Physical Properties and Chemical Constitution. Part XLIX. ${ }^{1}$ The Refractivities, Densities, and Surface Tensions of some Organophosphorus Compounds

Abstract

By A. A. Foxton, G. H. Jeffery, and A. I. Vogel Pure samples of tri-n-alkyl phosphites, di-n-alkyl phosphonates, di-n-propyl n-alkylphosphonates, di-n-alkyl ethylphosphonates (methyl to octyl) of tri-n-alkyl orthophosphates (butyl to heptyl), of tri-2-n-alkoxyethyl phosphites (methoxy- to hexyloxy-), of di-2-n-alkoxyethyl phosphonates (methoxy- to heptyloxy-) and of 2-n-alkoxy-4-methyl-1.3,2-dioxaphospholans (methoxy- to hexyloxy-) have been prepared and their refractive indices at 20° and densities and surface tension over a range of temperatures determined: the infrared spectra were measured in detail for a number of representative compounds. The parachors, refractions, and molecular refraction coefficients for the bonds $(P=O)$. $(P-O),(P-C),(P-H)$ and for the 1,3,2-dioxaphospholan ring have been evaluated from the new experimental data.

The present investigation was undertaken to secure trustworthy data on some physical properties of pure tri-n-alkyl phosphites, tri-2-n-alkoxyethyl phosphites, tri-n-alkyl orthophosphates, di-n-alkyl phosphonates, di-2-n-alkoxyethyl phosphonates, di-n-alkyl ethylphosphonates, di-n-propyl n-alkylphosphonates, and 2 -n-alkoxy-4-methyl-1,3,2-dioxaphospholans, and to evaluate the refractions, molecular refraction coefficients, and parachors for the bonds ($\mathrm{P}-\mathrm{H}$), ($\mathrm{P}-\mathrm{C}$), ($\mathrm{P}-\mathrm{O}$), and ($\mathrm{P}=\mathrm{O}$) and for the $1,3,2$-dioxaphospholan ring. The mean values for the CH_{2} increments of the molecular refractions and of the molecular refraction coefficients are generally in good agreement with those previously found, ${ }^{2}$ but the parachor increment ($38 \cdot 2$ for tri-n-alkyl orthophosphates and $39 \cdot 2$ for the other esters) is appreciably lower. The refraction and molecular refraction coefficient constants for the $\mathrm{P}-\mathrm{O}$ bond were calculated as follows:

$$
3(\mathrm{P}-\mathrm{O})=\mathrm{E}-\mathrm{R} \text { (phosphites) }
$$

where E is the observed molar refractivity or molecular refraction coefficient and R the sum of the bond constants ${ }^{3}$ of all the $(\mathrm{C}-\mathrm{C}),(\mathrm{C}-\mathrm{H})$, and $(\mathrm{C}-\mathrm{O})_{\text {acetal }}$ bonds in the molecule (alkyl phosphites), and also of ($\mathrm{C}-\mathrm{O})_{\text {ether }}$

[^0]bonds (2-n-alkoxyethyl phosphites). The constants for the other bonds were then calculated from the equations:
(i) $(\mathrm{P}=\mathrm{O})=\mathrm{E}-\{\mathrm{R}+\mathbf{3}(\mathrm{P}-\mathrm{O})\}$, (orthophosphates);
(ii) $(\mathrm{P}-\mathrm{H})=\mathrm{E}-\{\mathrm{R}+2(\mathrm{P}-\mathrm{O})+(\mathrm{P}=\mathrm{O})\}$,
(phosphonates);
(iii) $(\mathrm{P}-\mathrm{C})=\mathrm{E}-\{\mathrm{R}+2(\mathrm{P}-\mathrm{O})+(\mathrm{P}=\mathrm{O})\}$, (di-propyl alkylphosphonates).

The molar refraction and molar refraction coefficient for the $1,3,2$-dioxaphospholan ring were calculated from the results for the 2 -n-alkoxy-4-methyl-1,3,2-dioxaphospholans using the equation:

$$
\begin{aligned}
\text { Ring constant }=\mathrm{E}-\left\{\mathrm{R}^{\prime}+\right. & (\mathrm{P}-\mathrm{O})+(\mathrm{C}-\mathrm{C})+ \\
& \left.(\mathrm{C}-\mathrm{O})_{\text {acetal }}-(\mathrm{C}-\mathrm{H})\right\} ;
\end{aligned}
$$

R^{\prime} is the sum of the refractivities of the alkyl groups attached to positions 2 and 4.
The method of calculation of the parachor constants was modified so as to utilise the observed CH_{2} increment for each series of compounds; thus the ($\mathrm{P}-\mathrm{O}$) bond parachor was obtained from the results with the tri-nalkyl phosphites by means of the expression:

$$
(\mathrm{P}-\mathrm{O})=\left\{\frac{1}{3} \mathrm{P}_{\mathrm{obs}}-n\left(\mathrm{CH}_{2}\right)_{\mathrm{obs}}-\left(\mathrm{CH}_{3}\right)-(\mathrm{C}-\mathrm{O})_{\text {acetal }}\right\} ;
$$

${ }^{8}$ Part XXIV, A. I. Vogel, W. T. Cresswell, G. H. Jeffery, and J. Leicester, J. Chem. Soc., 1952, 514.
similar equations were used to calculate the parachor constants of the other bonds, and also of the 1,3,2-dioxaphospholan ring.

The constants for the various bonds are summarised in Table 1. The values for the $(\mathrm{P}-\mathrm{C})$ bond are based on

Table 1
Mean constants for various bonds involving phosphorus, and for the 1,3,2-dioxaphospholan ring

the results for the di-n-propyl n-alkylphosphonates $\mathrm{RPO}\left(\mathrm{OC}_{3} \mathrm{H}_{7}\right)_{2}\left(\mathrm{R}=\mathrm{C}_{3} \mathrm{H}_{7}\right.$ to $\left.\mathrm{C}_{8} \mathrm{H}_{17}\right)$ only. In this series
 are abnormal, indicating that the anomalies frequently associated with a methyl group are here also encountered with an ethyl group; for this reason, the results for the

Table 2
Comparison of $[R]_{\mathrm{D}}$ values for various bonds

Authors	($\mathrm{P}-\mathrm{O}$)	($\mathrm{P}=\mathrm{O}$)	($\mathrm{P}-\mathrm{H}$)	(P-C)
Fehér and Blümcke (ref. 4)	$3 \cdot 12$	+1.22	$4 \cdot 27$	$3 \cdot 64$
Gillis, Horwood, and White (ref. 5)	3•18	-1.22	-	$3 \cdot 60$
Keeber and Post (ref. 6)	$3 \cdot 04$	$+0.91$	$2 \cdot 26$	1.29
Sayre (ref. 7)	3•102	-1.032	$4 \cdot 010$	3.575
This Paper	$3 \cdot 22$	-1.26	$4 \cdot 24$	$3 \cdot 71$

di-n-alkyl ethylphosphonates have been ignored in evaluating the ($\mathrm{P}-\mathrm{C}$) bond constants.

In Table 2 the $[R]_{\mathrm{D}}$ values deduced for the various bonds are compared with values given by other workers. ${ }^{4-7}$

[^1]The results of Fehér and Blümcke and of Keeber and Post are based on the bond constants evaluated by Denbigh, ${ }^{8}$ the remainder are based on the constants given in Part XXIV. ${ }^{3}$

In Table 3 the $[R]_{D}$ values for some typical compounds, calculated by using the constants given in Table 1 and in Part XXIV, ${ }^{3}$ are compared with the values deduced from the experimental results.

Table 3
Comparison of calculated and observed $[R]_{D}$ values

Compound	Observed	Calculated
$\left(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{O}\right)_{3} \mathrm{P} \ldots \ldots \ldots \ldots \ldots \ldots \ldots$.	$71 \cdot 09$	$70 \cdot 96$
$\left(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{O}\right)_{8} \mathrm{PO} \ldots \ldots \ldots \ldots \ldots \ldots$	$69 \cdot 67$	$69 \cdot 70$
$\mathrm{HPO}_{\mathrm{O}}\left(\mathrm{OC}_{4} \mathrm{H}_{9}\right)_{2} \ldots \ldots \ldots \ldots \ldots \ldots$	$50 \cdot 25$	$50 \cdot 28$
$\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{PO}\left(\mathrm{OC}_{3} \mathrm{H}_{7}\right)_{2}$	$\cdots \cdots \cdots \cdots \cdots$	$59 \cdot 39$

The agreement between observed and calculated values is satisfactory. Tolkmith ${ }^{9}$ has pointed out that negative values for bond refractivities are untenable on theoretical grounds. Although a negative value for a bond refractivity is unsatisfactory from a theoretical standpoint, the evaluation of refractivity constants for bonds involving phosphorus is desirable so that the extensive system of bond constants already developed can also be applied to phosphorus compounds.

The constants given above for the 1,3,2-dioxaphospholan ring are regarded as preliminary. The values of

this ring constant calculated using our bond constants, from the measurements of (a) Lucas, Mitchell, and Scully ${ }^{10}$ on a series of 2 -n-alkoxy-1,3,2-dioxaphospholans (I) and also some 4-methyl compounds, and of (b) Arbuzov, Zoroastrova, and Rizpolozhensky ${ }^{11}$ with a similar series of 4-methoxy and 4-ethoxy compounds, differ markedly from those in Table 1. Some of the compounds (I) described by Lucas and his co-workers were prepared and found to be very easily oxidised and very sensitive to atmospheric moisture; the 4 -methyl compounds which we investigated are relatively stable.

EXPERIMENTAL

Physical Measurements.-Details of experimental methods are given in Part XXVIII. ${ }^{12}$ Unless otherwise stated, b. p.s are corrected. The compounds were re-fractionated immediately before the measurements were made; they were examined for impurities by vapour-phase chromatography and by ultraviolet and infrared spectroscopy, but none was found.

Compounds Investigated.-Tri-n-alkyl phosphites (RO) ${ }_{3} \mathrm{P}$. A modification of the procedures described by Ford-Moore

[^2]| No. | Compound (R) | B. p. $/ \mathrm{mm}$. | $d_{4}{ }^{20}$ | $d_{4}{ }^{40}$ | $d_{4}{ }^{60}$ | $d_{4}{ }^{85}$ | γ^{20} | γ^{40} | γ^{60} | γ^{85} | P | Note |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Tri-n-alkyl phosphites (RO$)_{3} \mathrm{P}$ | | | | | | | | | | | | |
| 902 | Methyl | 111° | 1.0512 | 1.0286 | - | - | 27.18 | 24.88 | - | - | $269 \cdot 5$ | a |
| 908 | Ethyl | 55.5/20 | 0.9591 | 0.9388 | 0.9161 | 0.8882 | $24 \cdot 06$ | 22.03 | 20.51 | $18 \cdot 30$ | $384 \cdot 8$ | a |
| 904 | n-Propyl | 67/25 | 0.9300 | 0.9126 | 0.8955 | 0.8726 | $25 \cdot 04$ | $23 \cdot 32$ | 21.52 | $19 \cdot 30$ | $500 \cdot 6$ | a |
| 905 | n-Butyl | 120.5/3.0 | $0 \cdot 9146$ | 0.8986 | 0.8814 | $0 \cdot 8606$ | 26.07 | 23.84 | $22 \cdot 28$ | $20 \cdot 37$ | $617 \cdot 2$ | a |
| 906 | n-Pentyl | 128/2.2 | 0.9047 | 0.8903 | 0.8741 | 0.8551 | 27.04 | $25 \cdot 15$ | $23 \cdot 37$ | 21.56 | $736 \cdot 0$ | |
| 907 | n -Hexyl | 131/0.7 | 0.8975 | 0.8828 | 0.8688 | 0.8504 | 27.54 | $25 \cdot 94$ | $24 \cdot 28$ | $22 \cdot 32$ | $854 \cdot 4$ | a |
| 908 | n-Heptyl | 180.5/0.7 | $0 \cdot 8917$ | 0.8778 | 0.8643 | 0.8469 | $28 \cdot 19$ | $26 \cdot 62$ | $24 \cdot 86$ | $23 \cdot 04$ | $973 \cdot 0$ | |
| 909 | n-Octyl | 178/0.2 | $0 \cdot 8858$ | 0.8729 | 0.8590 | $0 \cdot 8416$ | $28 \cdot 18$ | 26.98 | $25 \cdot 35$ | $23 \cdot 36$ | 1092.5 | a |
| Tri-2-n-alkoxyethyl phosphites $\left(\mathrm{ROC}_{2} \mathrm{H}_{4} \mathrm{O}\right)_{3} \mathrm{P}$ | | | | | | | | | | | | |
| 910 | Methyl | 123.5/2.0 | 1.0874 | $1 \cdot 0699$ | 1.0516 | 1.0282 | 33.92 | 31.91 | $26 \cdot 75$ | 27.28 | $569 \cdot 1$ | b |
| 911 | Ethyl | 121.5/0.75 | 1.0300 | 1.0127 | 0.9953 | 0.9740 | $30 \cdot 54$ | $28 \cdot 83$ | $26 \cdot 71$ | $24 \cdot 45$ | $681 \cdot 5$ | b |
| 912 | n-Propyl | $146 \cdot 5 / 0 \cdot 25$ | 0.9966 | 0.9802 | $0 \cdot 9631$ | 0.9427 | $29 \cdot 04$ | $27 \cdot 30$ | $25 \cdot 67$ | $23 \cdot 85$ | $795 \cdot 2$ | |
| 913 | n-Butyl | $155 \cdot 5 / 0 \cdot 2$ | 0.9744 | 0.9590 | 0.9444 | 0.9253 | $29 \cdot 33$ | $27 \cdot 70$ | $26 \cdot 07$ | $24 \cdot 12$ | $913 \cdot 5$ | |
| 914 | n-Pentyl | 171/0.3 | 0.9595 | 0.9449 | 0.9297 | 0.9109 | $29 \cdot 60$ | 27.89 | $26 \cdot 26$ | 24.01 | $1032 \cdot 7$ | |
| 915 | n-Hexyl | 208/0-3 | 0.9469 | 0.9332 | 0.9182 | 0.9005 | 29.93 | $28 \cdot 18$ | 26.43 | $24 \cdot 50$ | 1152.5 | |
| Di-n-alkyl phosphonates $\mathrm{HPO}(\mathrm{OR})_{2}$ | | | | | | | | | | | | |
| 916 | Methyl | 94.5/64 | 1-1997 | $1 \cdot 1783$ | 1-1566 | 1-1284 | 37.60 | $35 \cdot 24$ | $32 \cdot 76$ | 29.92 | $227 \cdot 6$ | c |
| 917 | Ethyl | 71.5/10 | 1.0739 | $1 \cdot 0549$ | 1.0346 | 1-0095 | $30 \cdot 87$ | 28.96 | $26 \cdot 86$ | $24 \cdot 11$ | $303 \cdot 5$ | c |
| 918 | n-Propyl | 77-5/5.0 | 1.0212 | 1.0029 | 0.9842 | 0.9616 | $29 \cdot 23$ | $27 \cdot 48$ | 25.56 | $23 \cdot 36$ | $379 \cdot 3$ | c |
| 919 | n-Butyl | 119.5/8.0 | 0.9870 | 0.9700 | 0.9529 | 0.9281 | $28 \cdot 26$ | $26 \cdot 20$ | $25 \cdot 31$ | $23 \cdot 59$ | $455 \cdot 8$ | c |
| 920 | n-Pentyl | 96.5/0.25 | 0.9659 | 0.9501 | 0.9343 | 0.9145 | $28 \cdot 46$ | 26.98 | $25 \cdot 31$ | $23 \cdot 26$ | $533 \cdot 0$ | |
| 921 | n -Hexyl | 116/0.2 | 0.9509 | 0.9356 | 0.9206 | 0.9026 | $28 \cdot 70$ | $27 \cdot 19$ | 25.74 | 23.70 | 611.0 | c |
| 922 | n-Heptyl | $131 \cdot 5 / 0 \cdot 25$ | 0.9361 | 0.9219 | 0.9077 | $0 \cdot 8898$ | 28.67 | $27 \cdot 38$ | $25 \cdot 73$ | $24 \cdot 04$ | $689 \cdot 3$ | c |
| 923 | n-Octyl | $155 \cdot 5 / 0 \cdot 4$ | 0.9285 | 0.9146 | $0 \cdot 9004$ | $0 \cdot 8856$ | $29 \cdot 00$ | $27 \cdot 57$ | $26 \cdot 11$ | $24 \cdot 44$ | $768 \cdot 4$ | c |
| Di-2-n-alkoxyethyl phosphonates $\mathrm{HPO}\left(\mathrm{OC}_{2} \mathrm{H}_{4} \mathrm{OR}\right)_{2}$ | | | | | | | | | | | | |
| 924 | Methyl | 111/1.0 | $1 \cdot 1617$ | $1 \cdot 1435$ | 1-1256 | 1-1020 | 37.68 | $35 \cdot 96$ | 33.97 | $30 \cdot 96$ | $423 \cdot 9$ | |
| 925 | Ethyl | 110.5/0.4 | 1.0919 | 1.0734 | $1 \cdot 0568$ | 1.0343 | 33.78 | $32 \cdot 09$ | $30 \cdot 56$ | 26.92 | $502 \cdot 0$ | |
| 926 | n-Propyl | 128/0.5 | 1.0507 | 1.0337 | 1.0180 | 0.9967 | 31.07 | 29.38 | $28 \cdot 51$ | 26.59 | $578 \cdot 6$ | |
| 927 | n-Butyl | 150/0.4 | 1.0222 | 1.0058 | 0.9895 | 0.9680 | 31.10 | $29 \cdot 69$ | $28 \cdot 26$ | $27 \cdot 56$ | $656 \cdot 3$ | |
| 928 | n-Pentyl | 167.5/0.4 | 1.0004 | 0.9852 | 0.9704 | 0.9521 | 31.04 | $29 \cdot 35$ | $28 \cdot 48$ | 26.57 | $735 \cdot 5$ | |
| 929 | n-Hexyl | 174/0.3 | 0.9853 | 0.9707 | 0.9563 | 0.9358 | 31.17 | 28.93 | $28 \cdot 48$ | $26 \cdot 73$ | $814 \cdot 9$ | |
| 930 | n-Heptyl | $183 \cdot 5 / 0 \cdot 2$ | 0.9715 | 0.9568 | 0.9426 | 0.9236 | 30.96 | $29 \cdot 40$ | 28.26 | 26.22 | $894 \cdot 6$ | |
| Orthophosphates (RO) ${ }_{3} \mathrm{PO}$ | | | | | | | | | | | | |
| 931 | n-Butyl | 114/0.8 | 0.9770 | 0.9613 | 0.9444 | 0.9245 | 27.55 | $25 \cdot 96$ | $24 \cdot 44$ | 23.25 | $630 \cdot 0$ | d |
| 932 | n-Pentyl | $139 \cdot 0 / 1 \cdot 0$ | 0.9545 | 0.9394 | 0.9241 | 0.9051 | $27 \cdot 60$ | $26 \cdot 19$ | $25 \cdot 00$ | $23 \cdot 46$ | $744 \cdot 3$ | d |
| 933 | n -Hexyl | 160.8/0.9 | 0.9398 | 0.9290 | 0.9114 | 0.8933 | $28 \cdot 11$ | 26.50 | 25.03 | $23 \cdot 24$ | $860 \cdot 0$ | d |
| 984 | n-Heptyl | 186.9/0.4 | 0.9272 | 0.9128 | 0.8990 | 0.8825 | 28.11 | 26.53 | $25 \cdot 37$ | 23.57 | $978 \cdot 2$ | |
| 985 | $\mathrm{MeOC}_{2} \mathrm{H}_{4}$ | $139 \cdot 1 / 0 \cdot 4$ | 1-1642 | $1 \cdot 1472$ | 1-1290 | 1-1063 | $36 \cdot 61$ | $34 \cdot 66$ | 32.53 | $30 \cdot 14$ | $575 \cdot 9$ | |
| 936 | $\mathrm{EtOC}_{2} \mathrm{H}_{4}$ | $141 \cdot 0 / 0 \cdot 35$ | 1-0903 | $1 \cdot 0737$ | 1-0567 | 1.0354 | $32 \cdot 24$ | $30 \cdot 30$ | $28 \cdot 69$ | 26.40 | $687 \cdot 7$ | |
| Di-n-alkyl ethylphosphonates $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{PO}(\mathrm{OR})_{2}$ | | | | | | | | | | | | |
| 937 | Methyl | 73.5/15 | $1 \cdot 1500$ | $1 \cdot 1300$ | 1-1096 | 1.0837 | $36 \cdot 77$ | 33.89 | 31.58 | $28 \cdot 48$ | $295 \cdot 1$ | |
| 988 | Ethyl | 93/19 | 1.0224 | $1 \cdot 0048$ | 0.9865 | 0.9661 | $28 \cdot 68$ | $26 \cdot 73$ | $24 \cdot 78$ | $22 \cdot 34$ | $375 \cdot 8$ | ε |
| 939 | n-Propyl | 105/18 | 0.9918 | 0.9756 | 0.9578 | 0.9355 | $28 \cdot 36$ | $26 \cdot 29$ | $24 \cdot 66$ | $22 \cdot 45$ | $452 \cdot 1$ | |
| 940 | n-Butyl | 129.5/15 | 0.9682 | 0.9520 | 0.9354 | 0.9147 | 28.05 | $26 \cdot 37$ | $24 \cdot 81$ | $22 \cdot 67$ | $529 \cdot 5$ | f |
| 941 | n-Pentyl | $112 / 1.0$ | 0.9502 | 0.9342 | 0.9192 | $0 \cdot 8978$ | 27.97 | 26.25 | 24.85 | $22 \cdot 60$ | $607 \cdot 1$ | |
| 942 | n -Hexyl | 117/0.2 | 0.9394 | 0.9247 | 0.9095 | 0.8902 | 28.11 | 26.74 | $25 \cdot 15$ | 23.71 | $685 \cdot 2$ | |
| 943 | n-Heptyl | 142.5/0.4 | $0 \cdot 9282$ | 0.9138 | 0.8992 | 0.8815 | 28.46 | $27 \cdot 13$ | $25 \cdot 65$ | 23.93 | $765 \cdot 7$ | |
| 944 | n-Octyl | 160/0.4 | 0.9211 | 0.9073 | 0.8836 | 0.8662 | 28.87 | $27 \cdot 63$ | $25 \cdot 14$ | $23 \cdot 45$ | $846 \cdot 1$ | |
| Di-n-propyl alkyl phosphonates $\mathrm{RPO}\left(\mathrm{OC}_{3} \mathrm{H}_{7}\right)_{2}$ | | | | | | | | | | | | |
| 945 | Methyl | 115.5/0.25 | 1.0092 | $1 \cdot 0019$ | 0.9739 | 0.9512 | 28.64 | $26 \cdot 66$ | $24 \cdot 89$ | 22.72 | $415 \cdot 2$ | g |
| 946 | n-Propyl | 118.5/12 | $0 \cdot 9724$ | 0.9552 | 0.9384 | 0.9170 | 27.98 | $26 \cdot 20$ | $24 \cdot 37$ | $22 \cdot 21$ | $491 \cdot 9$ | h |
| 947 | n-Butyl | $98 \cdot 5 / 1 \cdot 7$ | 0.9634 | 0.9469 | 0.9296 | 0.9100 | 27.98 | 26.27 | $24 \cdot 59$ | $22 \cdot 24$ | $531 \cdot 2$ | |
| 948 | n-Pentyl | 104.5/0.5 | 0.9543 | 0.9469 | $0 \cdot 9229$ | 0.9026 | 28.25 | $27 \cdot 04$ | $24 \cdot 64$ | $22 \cdot 70$ | $570 \cdot 7$ | |
| 949 | n-Hexyl | 110/1.0 | 0.9475 | 0.9318 | $0 \cdot 9163$ | 0.8966 | 28.07 | 26.59 | $25 \cdot 21$ | $23 \cdot 35$ | $610 \cdot 8$ | |
| 950 | n-Heptyl | 112.5/0.4 | 0.9412 | 0.9262 | $0 \cdot 9112$ | $0 \cdot 8920$ | 28.58 | 26.83 | 25.19 | $23 \cdot 17$ | $649 \cdot 8$ | |
| 951 | n-Octyl | $155.5 / 0 \cdot 4$ | 0.9355 | $0 \cdot 9205$ | 0.9053 | 0.8861 | 28.83 | 26.97 | $25 \cdot 34$ | $23 \cdot 26$ | 689.7 | |
| 2-n-Alkoxy-4-methyl-1,3,2-dioxaphospholans ($\mathrm{I} ; \mathrm{R}^{\prime}=\mathrm{Me}$) | | | | | | | | | | | | |
| 952 | Methyl | 63-5/30 | $1 \cdot 1304$ | 0.9893 | - | - | 29.65 | - | - | - | $280 \cdot 7$ | i |
| 953 | Ethyl | 69/27 | 1.0797 | 1.0605 | 1.0416 | 1.0194 | 27.75 | $25 \cdot 67$ | $24 \cdot 42$ | 22.34 | $319 \cdot 2$ | i |
| 954 | n-Propyl | 82/25 | 1.0550 | 1.0368 | 1.0213 | 0.9990 | $28 \cdot 13$ | 26.53 | 24.64 | $23 \cdot 48$ | $356 \cdot 9$ | i |
| 955 | n-Butyl | 93/21 | 1.0349 | 1.0172 | 1.0006 | 0.9789 | $28 \cdot 30$ | 26.57 | 23.94 | $22 \cdot 48$ | $396 \cdot 9$ | i |
| 956 | n-Pentyl | 89/12 | $1 \cdot 0318$ | 1.0160 | $1 \cdot 0008$ | 0.9814 | 28.07 | 26.98 | $25 \cdot 34$ | $23 \cdot 40$ | $435 \cdot 1$ | |
| 957 | n-Hexyl | 82.5/6.0 | $1 \cdot 0043$ | 0.9893 | $0 \cdot 9740$ | 0.9551 | 28.31 | 26.96 | $25 \cdot 23$ | 23.28 | $474 \cdot 5$ | |

${ }^{a}$ A. E. Arbuzov and V. S. Vinogradova (Izvest. Akad. Nauk S.S.S.R., Odtel. khim. Nauk, 1947, 455; 1951, 733) give methyl $d_{0}{ }^{20} 1.0520, n^{20} 1.4095, \gamma^{20} 26.52$; ethyl $d_{0}{ }^{20} 0.9687, n_{\mathrm{D}}{ }^{20} 1.4134, \gamma^{20} 24.46 ; n$ propyl $d_{0}{ }^{20} 0.9522, n_{\mathrm{D}}{ }^{20} 1.4265, \gamma^{20} 25.91$; n-butyl $d_{0}{ }^{20} 0.9133, n_{\mathrm{D}}{ }^{20} 1 \cdot 4327, \gamma^{20} 27.67$; n-hexyl $d_{0}{ }^{20} 0.9002, n_{\mathrm{D}}{ }^{20} 1.4105, \gamma^{20} 27.86$; n-octyl $d_{0}{ }^{20} 0.8936, n_{\mathrm{D}}{ }^{20} 1 \cdot 4489, \gamma^{20} 28 \cdot 67 . \quad b \mathrm{~V}$. S. Abramov and N. F. Tryapitsina (Zhur. obshchei Khim., 1949, 19, 929) give methoxy- $d_{4}{ }^{20} 1.096, n_{\mathrm{D}}{ }^{20} 1.4402$; ethoxy- $d_{4}{ }^{20} 1.034$, $n_{\mathrm{D}}{ }^{20} 1.4377$. © A. E. Arbuzov and V. S. Vinogradova (Doklady Akad. Nauk S.S.S.R., 1947, 55, 31) give methyl $d_{0}{ }^{20} 1 \cdot 2004, n_{0}{ }^{20}$ $1 \cdot 4036, \gamma^{20} 37 \cdot 21$; ethyl $d_{0}{ }^{20} 1 \cdot 0742, n_{\mathrm{D}}{ }^{20} 1 \cdot 4080, \gamma^{20} 30 \cdot 79$; n-propyl $d_{0}{ }^{20} 1 \cdot 0184, n_{\mathrm{D}}{ }^{20} 1 \cdot 4175, \gamma^{20} 21 \cdot 21$; n-butyl $d_{0}{ }^{20} 0.9888, n_{\mathrm{D}}{ }^{20}$ $1 \cdot 4320, \gamma^{20} 28.53 ;$ n-hexyl $d_{0}{ }^{20} 0.9846, n_{\mathrm{D}}{ }^{20} \mathrm{l} \cdot 4325, \gamma^{20} 28.38 ; \mathrm{n}$-heptyl $d_{0}{ }^{20} 0.9363, n_{\mathrm{D}}{ }^{20} \mathrm{l} \cdot 4382, \gamma^{20} 28.51$; n-octyl $d_{0}{ }^{20} 0.9286$ $n_{0}{ }^{20} 1.4420, \gamma^{20} 29.25$. ${ }^{\text {d }}$ Cf. Part VII (J. Chem. Soc., 1943, 16) butyl, pentyl; A. E. Arbuzov and V. S. Vinogradova (ref. a) give butyl $d_{0}{ }^{20} 0.9731, n_{0}{ }^{20} 1-4247$; hexyl $\dot{d}_{0}{ }^{20} 0.9396, n_{\mathrm{D}}{ }^{20} 1 \cdot 4340$. ${ }^{\bullet}$ A. E. Arbuzov and V. S. Vinogradova (Doklady Akad. Nauk S.S.S.R., 1946, 54, 787) give $d_{0}{ }^{20} 1.0272, n_{\mathrm{D}}{ }^{20} 1.4165$; A. H. Ford-Moore and J. H. Williams (J. Chem. Soc., 1947, 1465) give $d_{25}{ }^{21}$ $1.032, n_{\mathrm{D}}{ }^{20} 1.4172$. ${ }^{f}$ G. M. Kosolapoff (J. Amer. Chem. Soc., 1945, 67, 1180) gives $d_{4}{ }^{35} 0.9623, n_{\mathrm{D}}{ }^{25} 1 \cdot 4258$. g A. E. Arbuzov and G. Kamai (Zhur. obshchei Khim., 1947, 17, 2149) give $d_{0}{ }^{20} 1.0683, n_{1}{ }^{18} 1 \cdot 4082$. ${ }^{h}$ A. E. Arbuzov and V. S. Vinogradova (ref. a) give $d_{0}{ }^{20} 0.9776, n_{\mathrm{D}}{ }^{20} 1.4245 .{ }^{i} \mathrm{H}$. J. Lucas, F. W. Mitchell, and C. N. Scully (J. Amer. Chem. Soc., 1950, 72, 5491) give methoxy $d_{0}{ }^{25} 1 \cdot 1374, n_{\mathrm{D}}{ }^{25} 1 \cdot 4354$; ethoxy $d_{0}{ }^{25} 1 \cdot 0814, n_{\mathrm{D}}{ }^{25} 1 \cdot 4330$; propoxy $d_{0}{ }^{25} 1 \cdot 0540, n_{\mathrm{D}}{ }^{25} 1 \cdot 4357$; butoxy $d_{0}{ }^{25} 1 \cdot 0307, n{ }^{25} 1 \cdot 4380$.
and Perry ${ }^{13}$ and by McCombie, Saunders, and Stacey ${ }^{14}$ was used; details are given for triethyl phosphite. Freshly distilled phosphorus trichloride (44.5 g .) dissolved in dry ether (50 ml .) was slowly added to a well-stirred mixture of anhydrous ethanol (50 g .), redistilled diethylaniline (150 g .), and dry ether (300 ml .) maintained at $5-10^{\circ}$ in an ice-bath. After addition of the phosphorus trichloride, the ice-bath was removed and stirring continued (1 hr .). The reaction mixture was rapidly filtered through a sintered glass funnel, the precipitate washed with six portions of dry ether $(50 \mathrm{ml}$.$) , and the ether distilled from the filtrate. The$ residue was fractionated at low pressure in a current of dry nitrogen using a modified Claisen flask with side arm packed with Fenske helices, to yield triethyl phosphite (43 g .), b. p. $55-56^{\circ} / 15 \mathrm{~mm}$. Infrared spectroscopy and vapour phase chromatography indicated the presence of a small amount of diethyl ester; this was removed by keeping the product over sodium wire (24 hr .) and then redistilling over sodium in a current of dry nitrogen; pure triethyl phosphite (39 g .) b. p. $55 \cdot 5^{\circ} / 20 \mathrm{~mm}$. was obtained.

Tri-2-n-alkoxyethyl phosphites $\left(\mathrm{ROC}_{2} \mathrm{H}_{4} \mathrm{O}\right)_{3} \mathrm{P}$. These were prepared from 2-n-alkoxyethanols in similar manner to that employed for the trialkyl phosphites except that, after addition of the phosphorus trichloride, the reaction mixture was heated under reflux (3 hr .) and then cooled before filtration. Of the n -alkoxyethanols employed, the meth-oxy-, ethoxy-, butoxy-, and hexyloxy- were redistilled commercial samples; the remainder were prepared from ethanediol as described by Cooper and Partridge. ${ }^{15}$

Tri-n-alkyl orthophosphates $(\mathrm{RO})_{3} \mathrm{PO}$. The procedure used for preparation of the 2 -n-alkoxyethyl phosphites was adapted by substituting phosphoryl chloride for phosphorus trichloride and by employing light petroleum (b. p. 60$80^{\circ}$) as solvent; a reflux period of 6 hr . was used. A similar procedure was used for the two tri-alkoxyethyl phosphates investigated; the higher alcohols yielded purer products by this method than were produced by interaction of phosphoryl chloride with sodium alkoxides. ${ }^{16}$

Di-n-alkyl phosphonates $\mathrm{HPO}(\mathrm{OR})_{2}$; di-2-n-alkoxyethyl phosphonates $\mathrm{HPO}\left(\mathrm{OC}_{2} \mathrm{H}_{4} \mathrm{OR}\right)_{2}$. Phosphorus trichloride (0.33 moles) was caused to react with excess of the appropriate alcohol ($1.1-1.5$ moles); no tertiary base was added, and care was taken to remove hydrogen chloride from the reaction mixture as completely as possible: ${ }^{\mathbf{1 4}}$ details are given for diethyl phosphonate. Anhydrous ethanol (50 g .) and light petroleum (b. p. $40-60^{\circ}$) (150 ml .) were cooled (ice-bath) in a three-necked flask, and after evacuation (water-pump), phosphorus trichloride ($\mathbf{4 4} \cdot 5 \mathrm{~g}$.) was slowly added to the well-stirred mixture (30 min .). The ice-bath was removed, and after stirring (6 hr .) with the flask still connected to the water-pump, the pump was disconnected, the stirrer replaced by a gas inlet tube, and dry nitrogen was bubbled through the liquid to complete the removal of hydrogen chloride. The residual solvent was evaporated on a water-bath and the residue distilled under
${ }^{13}$ A. H. Ford-Moore and B. J. Perry, Org. Synth., vol. 31, Wiley, New York, 1951, p. 111.
${ }_{14}$ H. McCombie, B. C. Saunders, and G. J. Stacey, J. Chem. Soc., 1945, 381.
${ }^{15}$ F. C. Cooper and M. W. Partridge, J. Chem. Soc., 1950, 462.
${ }_{16}$ (a) Part VII, D. M. Cowan and A. I. Vogel, J. Chem. Soc., 1943, 16; (b) A. E. Arbuzov and V. S. Vinogradova, Izvest. Akad. Nauk S.S.S.R., Odtel. khim. Nauk, 1947, 459.
${ }^{17}$ G. M. Kosolapoff, J. Amer. Chem. Soc., 1945, 6\%, 1180 ; B. C. Saunders, G. J. Stacey, F. Wild, and I. G. E. Wilding, J. Chem. Soc., 1948, 699.
reduced pressure to give diethyl phosphonate (38 g .), b. p. $70-73^{\circ} / 10 \mathrm{~mm}$.; if hydrogen chloride is not completely removed, pronounced decomposition occurs during distillation. The product was redistilled using a modified Claisen flask with side-arm packed with glass helices to give pure diethyl phosphonate (30 g .), b. p. $\mathbf{7 2 \cdot 5} / 10 \mathrm{~mm}$. With the higher alcohols (n-butanol upwards) and with the 2-alkoxyethanols, no solvent was employed.

Di-n-alkyl ethylphosphonates $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{PO}(\mathrm{OR})_{2}$; di-n-propyl n-alkylphosphonates $\mathrm{RPO}\left(\mathrm{OC}_{3} \mathrm{H}_{7}\right)_{2}$. These compounds were prepared by treating a benzene solution of the appropriate di-alkyl phosphonate with sodium, and then causing the resulting sodio-compound to react with an alkyl halide. ${ }^{17}$ For dimethyl and diethyl ethylphosphonates, dioxan was used as solvent, since the corresponding sodio-compounds are insoluble in benzene; furthermore, the sodium halide produced was removed by filtration, whereas with the higher members the sodium halide was removed by washing the benzene solution with water. The dimethyl and diethyl phosphonates employed were redistilled commercial samples (Albright and Wilson); all others were prepared as described above. The alkylphosphonates prepared in this manner were found to be purer than the products obtained by treating trialkyl phosphites with alkyl halides. ${ }^{18}$

2-Alkoxy-4-methyl-1,3,2-dioxaphospholans ($\mathrm{I} ; \mathrm{R}^{\prime}=\mathrm{Me}$). The procedure described by Lucas and his co-workers ${ }^{10}$ was adapted by treating propane-1,2-diol with phosphorus trichloride in chloroform solution; the 2 -chloro- 4 -methyl-1,3,2-dioxaphospholan, distilled in a current of nitrogen, had b. p. $59-60^{\circ} / 25 \mathrm{~mm}$. An ethereal solution of the chloro-compound was treated with the appropriate alcohol in presence of diethylaniline and in an atmosphere of dry nitrogen; the product was distilled under reduced pressure in a current of nitrogen.

Tables 4 and 5 summarise the physical properties of all the pure compounds investigated; the numbering of compounds in Clarendon type follows from Part XLI. ${ }^{19}$ Table 4 contains the b. p. (at 760 mm . unless otherwise stated), rounded values of the density and surface tension at various temperatures, and the mean parachor, whilst Table 5 gives the refractive indices, molar refractivities, and the molar refraction coefficients. Compounds not previously reported in the literature were analysed for carbon, hydrogen and phosphorus, and in all cases gave satisfactory results.

Infraved Spectra.-The infrared absorption spectra (capillary film) were measured using a Perkin-Elmer Infracord spectrophotometer; typical spectra are incorporated in ref. 20. Where overlap occurs, our results agree well with previously published spectra, and the absorption frequencies observed for $\mathrm{P}=\mathrm{O}, \mathrm{P}-\mathrm{O}-\mathrm{C}$ (alkyl), $\mathrm{P}-\mathrm{H}$, and $\mathrm{P}-\mathrm{C}$ all lie within the generally accepted limits. ${ }^{21}$

The authors thank Imperial Chemical Industries Ltd. for a grant.

Woolwich Polytechnic,
London S.E. 18.
[5/736 Received, July 13th, 1965]
18 A. Michaelis and R. Kaehne, Ber., 1898, 31, 1048; A. Arbusov, Chem. Zentr., 1906, II, 1639; A. H. Ford-Moore and J. H. Williams, J. Chem. Soc., 1947, 1645; G. M. Kosolapoff, Org. Reactions, 1951, 6, 276.
${ }_{19}$ Part XLI, G. B. Arrowsmith, G. H. Jeffery, and A. I. Vogel, J. Chem. Soc., 1965, 2072.
${ }_{20}$ A. A. Foxton, Ph.D. Thesis, University of London, 1962.
${ }^{21}$ L. J. Bellamy, "The Infrared Spectra of Complex Molecules," 2nd edn., Methuen and Co., London, 1962, p. 311.

[^0]: ${ }^{1}$ Part XLVIII, preceding Paper.
 ${ }^{2}$ Part XXIII, A. I. Vogel, J. Chem. Soc., 1948, 1842.

[^1]: 4 F. Fehér and A. Blümcke, Chem. Ber., 1957, 90, 1934.
 5^{5} R. G. Gillis, J. E. Horwood, and G. L. White, J. Amer. Chem. Soc., 1958, 72, 2999; R. G. Gillis, Rev. Pure Appl. Chem. (Australia), 1960, 10, 21.
 ${ }^{6}$ W. H. Keeber and K. W. Post, J. Org. Chem., 1956, 21, 509.
 7 R. Sayre, J. Amer. Chem. Soc., 1958, 80, 5438.

[^2]: ${ }^{8}$ K. G. Denbigh, Trans. Faraday Soc., 1940, 36, 936.
 ${ }^{9}$ H. Tolkmith, Ann. Neve York Acad. Sci., 1959, 79, 187.
 ${ }^{10}$ H. J. Lucas, F. W. Mitchell, and C. N. Scully, J. Amer. Chem. Soc., 1950, 72, 5491.
 ${ }_{11}$ A. E. Arbuzov, V. M. Zoroastrova, and N. I. Rizpolozhensky, Izvest. Akad. Nauk, S.S.S.R., Odtel. khim. Nauk, 1948, 208.
 ${ }^{12}$ Part XXVIII, C. T. Kyte, G. H. Jeffery, and A. I. Vogel, J. Chem. Soc., 1960, 4454.

