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Abstract

The stereocourse and the selectivity of the hydrolysis of alicyclic mono- and dinitriles and amides mediated
by Rhodococcus rhodochrousIFO 15564 has been examined. The stereochemistry of the substrates, as well as the
nature of substituents and presence of double bonds in alicyclic rings greatly affected the rate of hydrolysis by nitrile
hydratase and amidase. The rate difference between enantiomers or enantiotopic groups, in some cases, enabled
kinetic resolution or asymmetrization. The highest enantioselectivity of amidase was observed in the hydrolysis of
5-benzoyloxy-3-cyclohexene-1-carboxamide (E>200), and both enantiomers of methyl 5-hydroxy-3-cyclohexene-
1-carboxylate thus became readily available. © 1998 Elsevier Science Ltd. All rights reserved.

The importance of nitriles in synthetic organic chemistry prompted the elaboration of functional group
transformation under mild conditions,i.e., biocatalytic hydrolysis.1 Many attempts have been devoted to
clarify the regio- and stereoselectivity for aromatic substrates, however, few reports of alicyclic substrates
have appeared so far.2 We became interested in the hydrolysis of alicyclic mono- and dinitriles and
amides mediated byRhodococcus rhodochrousIFO 15564,3 and the stereocourse and the selectivity on
the substrates was examined.

Table 1 summarizes our results and some comments on them are described below. Firstly, the detection
of amides clearly supports that the hydrolysis by this microorganism proceeds in two steps; the hydration
by nitrile hydratase and the subsequent hydrolysis of the intermediate by amidase. With regard to the
first step, the hydration of cyano groups in the substrates1 (entry 1),9 (entry 5), and14 (entry 7) with a
C_C double bond was faster than the corresponding saturated ones3 (entry 2),12 (entry 6),17 (entry 9),
respectively, and these results suggested a certain interaction between double bonds and nitrile hydratase.
This effect, however, became smaller, between5 (entry 3) and7 (entry 4), and between19 (entry 10) and
24 (entry 15).
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Table 1.
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Incubation ofmeso-dinitrile 19 (entry 10) afforded enantiomerically enriched amide-carboxylate20
and meso-dicarboxylate21. Starting frommeso-diamide 22 (entry 12), which was revealed as the
intermediate by a shorter-period incubation (entry 11), the same result was obtained. From these results,
the hydrolysis of the amide worked in an enantioselective manner. This was further supported by an
independent experiment of the kinetic resolution of (±)-20 (entry 13). In contrast, as the incubation
of (±)-23 (entry 14), a potential precursor of (±)-20 afforded almost the same result compared with
that from (±)-20, nitrile hydratase had nearly no enantioselectivity. Indeed, nitrile hydratase of this
microorganism showed rather low enantioselectivity to the series of the substrates in this study (E=1.0 to
6.7).4

Both an unsaturated (19, entry 10) and a saturated (24, entry 15) dinitrile were hydrolyzed in a
similar manner. Thus, in contrast to nitrile hydratase, the rate of hydrolysis by amidase was greatly
affected by the nature and position of substituents on alicyclic rings, rather than the double bonds. The
carbamoyl and carboxyl group placed next to (α) the amide group, which is susceptible to hydrolysis, in
a counter-clockwise orientation inmeso-22 and (1R,6S)-20, retards the hydrolysis of the amide group
by amidase (Scheme 1). The result brought about the accumulation of (1R,6S)-20 and meso-21. By
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protecting carboxylic acids as methoxycarbonyl groups, such an effect was more strongly expressed
and the hydrolysis with amidase did not proceed (5 and7, in entry 3 and 4).

Scheme 1.

We then became interested in the effect of the substituent at theβ-position. Smaller substituents such
as hydroxyl groups (30, entry 17) showed no effect. To our surprise, an esterification with a benzoyl group
(32, entry 18) dramatically changed the situation. The introduction of a bulky and lipophilic group8 at
the β-position in a clockwise orientation was found to have a retarding effect as in Scheme 2. In this
case, nitrile hydratase showed a slight preference for the (1R,5R)-enantiomer (E 1.6), while amidase had
a reverse selectivity:9 (1S,5S)-33 was hydrolyzed with a high selectivity (E 30). Figure 1 summarizes
the rate-decreasing substituents on the cyclohex(a/e)ne ring to amidase, which should elucidate the
stereostructure of the active site of amidase (cf. Deigner et al.).10

Scheme 2.

When the substrate concentration of32 was raised to 0.5% (entry 18 versus 19), the reaction became
slow and the recovery of the starting material (1S,5S)-32 (33% e.e.) as well as (1S,5S)-acid 34 with an
enhancede.e. (97%) was achieved. This result is explained if an enantioselective inhibition caused by
the final products brought about an enhancement of the apparent E value (>200) of the amidase. By
taking advantage of the high enantioselectivity, a preparative method for the both enantiomers of methyl

Fig. 1.
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5-hydroxy-3-cyclohexene-1-carboxylate3511 was developed as in Scheme 3.12,13 Alkaline treatment of
(1R,5R)-33 and (1S,5S)-34 led to deprotection of the benzoyloxy group, and (1R,5R)-30 and (1S,5S)-
35 (as free carboxylic acid) were produced respectively. Due to a beneficial loss of enantioselectivity
by substituting the benzoyloxy group for the hydroxyl group, the hydrolysis of amide in (1R,5R)-30
proceeded very smoothly under mild conditions (entry 17). In this manner, the enantiomer (1R,5R)-35
could be obtained in a highly enantiomerically enriched state (97%e.e.).

Scheme 3.
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Fig. 2.
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