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A simple and convenient protocol for deoxygenation of aliphatic and aromatic N-oxides to the corre-
sponding amines in good to excellent yield using sodium borohydride–Raney nickel in water is reported.
Other functional moieties such as alkenes, halides, ethers, and amides are unaffected under the present
reaction condition.
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The chemoselective and efficient deoxygenation of N-oxides to
corresponding amines is an important synthetic transformation
in organic synthesis.1 N-Oxides are an important intermediate in
regioselective transformations of pyridine heterocyclic com-
pounds.2 Moreover, N-oxides have been identified as one of the
major pathways of drug metabolism of many nitrogen-containing
pharmaceutically active molecules.3

Over the years, numerous methods have been developed for the
reduction of N-oxides to the corresponding amine, which include
reduction with Pd–C/H2,4 H2SO3,5 Ni–Al alloy,6 alkali metal
hydrides,7 TiCl3,

8 Zn–NH4Cl,9 Zn–HCO2NH4,10 TiCl4–SnCl2,11a

TiCl4–Zn,11b TiCl4–Mg,11c TiCl4–NaI,11d TiCl4–NaBH4,11e SmI2,12

tertathiomoplybdate13 ZrCl4–NaBH4,14a LiCl–NaBH4,14b InCl3,15a

In–NH4Cl,15b RuCl3�H2O16 and CoCl2�6H2O–In,17 MoCl2–NaI,18

NbCl5-Zn,19 Pd–C/ammonium formate,20 NaBH4–CuSO4,21 phos-
phorous compounds,22 Iron23 and Zn in acetic acid,24 Zn–NaOH,25

R3N–SO2 complex,26 AlI3,27 acetic formic anhydride,28 NaHTe, and
29 Cr(II)Cl2.30a Triphenyl phosphine-mediated deoxygenation cata-
lyzed by Rhenium porphyrin complex and 30b deoxygenation by
silanes catalyzed by MoO2Cl2

30c were also reported. Also, there is
a recent report on deoxygenation of aromatic N-oxide by Raney
nickel in ethanol.31 However, the generality of this method has
not been established. The deoxygenation of N-oxides is also cata-
ll rights reserved.
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lyzed by microbes,32 heme moiety of cytochrome P-450,33 and
rat liver preparation34 at ambient temperature.

In these reported methods, either organic solvents or combina-
tion of organic solvents with water are used as the reaction med-
ium. Although sodium borohydride has been used in
combination with metal salts for the reduction of N-oxides, in most
cases large excess of sodium borohydride (4–10 mol equiv) is re-
quired. In general, the methods have been extensively applied for
the reduction of aromatic N-oxides and the application of these
methods for the reduction of aliphatic N-oxides containing beta
hydrogen has not been established due to possible Cope elimina-
tion reaction. Therefore, real assessment of method robustness
must be made for the deoxygenation of N-oxide.

Development of new methodology in organic synthesis based
on Green Chemistry principle is an important goal toward sustain-
able future. Our aim was to develop a practical method for the
deoxygenation in water. This seems to be a possibility as N-oxides
are ionic in nature and are partly or completely soluble in water.

Herein, we report an environmentally friendly and highly effi-
cient and chemoselective method for deoxygenation of N-oxides
R1 N
R3
O
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Scheme 1. Deoxygenation of tertiary amine N-oxide.
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with sodium borohydride–Raney nickel system in water. In a typ-
ical experiment, the N-oxide is dissolved in water at 60 �C, then Ra-
ney nickel (W6) about 30–40% was added. The reaction mixture
was stirred for 10 min and sodium borohydride was added slowly,
the mixture was allowed to warm and maintained at 50–60 �C,
while reaction progress was monitored by TLC. Upon completion
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Deoxygenation of N-oxides using Raney nickel in aqueous sodium borohydride
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of reaction, the product was extracted with chloroform or dichloro-
methane and filtered to remove Raney nickel and worked up in the
standard procedure. Various aliphatic and aromatic N-oxides
(Scheme 1) were readily reduced in good to excellent yields. The
selectivity of this method is demonstrated by several examples
and the results are summarised in Table 1.
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Table 1 (continued)

Entry Substrate Time (h) Yielda (%) Productb

14 N

CONH2

O
14

4.5 62 N

CONH2

14a

15 N O
15

4.5 79 N
15a

16 16N CH3
O

4.5 74 N CH3 16a

a Yields of isolated products.
b Most of the products are commercially available and were identified by comparison of their NMR and mass spectra with those of authentic samples.
c N-Oxides dissolved in water and ethanol (2:1).
d N-Oxides dissolved in water and methanol (2:1).
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When amitriptyline N-oxide35,45 (entry 1) and cyclobenza-
prine N-oxide (entry 7) were subjected to deoxygenation, com-
plete chemoselective deoxygenation occurred to give good yield
of 1a and 7a. In both the cases, double bond was not affected.
The utility of the method has been extended to the deoxygen-
ation of many pharmacologically active N-oxides. Similarly in en-
try 3, tert-hydroxyl and olefin groups remained intact, and the
reaction gave 92% of the deoxygenated product, 3a. This product
is an intermediate in the synthesis of cyclobenzaprine.37 Trimip-
ramine N-oxide and imipramine N-oxide (entries 2 and 4) were
deoxygenated to the corresponding amines 2a and 4a38 in good
yields. Clomipramine N-oxide (entry 5) was completely reduced
to Clomipramine and the halogen group remained intact. Venla-
faxine N-oxide (entry 6) was deoxygenated to venlafaxine39 with
92% yield. Similarly ether groups and pyridine groups were unaf-
fected during the reduction of Orphenadrine N-oxide (entry 8),
carbinoxamine N-oxide, and doxepin N-oxide41 (entries 9 and
10) to afford the corresponding amines 9a40 and 10a in good
yields. Loperamide N-oxide and ebastine N-oxide (entries 11
and 12) also reacted well to give corresponding reduced product
of 11a42 and 12a. In the case of ebastine (entry 12), keto group
was also reduced. Other aromatic N-oxides36,43,44 (entries 13–16)
were completely reduced to their corresponding amines. The
moderate yields in these examples are due to the partial solubil-
ity of these products in water. This method however failed to
work for triphenyl phosphine oxide and chlorpromazine
sulfoxide.

In conclusion, this new deoxygenative method using sodium
borohydride–Raney nickel in water offers a useful alternative to
other methods available for reduction of N-oxides. Unlike many
of the reported procedures, this works very well for aliphatic and
aromatic N-oxides. We have also been able to reduce the use of
sodiumborohydride by 50–75% compared to earlier methods. More
over commercially available Raney nickel is used as a catalyst,
which can be reused many times. Excellent chemo selectivity and
use of water as a medium would be an added advantage of this
new methodology.
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