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Abstract

The stereocourse and the selectivity of the hydrolysis of alicyclic mono- and dinitriles and amides mediated
by Rhodococcus rhodochrolisO 15564 has been examined. The stereochemistry of the substrates, as well as the
nature of substituents and presence of double bonds in alicyclic rings greatly affected the rate of hydrolysis by nitrile
hydratase and amidase. The rate difference between enantiomers or enantiotopic groups, in some cases, enabled
kinetic resolution or asymmetrization. The highest enantioselectivity of amidase was observed in the hydrolysis of
5-benzoyloxy-3-cyclohexene-1-carboxamide (E>200), and both enantiomers of methyl 5-hydroxy-3-cyclohexene-
1-carboxylate thus became readily available. © 1998 Elsevier Science Ltd. All rights reserved.

The importance of nitriles in synthetic organic chemistry prompted the elaboration of functional group
transformation under mild conditionise., biocatalytic hydrolysid.Many attempts have been devoted to
clarify the regio- and stereoselectivity for aromatic substrates, however, few reports of alicyclic substrates
have appeared so fanWe became interested in the hydrolysis of alicyclic mono- and dinitriles and
amides mediated bRhodococcus rhodochrodBO 155642 and the stereocourse and the selectivity on
the substrates was examined.

Table 1 summarizes our results and some comments on them are described below. Firstly, the detection
of amides clearly supports that the hydrolysis by this microorganism proceeds in two steps; the hydration
by nitrile hydratase and the subsequent hydrolysis of the intermediate by amidase. With regard to the
first step, the hydration of cyano groups in the substrat@ntry 1),9 (entry 5), andl4 (entry 7) with a
C=C double bond was faster than the corresponding saturate@d¢aesy 2),12 (entry 6),17 (entry 9),
respectively, and these results suggested a certain interaction between double bonds and nitrile hydratase.
This effect, however, became smaller, betwBéeantry 3) and7 (entry 4), and betweeb9 (entry 10) and
24 (entry 15).
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Table 1.
; :yield /% (e.e. /9
entry | substrate condi- product Iyled % (e.e./ %) A ' _
tion recovery |(cyano)amide| (cyano)acid diamide (amide)acid diacid
1 i YCN a — — _ _ i ,i ¥ CO,H
CN CO,H
1 2 87 ()
2 N CN a — —_ ‘ ¥ COH — — —
CN CN
3 4 76 (74)
3 ‘ Yco,Me| b Meoz*ﬁ ,\iCOZMe — — — —
CN NC CONH,
(1)-5 5 24 (36) 6 28 (36)
4 ,s Yco,Me| b Meozf,E ‘ ¥ CO,Me — — —_ —_
CN NC CONH,
(£)-7 7 36(18) 8 28 (16)
5 'i YCH.CN| a — INC(CH,f 'i NC(CH,f ‘ — — —
CH,CN H,NOC(CH,) HO,C(CH,)
9 10 55 (N.D.)[ 11 4 (N.D.)
6 i CH.CN| g !i ¥ CH,CNINC(CH,f ‘ — — — —
CH,CN CH,CN H,NOC(CH,)
12 12 87 (=) | 13 9(N.D.)
7 ; YCHCN g — CH,CN|NC(CH,} ; — —_ —
CH,CN CH,CONH, HO,C(CH,)
14 15 46 (36) | 16 35 (95)
8 QCHch a(d) —  INC(CHY) — - — o
CH,CN H,NOC(CH,)
14 15 99 (30)
9 ; Y CH,CN a CH,CN _ NC(CH,, — — —
CH,CN CH,CN HO,C(CH,)
17 17 66 (=) 18 4 (N.D.)
10 ; YCN a — — — — ; ¥ COH CO,H
CN CONH, CO,H
19 20 39 (83) 21 33 (-)
11 ; “cN | a(d) CN — — QCONHQ — —
CN CN CONH,
19 19 82 (-) 22 5(-)
12 QCONHQ a R J— J— — CO.H CO,H
CONH, CONH, CO,H
22 20 39(97) | 2139()
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entry | substrate condi- product: yield / % (e.e./ %)
tion recovery |(cyano)amide| (cyano)acid diamide (amide)acid diacid
I @ S R N R B (G S @
CONH, CONH, CO,H
(+)-20 20 51(56) | 21 18(-)
I G U R R I G U @
CN CONH CO,H
()23 20 52 (56) | 2120 ()
15 Q‘CN a — — — —— Q‘COZH COo,H
CN CONH, CO,H
24 25 22(95) | 26 24 (<)
Jo - oo_ .T.
CN CONH CO,H
($)-27 28 20 (N.D)| 29 73 (2)
OH OH
—_ - 31 J— I -
17 (#)-30| © ©’7 % 10)
CONH, COLH
OBz BzO OBz
18 _ 33 34 _ _ _
; (#)-32| b(e) 41 (>99); 49 (72)
CN H,NC=0| COH
0Bz 0Bz BzO, 0Bz
19 R 32 33 34 _ _ _
; (#)-32| c(e) ; 18 (33) 34(>99); ; 31 (97)
CN * CN H,NC=0 CO,H

For incubation condition, see ref. 3. a: sub. conc. 0.1%, incub. time 4.5-24h; b: pre-incubated with FeSO4 (0.1%), sub. conc. 0.1%,
incub. time 2-8h; c: pre-incubated with FeSO4 (0.1%), sub. conc. 0.5%, incub. time 1.5-8h; d: incub. time 10-30 min; e: EtOH
(10%) was added as co-solvent. For spectral data, determination of the absolute configuration, and e.e. of the products, see ref 5-7.

Incubation ofmesedinitrile 19 (entry 10) afforded enantiomerically enriched amide-carboxy2fte
and mesedicarboxylate21. Starting from mesediamide 22 (entry 12), which was revealed as the
intermediate by a shorter-period incubation (entry 11), the same result was obtained. From these results,
the hydrolysis of the amide worked in an enantioselective manner. This was further supported by an
independent experiment of the kinetic resolution &)-@0 (entry 13). In contrast, as the incubation
of (+)-23 (entry 14), a potential precursor ofJ}-20 afforded almost the same result compared with
that from (+)-20, nitrile hydratase had nearly no enantioselectivity. Indeed, nitrile hydratase of this
microorganism showed rather low enantioselectivity to the series of the substrates in this study (E=1.0 to
6.7)4

Both an unsaturatedl®, entry 10) and a saturate@4, entry 15) dinitrile were hydrolyzed in a
similar manner. Thus, in contrast to nitrile hydratase, the rate of hydrolysis by amidase was greatly
affected by the nature and position of substituents on alicyclic rings, rather than the double bonds. The
carbamoyl and carboxyl group placed next#g the amide group, which is susceptible to hydrolysis, in
a counter-clockwise orientation imese22 and (IR,65)-20, retards the hydrolysis of the amide group
by amidase (Scheme 1). The result brought about the accumulatiorR@3320 and mese2l. By
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protecting carboxylic acids as methoxycarbonyl groups, such an effect was more strongly expressed
and the hydrolysis with amidase did not proceBaifd7, in entry 3 and 4).

amidase _
pr—— =
H,NOC

NC H,NOC' COH

C=N nitrile CO,H| CO,H
hydratase

Il = Il (1R,6S)-20 Il
(non-
selective) . amidase

- _
CN CONH, HO,C' HO,C'
C=N CO,H CO,H
15,6R)-20
meso-19 E50.22 ( ) meso-21
Scheme 1.

We then became interested in the effect of the substituent -grasition. Smaller substituents such
as hydroxyl groups30, entry 17) showed no effect. To our surprise, an esterification with a benzoyl group
(32, entry 18) dramatically changed the situation. The introduction of a bulky and lipophilic gatup
the B-position in a clockwise orientation was found to have a retarding effect as in Scheme 2. In this
case, nitrile hydratase showed a slight preference for tRbR)-enantiomer (E 1.6), while amidase had
a reverse selectivity:(1S559-33 was hydrolyzed with a high selectivity (E 30). Figure 1 summarizes
the rate-decreasing substituents on the cyclohex(a/e)ne ring to amidase, which should elucidate the
stereostructure of the active site of amidasieDeigner et al. ).

ons OBz o8z |
amidase
C=N nitrile (SL]SeS'fv)e e
(15,55)-32 hydratase E 30 (1555)-34
(1R5R)-
Bz0, selective (slow) 520
E16 L J e
GRsh2  (1RSAK3 —
(1R.5R)-33

Scheme 2.

When the substrate concentration3@was raised to 0.5% (entry 18 versus 19), the reaction became
slow and the recovery of the starting materiab,65)-32 (33% e.e) as well as ($59)-acid 34 with an
enhanceck.e (97%) was achieved. This result is explained if an enantioselective inhibition caused by
the final products brought about an enhancement of the apparent E value (>200) of the amidase. By
taking advantage of the high enantioselectivity, a preparative method for the both enantiomers of methyl

z X
CONH,

rate-decreasing f amidase

groups:

X' = CONHy, COzH, COMe
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5-hydroxy-3-cyclohexene-1-carboxylads!! was developed as in Schemé?3.3 Alkaline treatment of
(1R,5R)-33 and (1S559)-34 led to deprotection of the benzoyloxy group, an®RER)-30 and (1S59)-

35 (as free carboxylic acid) were produced respectively. Due to a beneficial loss of enantioselectivity
by substituting the benzoyloxy group for the hydroxyl group, the hydrolysis of amideRrbR}-30
proceeded very smoothly under mild conditions (entry 17). In this manner, the enantidrRy&R)¢B5

could be obtained in a highly enantiomerically enriched state (8%

BzO, HO
\© aq. NaOH ) R. rhodochrous \© ©’ ) ag. NaOH ©,
: ) CHoN
CONH, 2) CHaN2 COMe ; 2ve CO,Me
(1R,5R)-33 (1R5R 30 (1R,5R)-35 : 1858 (15,565)-35

Scheme 3.
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