References

- 1) S. Sharma, Synthesis, <u>1978</u>, 802.
- 2) C. F. H. Allen, C. O. Edens, and J. Van. Allan, Org. Synth., Coll. Vol. III, 394 (1955).
- 3) R. G. Weville and J. J. McGee, Can. J. Chem., <u>41</u>, 2123 (1963).
- 4) B. A. Dogadkin and N. N. Pavlov, Doklady Akad. Nauk. S. S. S. R., 138, 1111 (1961).
- 5) B. D. Stone and M. L. Nielsen, U. S. P., 2,893,835 (1959).
- 6) T. Shibaura, M. Shiono, and T. Mukaiyama, Chem. Lett., <u>1977</u>, 573.

(Received February 19, 1982)