Synthesis of gingerol and diarylheptanoids

Gowravaram Sabitha ${ }^{\text {a,* }}$, Chitti Srinivas ${ }^{\text {a }}$, Teega Rammohan Reddy ${ }^{\text {a }}$, Kurra Yadagiri ${ }^{\text {a }}$, Jhillu Singh Yadav ${ }^{\text {a,b }}$
${ }^{\text {a }}$ Organic Chemistry Division-I, Indian Institute of Chemical Technology, Hyderabad 500007, India
${ }^{\mathrm{b}}$ Bee Research Chair, College of Food and Agriculture Science, King Saud University, Riyadh, Saudi Arabia

ARTICLE INFO

Article history:

Received 7 November 2011
Accepted 21 November 2011
Available online 7 January 2012

Abstract

The synthesis of gingerol $\mathbf{1}$ and related compounds 2-5 along with diarylheptanoids 6-8 has been accomplished using a Keck allylation, Crimmins' aldol reaction, aldehyde coupling with acetylene, and chelation controlled reductions as the key reactions. The absolute configuration of these molecules was confirmed by preparing their acetonide derivatives and by comparison of the NMR data with natural compounds. © 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Gingerol 1 (Fig. 1) was initially isolated by Nakatani et al. in 1992^{1} from rhizomes of Zingiber officinale. In 2007 the same compound was isolated by Liang et al. ${ }^{2}$ from 'Gui-Zhi' decoction. The 'Gui-Zhi' decoction consists of five traditional Chinese medicines, which have a long history of usage in traditional medicine in China to treat colds, coughs, fevers, and asthma for thousands of years. ${ }^{3}$ Upon the investigation of Gui-Zhi decoction, several compounds were isolated ${ }^{2}$ by chromatography methods. Their structures were identified as 1, 2, and $\mathbf{3}$ (Fig. 1) based on their chemical and spectroscopic analyses. Compounds 2 and 3 were synthesized from gingerol 1 and their structures were established based on their acetonide derivatives. Other related compounds 4 and 5^{1} (Fig. 1) were also isolated along with gingerol.

Compounds similar to gingerol having an aliphatic C7 chain with aromatic substituents, often phenols, at the termini are called diarylheptanoids. Such compounds are common in the ginger family, Zingiberaceae, which has a history of medicinal use in the systems of traditional medicine as anti-inflammatory, antitumor, and chemopreventive, ${ }^{4}$ bactereostatic, ${ }^{5}$ and nematocidal ${ }^{6}$ agents. Recently, a new diarylheptanoid 6^{7} (Fig. 1) has been isolated from the rhizomes of Zingiber mekongense. The structure elucidation was mainly based on spectroscopic analysis and the stereochemistry was proved through chemical conversion. Compound $\mathbf{6}$ exhibited anti HIV-1 activity. Two other diarylheptanoids $\mathbf{7}$ and $\mathbf{8}$ were isolated from Z. officinale. ${ }^{8}$ Based on their important biological activities and our continuing interest in the total synthesis of naturally isolated compounds, we herein report the synthesis of gingerol 1 and its related compounds 2-5 along with three other diarylheptanoids 6-8.

[^0]
2. Results and discussion

The synthesis of gingerol $\mathbf{1}$ and compounds 2-5 started from hexanal 9. At first, hexanal 9 was treated with an allyltitanium complex $(R, R)-\mathrm{Ti}^{9}$ to afford the corresponding allylic alcohol 10 with good enantiomeric excess (ee $>95 \%$) (Scheme 1). After protection of $\mathbf{1 0}$ as a TBS ether, compound $\mathbf{1 1}$ was isolated in a 95% yield. The oxidative cleavage of the terminal olefin in $\mathbf{1 1}$ produced the corresponding aldehyde $\mathbf{1 2}$ in an 86% yield over two steps.

The desired alkynes $\mathbf{1 5 a}$ and $\mathbf{1 5 b}{ }^{10}$ were prepared from 13a and $\mathbf{1 3 b}$ via dibromoolefins 14a and $\mathbf{1 4 b}$ as shown in Scheme 2. The dibromoolefins $\mathbf{1 4 a}$ and $\mathbf{1 4 b}$ were prepared from the corresponding aldehydes 13a and 13b following the Corey-Fuchs protocol. ${ }^{11}$

Aldehyde 12 and alkyne 15b were used for the synthesis of gingerol 1 and its related compounds 2-5.

Alkenylation of compound 12 with substituted phenyl acetylene 15b and n-BuLi in THF at $-78^{\circ} \mathrm{C}$ to room temperature gave a diastereomeric mixture, which without separation was converted into a keto compound using IBX in DMSO to give keto compound 16 in a 94% yield. Under hydrogenation of compound 16 using $\mathrm{Pd}(\mathrm{OH})_{2}$ in benzene, the triple bond was reduced in addition to deprotection of the benzyl group in one-pot to give compound 17. Finally, the deprotection of TBS group using TBAF in THF afforded gingerol 1 in an 87% yield. The physical and spectral data of $\mathbf{1}$ were in full agreement with the natural compound.

Next, the two natural syn and anti 1,3-diols 2 and 3 were prepared from gingerol 1 by stereoselective reduction of keto group. Thus, treatment of gingerol 1 with diethylmethoxyborane ${ }^{12}$ afforded syn diol $\mathbf{2}$ in an 80% yield (95:5 dr). To confirm the stereoselectivity, 2 was converted into an acetonide 18 by treating with 2,2-DMP in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in the presence of a catalytic amount of p TSA. Similarly gingerol 1 was converted into anti diol $\mathbf{3}$ by the treatment with tetramethylammonium triacetoxyborohydride ${ }^{13}$ in $\mathrm{CH}_{3} \mathrm{CN}$: AcOH (1:1) at $-40^{\circ} \mathrm{C}$ in an 85% yield ($96: 4 \mathrm{dr}$). To confirm its stereoselectivity it was also converted into acetonide 19. The

6-gingerol 1

3

5

2

4

Figure 1. Gingerol and diaryl heptanoids.

Scheme 1. Reagents and conditions: (a) (R) BINAL, allyltributyltin, $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}$, dry $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$ to $-20^{\circ} \mathrm{C}, 72 \mathrm{~h}, 80 \%$, (95 ee\%); (b) TBSCl , imidazole, dry $\mathrm{CH}_{2} \mathrm{Cl} 2,0{ }^{\circ} \mathrm{C}-\mathrm{rt}, 2 \mathrm{~h}$, 95%; (c) (i) OsO_{4}, NMO acetone: $\mathrm{H}_{2} \mathrm{O}$ (4:1) overnight. (ii) $\mathrm{NaIO}_{4} \mathrm{THF}: \mathrm{H}_{2} \mathrm{O}(4: 1) 0^{\circ} \mathrm{C}, 1 \mathrm{~h}, 86 \%$ for two steps.
preparation of 2 and 3 and study of their derivatives (18 and 19) spectral data ${ }^{1}$ allow us to reconfirm their structures. Therefore the configuration of syn and anti 1,3 diols 2 and $\mathbf{3}$ confirmed by preparing the respective acetonides 18 and 19 and their ${ }^{13} \mathrm{C}$ NMR studies by using Rychnovsky's method. ${ }^{14}$

Two diacetate derivatives 4 and 5 isolated from the same plant were prepared from 18 as shown in Scheme 4. Accordingly, phenolic OH group was protected as benzyl ether $\mathbf{2 0}$ followed by the hydrolysis of acetonide group provided diol compound 21. The diol was converted into diacetate 22 using acetic anhydride, triethylamine in the presence of DMAP in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Removal of benzyl group furnished the natural product 4 in a 94% yield. Similarly natural diacetate derivative 5 was obtained from 18. Thus treatment of 18 with MeI in the presence of NaH afforded compound 23, which on deprotection of acetonide group produced diol 24 . The diol 24 was converted into diacetate 5 using acetic anhydride, triethylamine in the presence of DMAP in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in a 93% yield. Spectral data of 4 and 5 matched with the natural products. ${ }^{1}$

The aldehydes 30a and $\mathbf{3 0 b}$ required for the synthesis of diarylheptanoids 6-8 were obtained from 13a and 13b. The aldehydes 13a and 13b were subjected to 2C-Wittig homologation with (carboethoxymethylene)triphenylphosphorane in benzene at reflux to afford the α, β-unsaturated esters 25a and 25b. Esters 25a and 25b were reduced by using LiAlH_{4} in THF to give the saturated alcohols $\mathbf{2 6 a}$ and 26b. Oxidation of compounds 26a and 26b using IBX in $\mathrm{DMSO} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave aldehydes 27a and 27b.

Aldehyde 27a was subjected to a Crimmins aldol ${ }^{15}$ reaction with chiral (S)-1-(4-benzyl-2-thioxothiazolidin-3-yl)ethanone ${ }^{16}$ in the presence of TiCl_{4} and N, N-diisopropylethylamine (DIPEA) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give a β-hydroxy amide 28a (85:15 dr). The hydroxy group in compound 28a was protected as its corresponding TBS ether 29a in a 93% yield by using t-butyldimethylsilyltrifluoromethane sulfonate and 2,6-lutidine in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Amide 29a was treated with DIBAL-H to give the aldehyde 30a. Similarly, the aldehyde 30b was prepared from aldehyde 13b (Scheme 5), during

13a $\mathrm{R}=\mathrm{Me}, \mathrm{R}^{1}=\mathrm{OMe}$
13b $R=B n, R^{1}=H$

14a $R=M e, R^{1}=O M e, 91 \%$
14b $R=B n, R^{1}=H, 90 \%$

15a $R=M e, R^{1}=O M e, 92 \%$
15b $R=B n, R^{1}=H, 91 \%$

Scheme 2. Reagents and conditions: (a) $\mathrm{PPh}_{3}, \mathrm{CBr}_{4}$, dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.5 \mathrm{~h}, 0^{\circ} \mathrm{C}-\mathrm{rt}$; (b) EtMgBr, dry THF, $0^{\circ} \mathrm{C}-\mathrm{rt}, 1 \mathrm{~h}$.

Scheme 3. Reagents and conditions: (a) (i) n-BuLi, dry THF,-78 ${ }^{\circ} \mathrm{C}$-rt, $5 \mathrm{~h}, 86 \%$, (ii) IBX, DMSO, dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$-rt, $2 \mathrm{~h}, 94 \%$; (b) Pd(OH) 2 , H_{2}, benzene, $5 \mathrm{~h}, 93 \%$; (c) TBAF, dry THF, $0^{\circ} \mathrm{C}-\mathrm{rt}, 6 \mathrm{~h}, 87 \%$; (d) $\mathrm{Et}_{2} \mathrm{BOMe}^{2} \mathrm{NaBH}_{4}$, anhydrous THF-MeOH (1:4), $-7 \mathrm{C}^{\circ} \mathrm{C}, 8 \mathrm{~h}, 80 \%$; (e) $\mathrm{Me}_{4} \mathrm{NBH}(\mathrm{OAc})_{3}, \mathrm{CH} 3 \mathrm{CN} / \mathrm{AcOH}(1: 1),-40^{\circ} \mathrm{C}, 4 \mathrm{~h}, 85 \%$; (f) $2,2 \mathrm{DMP}, \mathrm{pTSA}, \mathrm{Dry}$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}-\mathrm{rt}, 2 \mathrm{~h}$.

Scheme 4. Reagents and conditions: (a) $\mathrm{NaH}, \mathrm{BnBr}, \mathrm{THF}, 0^{\circ} \mathrm{C}-\mathrm{rt}, 4 \mathrm{~h}, 95 \%$; (b) $\mathrm{NaH}, \mathrm{MeI}, \mathrm{THF}, 0^{\circ} \mathrm{C}-\mathrm{rt}, 4 \mathrm{~h}, 94 \%$; (c) $p \mathrm{TSA}, \mathrm{MeOH}, 0^{\circ} \mathrm{C}-\mathrm{rt}, 1 \mathrm{~h}$; (d) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{TEA}, \mathrm{DMAP}, \mathrm{dry} \mathrm{CH} \mathrm{Cl}_{2}$, $0^{\circ} \mathrm{C}$-rt, 0.5 h ; (e) $\mathrm{Pd}(\mathrm{OH})_{2}, \mathrm{H}_{2}$, Benzene, $4 \mathrm{~h}, 93 \%$.
which the alcohol within compound $\mathbf{2 8 b}$ (85:15 dr) was protected as corresponding MOM ether 29b.

Similarly, aldehydes 30a and 30b and alkynes 15a and 15b were coupled (as shown in Scheme 3) for the synthesis of diarylheptanoids 6-8 (Scheme 6). Alkenylation of compounds 30a and 30b with substituted phenyl acetylenes 15a and 15b and n-BuLi in THF at $-78^{\circ} \mathrm{C}$ to room temperature gave a diastereomeric mixture, which without separation was converted into a keto compound using IBX in DMSO to give compounds 31a and 31b. Under the hydrogenation of compound 31a and 31b using $\mathrm{Pd}(\mathrm{OH})_{2}$ in benzene, the triple bond was reduced in addition to the deprotection of the benzyl group occurring in one-pot. The deprotection of TBS group in 32a using TBAF in THF afforded compound 33a in an 86% yield. The deprotection of the MOM group in 32b using p TSA in MeOH afforded 33b in an 80% yield.

Next, the natural anti-1,3-diol 6 was prepared from 33a via stereoselective reduction of the keto group. Thus, treatment of 33a with tetramethylammonium triacetoxyborohydride ${ }^{13}$ in $\mathrm{CH}_{3} \mathrm{CN}$:A$\mathrm{cOH}(1: 1)$ at $-40^{\circ} \mathrm{C}$ afforded anti-1,3-diol 34 in an 85% yield (96:4 dr). Diol $\mathbf{3 4}$ was converted into diacetate $\mathbf{6}$ using acetic anhydride, and triethylamine in the presence of DMAP in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to furnish the natural product $\mathbf{6}$ in a 93% yield. Similarly, the two natural syn- and anti-1,3-diols 7 and $\mathbf{8}$ were prepared from 33b by stereoselective reduction of the keto group. Thus, treatment of 33b with diethylmethoxyborane ${ }^{12}$ in THF: MeOH (1:4) at $-78{ }^{\circ} \mathrm{C}$ gave 7 in a
78% yield (95:5 dr). Similarly, treatment of 33b with tetramethylammonium triacetoxyborohydride ${ }^{13}$ in $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{AcOH}$ (1:1) at $-40^{\circ} \mathrm{C}$ gave anti-diol $\mathbf{8}$ in an 84% yield ($96: 4 \mathrm{dr}$).

3. Conclusion

In conclusion, gingerol and its derivatives and three other diarylheptanoids were synthesized using a Keck allylation, Crimmins aldol, aldehyde coupling with acetylene, and chelation controlled reductions as the key reactions.

4. Experimental

4.1. General

Reactions were conducted under N_{2} in anhydrous solvents such as $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, THF, benzene, toluene, DMSO, and MeOH. All reactions were monitored by TLC (silica-coated plates and visualized under UV light). Light petroleum ether (bp 60-80 ${ }^{\circ} \mathrm{C}$) was used. Yields refer to chromatographically and spectroscopically (${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR) homogeneous material. Air-sensitive reagents were transferred by syringe or double-ended needle. Evaporation of solvents was performed at reduced pressure on a Buchi rotary evaporator. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of samples in CDCl_{3} were recorded on Varian

$$
\begin{aligned}
& \text { 27a } R=M e, R^{1}=O M e, 87 \% \\
& 27 b R=B n, R^{1}=H, 86 \%
\end{aligned}
$$

$$
\begin{aligned}
& e\left(\begin{array}{l}
28 a R=M e, R^{1}=O M e, P=H, 79 \% \\
29 a R=M e, R^{1}=O M e, P=T B S
\end{array}\right. \\
& f\left(\begin{array}{l}
28 b R=B n, R^{1}=H, P=H, 80 \% \\
29 b R=B n, R^{1}=H, P=M O M
\end{array}\right.
\end{aligned}
$$

$$
30 \mathrm{a} R=\mathrm{Me}, \mathrm{R}^{1}=\mathrm{OMe}, \mathrm{P}=\mathrm{TBS}, 85 \%
$$

$$
\text { 30b } \mathrm{R}=\mathrm{Bn}, \mathrm{R}^{1}=\mathrm{H}, \mathrm{P}=\mathrm{MOM}, 86 \%
$$

Scheme 5. Reagents and conditions: (a) $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Et}$, benzene, reflux, 4 h ; (b) LAH, dry THF, reflux, 4 h ; (c) IBX, DMSO, dry $\mathrm{CH}_{2} \mathrm{Cl} 2,0{ }^{\circ} \mathrm{C}-\mathrm{rt}, 2 \mathrm{~h}$; (d) (S)-1-(4-benzyl-2-thioxothiazolidin-3-yl)ethanone, $\mathrm{TiCl}_{4}, i-\mathrm{Pr}_{2} \mathrm{NEt}$, dry $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (e) TBSOTf, 2,6-lutidine, dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to rt, $2 \mathrm{~h}, 93 \%$; (f) MOMCl, $i-\mathrm{Pr}_{2} \mathrm{NEt}^{2}, \mathrm{dry} \mathrm{CH} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to $\mathrm{rt}, 4 \mathrm{~h}$, 80%; (g) DIBAL-H, dry $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}, 0.5 \mathrm{~h}$.

Scheme 6. Reagents and conditions: (a) (i) n-BuLi, dry THF, $-78^{\circ} \mathrm{C}-\mathrm{rt}, 5 \mathrm{~h}$; (ii) IBX, DMSO, dry DCM, $0^{\circ} \mathrm{C}-\mathrm{rt}, 2 \mathrm{~h}$; (b) Pd(OH) ${ }_{2}, \mathrm{H}_{2}$, Benzene, 5 h ; (c) TBAF, dry THF, $0^{\circ} \mathrm{C}-\mathrm{rt}, 6 \mathrm{~h}$;
 $\mathrm{MeOH}(1: 4),-78^{\circ} \mathrm{C}, 8 \mathrm{~h}, 78 \%$.

FT-200 MHz (Gemini) and Bruker UXNMR FT-300 MHz (Avance) spectrometers. Chemical shifts (δ) are reported relative to TMS ($\delta=0.0$) as an internal standard. Mass spectra were recorded under E1 conditions at 70 eV on an LC-MSD (Agilent technologies) spectrometers. All high resolution spectra were recorded on QSTAR XL hybrid ms/ms system (Applied Bio systems/MDS sciex, foster city, USA), equipped with an ESI source (IICT, Hyderabad). Column chromatography was performed on silica gel (60-120 mesh) supplied
by Acme Chemical Co., India. TLC was performed on Merck 60 F-254 silica gel plates. Optical rotations were measured with JASCO DIP-370 Polarimeter at $25^{\circ} \mathrm{C}$.

4.1.1. (S)-Non-1-en-4-ol 10

A mixture of (R, R)-BINOL $(0.457 \mathrm{~g}, 1.59 \mathrm{mmol})$ and $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}$ $(2.83 \mathrm{~mL}, 9.59 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ in the presence of $4 \AA$ molecular sieves was stirred at reflux. After 1 h , the reaction
mixture was cooled to room temperature and then aldehyde 9 $(0.80 \mathrm{~g}, 7.99 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added and stirred for a further 10 min . The reaction mixture was then cooled to $-78^{\circ} \mathrm{C}$ and allyl tri-n-butyltin ($0.25 \mathrm{~mL}, 7.99 \mathrm{mmol}$) was added. After 10 min , this mixture was placed in a refrigerator at $-20^{\circ} \mathrm{C}$ for 70 h . After completion of the reaction, it was quenched by adding a saturated solution of NaHCO_{3} and the product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was washed with water, brine, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$; the solvent was removed in vacuo. The residue was purified by silica gel column chromatography (EtOAc/pet-ether, 1:9) to afford the pure compound 10 (0.90 g , 80%) as a viscous liquid. $[\alpha]_{\mathrm{D}}^{25}=-10.7$ ($c 2, \mathrm{CHCl}_{3}$); IR (neat): $v_{\text {max }}$ 3388, 2957, 2929, 2860, 1640, 1461, 1028, 995, $914 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 5.84-5.75(\mathrm{~m}, 1 \mathrm{H}), 5.11(\mathrm{dd}, J=14.7$, $2.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.64-3.56(\mathrm{~m}, 1 \mathrm{H}), 2.31-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.07(\mathrm{~m}$, $1 \mathrm{H}), 1.47-1.24(\mathrm{~m}, 8 \mathrm{H}), 0.90(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $75 \mathrm{MHz}): \delta 134.8,117.9,70.7,41.9,36.7,31.8,25.3,22.6,14.0$.

4.1.2. (S)-tert-Butyldimethyl(non-1-en-4-yloxy)silane 11

To a stirred solution of alcohol $10(0.8 \mathrm{~g}, 5.62 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added imidazole ($1.148 \mathrm{~g}, 16.87 \mathrm{mmol}$), fallowed by TBDMS-Cl $(0.93 \mathrm{~g}, 6.18 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at the same temperature for 2 h . The reaction mixture was quenched with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was washed with water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, solvent was removed in vaccuo. The residue was purified by silica gel column chromatography (EtOAc/ pet-ether, 1:19) to afford pure compound $\mathbf{1 1}(1.37 \mathrm{~g}, 95 \%$ yield) as a colorless liquid.
$[\alpha]_{D}^{25}=-15.7$ ($c 2$, CHCl $_{3}$); IR (neat): $v_{\max } 3451,2931,2859,1641$, $1465,1252,1056,834 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta 5.83-5.73$ (m, 1H), 5.01 (dd, J = 15.7, $4.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.70-3.64(\mathrm{~m}, 1 \mathrm{H}), 2.23-2.15$ (m, 2H), 1.46-1.22 (m, 8H), 0.88-0.92 (m, 12H) $0.05(\mathrm{~s}, 3 \mathrm{H}) 0.04$ (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 50 \mathrm{MHz}$): $\delta 135.5,116.5,72.1,41.9,36.8$, $32.0,25.9,25.0,22.6,18.2,14.0,-4.4,-4.5$; ESI: $m / z=279[\mathrm{M}+\mathrm{Na}]^{+}$.

4.1.3. (S)-3-(tert-Butyldimethylsilyloxy)octanal 12

To a solution of $\mathbf{1 1}(1.3 \mathrm{~g}, 5.07 \mathrm{mmol})$ in acetone:water (10 mL , $4: 1$) was added $\mathrm{OsO}_{4}(0.0196 \mathrm{M})$ in toluene ($2.58 \mathrm{~mL}, 0.05 \mathrm{mmol}$), and NMO ($0.77 \mathrm{~g}, 6.59 \mathrm{mmol}$) was added and the mixture was stirred at rt overnight. The reaction mixture was quenched with a saturated solution of $\mathrm{Na}_{2} \mathrm{SO}_{3}$, then extracted with ethylacetate. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to obtain a residue, which was used directly for the next reaction.

To a solution of the above obtained diol THF: $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL}, 4: 1)$ was added $\mathrm{NaIO}_{4}(1.54 \mathrm{~g}, 7.22 \mathrm{mmol})$ and stirred for 1 h . After completion of the reaction, the mixture was filtered through a Celite pad and washed with ethyl acetate. The filtrate was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (EtOAc/
 a brown liquid. The unstable aldehyde was used immediately for the next reaction.

4.1.4. (S)-1-(4-(Benzyloxy)-3-methoxyphenyl)-5-(tert-butyldi methylsilyloxy)dec-1-yn-3-one 16

To a stirred solution of alkyne $\mathbf{1 5 b}(1.0 \mathrm{~g}, 4.19 \mathrm{mmol})$ in dry THF (10 mL) was slowly added n-BuLi (2.5 M solution) in hexanes ($3.93 \mathrm{~mL}, 6.29 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$ under N_{2}. The reaction mixture was stirred for 30 min at $-78^{\circ} \mathrm{C}$, and a solution of compound $\mathbf{1 2}$ $(1.08 \mathrm{~g}, 4.19 \mathrm{mmol})$ in dry THF (15 mL) was added dropwise with stirring. The mixture was kept at $-78^{\circ} \mathrm{C}$ for 2 h and then allowed to warm to rt for 2 h . The reaction was quenched with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EtOAc, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The crude prod-
uct was purified by silica gel column chromatography (EtOAc/petether, 1:9) to afford the alcohol as a diastereomeric mixture $(1.79 \mathrm{~g}, 86 \%)$. The obtained alcohol ($1.6 \mathrm{~g}, 3.22 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 mL) was added dropwise at $0^{\circ} \mathrm{C}$ to an ice-cooled solution of 2iodoxybenzoic acid ($1.17 \mathrm{~g}, 4.187 \mathrm{mmol}$) in DMSO (1.372 mL , 19.37 mmol). The mixture was stirred at room temperature for 2 h and then filtered through a Celite pad and washed with ether. The combined organic filtrates were washed with water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The crude product was purified by column chromatography (EtOAc/ pet-ether, $1: 19$) to afford keto $\mathbf{1 6}(1.49 \mathrm{~g}, 94 \%)$ as a viscous liquid. $[\alpha]_{D}^{25}=-12.7$ (c 1, CHCl_{3}); IR (neat): $v_{\max } 3447,2935,2859,2187$, 1664, 1510, 1247, 1130, $1078 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta$ $7.41-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.10(\mathrm{dd}, J=8.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.82(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~s}, 2 \mathrm{H}), 4.32-4.24(\mathrm{~m}, 1 \mathrm{H}), 3.89$ (s, 3H) , 2.80 (dd, $J=15.1,6.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.68 (dd, $J=15.1,5.3 \mathrm{~Hz}$, 1H), 1.56-1.46 (m, 2H), 1.38-1.24 (m, 6H), 0.89 (t, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}$), $0.87(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$: $\delta 186.4,150.7,149.3,136.2,128.6,128.1,127.2,115.8,113.2$, $112.1,91.9,88.2,70.8,69.2,56.0,53.2,37.6,31.8,25.8,24.6$, 22.6, 18.0, 14.0, $-4.5,-4.7$; ESI: $m / z=495[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{O}_{4} \mathrm{Si}$: 517.2750, found: 517.2740.

4.1.5. (S)-5-(tert-Butyldimethylsilyoxy)-1-(4-hydroxy-3-meth oxyphenyl)decan-3-one 17

To a stirred solution of compound $\mathbf{1 6}(1.4 \mathrm{~g}, 2.83 \mathrm{mmol})$ in benzene (20 mL) was added $\mathrm{Pd}(\mathrm{OH})_{2}$ and stirred under an H_{2} atmosphere for 5 h at room temperature. After completion of the reaction, the catalyst was removed by filtration, and the solvent was removed in vacuo. The residue was purified by silica gel column chromatography (EtOAc/pet-ether, 1:9) to afford the pure compound 17 ($1.075 \mathrm{~g}, 93 \%$) as a viscous liquid. $[\alpha]_{\mathrm{D}}^{25}=+13.5$ (c 2, CHCl_{3}); IR (neat): $v_{\text {max }} 3447,2931,2857,1711,1515,1261$, $834 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 6.76(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, 6.63 (d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 6.61 (dd, $J=8.1,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{~s}, 1 \mathrm{H})$, 4.17-4.06 (m, 1H), 3.87 (s, 3H), 2.85-2.65 (m, 4H), 2.53 (dd, $J=15.1,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.36$ (dd, $J=15.1,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.45-1.21$ (m, 8 H), $0.90(\mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}),-0.01(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 209.3,146.3,143.8,133.0,120.7$, $114.3,110.9,69.2,55.8,50.2,46.6,37.7,31.8,29.1,25.8,24.6,22.6$, 18.0, 14.0, -4.6, -4.7; ESI: $m / z=409[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$ m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{40} \mathrm{O}_{4} \mathrm{NaSi}$: 431.2593, found: 431.2601.

4.1.6. (S)-5-Hydroxy-1-(4-hydroxy-3-methoyphenyl)decane-3one 1

To a solution of $17(1.04 \mathrm{~g}, 2.54 \mathrm{mmol})$ in THF (20 mL) was added TBAF ($3.82 \mathrm{ml}, 3.82 \mathrm{mmol}$, a 1 M solution in THF) at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 6 h and then diluted with water and extracted with EtOAc. The organic layer was washed with water, brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed in vacuo. The residue was purified by silica gel column chromatography (EtOAc/pet-ether, 2:8) to afford pure compound 1 ($0.651 \mathrm{~g}, 87 \%$) as a viscous liquid. $[\alpha]_{\mathrm{D}}^{25}=+22.7$ (c 2, CHCl_{3}); IR (neat): $v_{\text {max }} 3442,2929,2860,1705,1515,1269,1152$, $1033 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 6.77(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, 6.63 (d, $J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=8.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{~s}, 1 \mathrm{H})$, 4.01-3.90 (m, 1H), 3.87 (s. 3H), 2.81 (t, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}$), 2.69 (t, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.55-2.40(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.10(\mathrm{~m}, 8 \mathrm{H}), 0.89(\mathrm{t}$, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 211.4,146.5,144.1$, 132.7, 120.7, 114.4, 110.9, 67.6, 55.8, 49.3, 45.3, 36.4, 31.7, 29.2, 25.1, 22.5, 14.0; ESI: $m / z=317[\mathrm{M}+\mathrm{Na}]^{+}$. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} /$ z calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{Na}$: 317.1728 , found: 317.1738 .
4.1.7. (3R,5S)-1-(4-Hydroxy-3-methoxyphenyl)decane-3,5-diol 2

To a solution of hydroxyketone compound $\mathbf{1}(0.5 \mathrm{~g}, 1.27 \mathrm{mmol})$ in anhydrous THF:MeOH (15 mL ; $4: 1$) at $-78^{\circ} \mathrm{C}$ under N_{2} was
added diethylmethoxyborane ($1.52 \mathrm{~mL}, 1.52 \mathrm{mmol}, 1 \mathrm{M}$ in THF), and the resulting mixture was stirred for 30 min . Next, solid NaBH_{4} ($0.057 \mathrm{mg}, 1.52 \mathrm{mmol}$) was added in one portion. The mixture was stirred for 6 h at $-78{ }^{\circ} \mathrm{C}$, and a mixture of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(6 \mathrm{~mL})$, phosphate buffer ($\mathrm{pH} 7,12 \mathrm{~mL}$), and methanol (12 mL) was added. Almost all of the organic solvent was removed under reduced pressure, and the residual aqueous solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. To the residue was added glacial $\mathrm{AcOH}(1 \mathrm{~mL})$ in EtOAc $(15 \mathrm{~mL})$ and stirred for 2 h to completely decompose the boric acid ester of the diols. Then the reaction was quenched by saturated $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$. The organic layer was separated, and the aqueous layer was again extracted with EtOAc and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography (EtOAc/petether, 3:7) to afford the pure compound $2(0.402 \mathrm{~g}, 80 \%)$ as a viscous liquid. $[\alpha]_{\mathrm{D}}^{25}=+8.1$ ($c 2, \mathrm{CHCl}_{3}$); IR (neat): $v_{\max } 3447,2928$, 2853, 1608, 1517, 1457, 1273, 1157, $1037 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $300 \mathrm{MHz}): \delta 6.77(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.32$ (s, OH, 1H), 3.89 (s, 3H), 3.86-3.76 (m, 2H), 2.67 (ddd, J= 14.3, $9.8,6.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.60 (ddd, $J=13.6,10.5,5.3 \mathrm{~Hz}, 1 \mathrm{H}$), 1.75 (ddd, $J=14.3,9.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}$), 1.71 (dddd, $J=13.6,9.0,7.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}$), 1.57 (dt, $J=14.3,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.49-1.23(\mathrm{~m}, 9 \mathrm{H}), 0.90(\mathrm{t}$, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 146.4,143.6,133.8$, $120.8,114.2,111.0,73.2,72.3,55.8,42.8,40.0,38.2,31.7,31.3$, 25.0, 22.5, 14.0; ESI: $m / z=319[\mathrm{M}+\mathrm{Na}]^{+}$. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} /$ z calcd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{Na}$: 319.1885, found: 319.1892 .
4.1.8. (3S,5S)-1-(4-Hydroxy-3-methoxyphenyl)decane-3,5-diol 3

To a stirred solution of tetramethylammonium triacetoxyborohydride ($0.128 \mathrm{~g}, 0.484 \mathrm{mmol}$) in anhydrous acetonitrile (2.0 mL) was added acetic acid (2.0 mL) and the mixture was stirred at room temperature for 30 min . The mixture was cooled to $-40^{\circ} \mathrm{C}$, and a solution of compound $\mathbf{1}(0.12 \mathrm{~g}, 0.407 \mathrm{mmol})$ in 1.0 mL of acetonitrile was added. The mixture was stirred at the same temperature for 3 h . The reaction was quenched with 0.5 N aqueous sodium potassium tartrate and the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and washed with saturated aqueous NaHCO_{3} solution. The aqueous layer was back extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organic layers were washed with a saturated aqueous NaHCO_{3} solution. The aqueous layer was back extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure, after which the residue was purified by silica gel column chromatography (EtOAc/pet-ether, 7:3) to afford pure compound 3 ($0.102 \mathrm{~g}, 85 \%$) as a white sold. $[\alpha]_{D}^{25}=-1.0$ (c 3, CHCl_{3}); IR (neat): $v_{\text {max }} 3447$, 2928, 2853, 1608, 1517, 1457, 1273, 1157, $1037 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 6.76(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, 2 H), $5.33(\mathrm{~s}, \mathrm{OH}, 1 \mathrm{H}), 3.97-3.85(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 2.69$ (ddd, $J=13.8,9.9,5.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.58 (ddd, $J=13.8,8.9,6.9 \mathrm{~Hz}, 1 \mathrm{H}$), 1.81 (ddd, $J=13.8,8.9,5.9 \mathrm{~Hz}, 1 \mathrm{H}$), 1.70 (dddd, $J=13.8,10.8,6.9$, $3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.61-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.37(\mathrm{~m}, 8 \mathrm{H}), 0.90(\mathrm{t}$, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): 146.5,143.7,134.0$, 120.9, 114.2, 111.0, 69.4, 68.8, 55.8, 42.4, 39.3, 37.4, 31.8, 25.4, 22.7, 13.9; ESI: $m / z=319[\mathrm{M}+\mathrm{Na}]^{+}$. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+} m / z$ calcd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{Na}$: 319.1885, found: 319.1892.

4.1.9. 4-(2-((4R,6S)-2,2-Dimethyl-6-pentyl-1,3-dioxan-4-yl) ethyl)-2-methoxyphenol 18

To a solution of triol $2(0.32 \mathrm{~g}, 1.08 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(10 \mathrm{~mL}), 2,2-\mathrm{DMP}(1.32 \mathrm{~mL}, 2.16 \mathrm{mmol})$ and a catalytic amount of p TSA were added. The mixture was stirred at ambient temperature for 2 h . After completion of the reaction, solid NaHCO_{3} was added to neutralize the p TSA. The solvent was removed in vacuo and the residue was purified by silica gel column chromatography (EtOAc/ pet-ether, 1:9) to afford the pure mono-acetonide $\mathbf{1 8}(0.345 \mathrm{~g}, 95 \%)$
as a light yellow liquid. $[\alpha]_{\mathrm{D}}^{25}=+17.9$ ($c 1, \mathrm{CHCl}_{3}$); IR (neat): $v_{\max }$ 3434, 2934, 2861, 1514, 1458, 1376, 1267, 1198, $1035 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 6.76(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.62$ (d, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{dd}, J=5.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~s}, 1 \mathrm{H}), 3.87(\mathrm{~s}$, 3H), 3.79-3.65 (m, 2H), 2.64 (ddd, $J=13.4,8.3,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.56$ (td, $J=13.6,7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 1.75 (ddd, $J=13.6,8.3,5.3 \mathrm{~Hz}, 1 \mathrm{H}$), 1.60 (dddd, $J=13.6,9.1,7.5,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.51-1.21(\mathrm{~m}, 10 \mathrm{H}), 1.38(\mathrm{~s}$, $3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $50 \mathrm{MHz}): \delta 146.3,143.5,134.1,121.1,114.3,111.0,98.4,69.1$, 67.9, 65.8, 38.4, 37.0, 36.4, 31.8, 30.8, 30.3, 24.6, 22.6, 19.9, 14.0; ESI: $m / z=359[\mathrm{M}+\mathrm{Na}]^{+}$. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{Na}$: 359.2198, found: 359.2199 .

4.1.10. 4-(2-((4S,6S)-2,2-Dimethyl-6-pentyl-1,3-dioxan-4-yl) ethyl)-2-methoxyphenol 19

Compound 3 ($0.035 \mathrm{~g}, 0.118 \mathrm{mmol}$) was converted into compound $19(0.037 \mathrm{~g}, 94 \%)$ following the procedure adopted for the preparation of compound 18. $[\alpha]_{D}^{25}=+19.0\left(c 1, \mathrm{CHCl}_{3}\right)$; IR (neat): $v_{\text {max }} 3434,2934,2861,1514,1458,1376,1267,1198,1035 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 6.76(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.65-6.60$ (m, 2H), $5.30(\mathrm{~s}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.79-3.64(\mathrm{~m}, 2 \mathrm{H}), 2.66$ (ddd, $J=13.6,9.1,5.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.53 (ddd, $J=14.4,9.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 1.75 (dtd, $J=13.6,8.3,5.3 \mathrm{~Hz}, 1 \mathrm{H}$), 1.63 (dddd, $J=13.6,9.0,6.8,3.9 \mathrm{~Hz}$, 1 H), 1.54 (td, $J=9.0,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.43-1.19(\mathrm{~m}, 10 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H})$, $1.31(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta$ 146.3, 143.5, 134.0, 120.9, 114.1, 110.9, 100.1, 66.6, 65.8, 55.7, $38.8,37.8,35.9,31.7,31.3,25.0,24.9,24.7,22.5,14.0$; ESI: $\mathrm{m} /$ $z=359[M+N a]^{+}$. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{Na}$: 359.2198, found: 359.2199.

4.1.11. (4R,6S)-4-(4-(Benzyloxy)-3-methoxyphenethyl)-2,2-dimethyl-6-pentyl-1,3-dioxane 20

To a stirred suspension of sodium hydride $(0.024 \mathrm{~g}$, 1.010 mmol) in dry THF (3 mL) at $0^{\circ} \mathrm{C}$, alcohol $18(0.17 \mathrm{~g}$, 0.505 mmol) in dry THF (3 mL) was added dropwise. After stirring for $30 \mathrm{~min}, \mathrm{BnBr}$ ($0.061 \mathrm{~mL}, 0.505 \mathrm{mmol}$) was added. After completion of the reaction, the reaction mixture was quenched with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EtOAc. The organic layer was washed with water and brine solution, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by silica gel column chromatography (EtOAc/pet-ether, 1:19) to afford the pure compound $\mathbf{2 0}(0.204 \mathrm{~g}, 95 \%)$ as a light yellow liquid. $[\alpha]_{D}^{25}=+8.6$ ($c 1, \mathrm{CHCl}_{3}$); IR (neat): $v_{\max }$ 2991, 2932, 2861, 1510, 1457, 1378, 1262, 1147, $1029 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta$ 7.40 (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-723(\mathrm{~m}, 1 \mathrm{H})$, $6.74(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.07$ $(\mathrm{s}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.75-3.67(\mathrm{~m}, 2 \mathrm{H}), 2.64$ (ddd, $J=13.8,8.9$, $4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{q}, J=13.8,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.81-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.66-$ $1.56(\mathrm{~m}, 1 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}), 1.50-1.22(\mathrm{~m}, 10 \mathrm{H}), 0.89$ $(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 149.4,146.2$, 137.4, 135.4, 128.4, 127.7, 127.2, 120.3, 114.1, 112.3, 98.3, 71.1, 69.0, 67.9, 55.9, 38.1, 37.0, 36.4, 31.8, 30.7, 30.3, 24.6, 22.6, 19.9, 14.0; ESI: $m / z=449[\mathrm{M}+\mathrm{Na}]^{+}$. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+} m / z$ calcd for $\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{O}_{4} \mathrm{Na}$: 449.2667, found: 449.2660.

4.1.12. (3R,5S)-1-(4-(Benzyloxy)-3-methoxyphenyl)decane-3,5diol 21

To a stirred solution of compound $20(0.17 \mathrm{~g}, 0.398 \mathrm{mmol})$ in $\mathrm{MeOH}(5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added a catalytic amount of $p \mathrm{TSA}$. The reaction mixture was stirred at room temperature for 1 h . After completion of the reaction, the reaction mixture was quenched with solid NaHCO_{3} under ice cooling, and the solvent was removed in vacuo. The residue was purified by silica gel column chromatography (EtOAc/pet-ether, 2:8) to afford the pure compound 21 ($0.138 \mathrm{~g}, 90 \%$) as a light yellow liquid. $[\alpha]_{\mathrm{D}}^{25}=+5.3$ (c 1, CHCl_{3}); IR (neat): $v_{\text {max }} 3392,2928,2859,1511,1456,1262,1136$,
$1028 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.43-7.25(\mathrm{~m}, 5 \mathrm{H}), 6.70$ (d, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 6.62 (dd, $J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~s}, 2 \mathrm{H}), 3.87$ (s, 3H), 3.85-3.76 (m, 2H), 2.67 (ddd, $J=13.6,9.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.63 (dd, $J=14.4,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.72$ (ddd, $J=15.1,9.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}$), $1.56(\mathrm{dt}, J=14.3,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.49-1.22(\mathrm{~m}, 8 \mathrm{H}), 0.90(\mathrm{t}$, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 149.5,146.3,137.4$, 135.2, 128.5, 127.7, 127.2, 120.1, 114.2, 112.3, 73.3, 72.4, 71.1, 55.6, 42.9, 39.8, 38.3, 31.7, 31.3, 24.9, 22.6, 14.0; ESI: $m / z=409$ $[\mathrm{M}+\mathrm{Na}]^{+}$. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{Na}$: 409.2354, found: 409.2350.

4.1.13. (3R,5S)-1-(4-(Benzyloxy)-3-methoxyphenyl)decane-3,5diyl diacetate 22

Anhydrous $\mathrm{Et}_{3} \mathrm{~N}(0.098 \mathrm{~mL}, 0.698 \mathrm{mmol}), \mathrm{Ac}_{2} \mathrm{O}(0.066 \mathrm{~mL}$, 0.698 mmol), and a catalytic amount of DMAP were added to a solution of diol $21(0.09 \mathrm{~g}, 0.232 \mathrm{mmol})$, in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$, under N_{2} atmosphere at room temperature. The mixture was stirred at room temperature for 30 min . The solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography (EtOAc/pet-ether, $1: 19$) to afford the pure compound $22(0.103 \mathrm{~g}, 94 \%)$ as a light yellow liquid. $[\alpha]_{\mathrm{D}}^{25}=-3.2$ (c 1, CHCl_{3}); IR (neat): $v_{\text {max }} 2926,2860,1732,1510,1456,1371,1233$, $1023 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.39(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.32(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-722(\mathrm{~m}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 6.66 (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~s}, 2 \mathrm{H}), 4.92-$ 4.82 (m, 2H), 3.87 (s, 3H), 2.55 (td, $J=14.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.49$ (td, $J=14.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.02 (s,3H), 1.96 (s, 3H), 1.85 (td, $J=14.0$, $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.68$ (td, $J=12.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.53-1.44(\mathrm{~m}, 2 \mathrm{H})$, $1.42-1.20(\mathrm{~m}, 8 \mathrm{H}), 0.88(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $50 \mathrm{MHz}): \delta 170.6,170.6,149.5,146.3,137.3,134.5,128.4,127.7$, 127.2, 120.0, 114.1, 112.1, 78.8, 70.1, 55.9, 38.4, 35.6, 34.1, 31.5, 31.1, 24.7, 22.4, 21.2, 14.0; ESI: $m / z=493[\mathrm{M}+\mathrm{Na}]^{+}$. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / z$ calcd for $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{O}_{6} \mathrm{Na}$: 493.2566, found: 493.2583.

4.1.14. (3R,5S)-1-(4-Hydroxy-3-methoxyphenyl)decane-3,5-diyl diacetate 4

To a solution of compound $22(0.06 \mathrm{~g}, 0.127 \mathrm{mmol})$ in benzene (5 mL) was added a catalytic amount of $\operatorname{Pd}(\mathrm{OH})_{2}$ and stirred under an H_{2} atmosphere for 4 h . After completion of the reaction, the catalyst was removed by filtration, washed with ethylacetate, and the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (EtOAc/pet-ether, 1:9) to afford the pure compound $\mathbf{4}(0.045 \mathrm{~g}, 93 \%)$ as a light yellow liquid. $[\alpha]_{D}^{25}=-3.6$ (c 1, CHCl_{3}); IR (neat): $v_{\max } 3449,2928,2858$, 1733, 1515, 1371, 1242, $1030 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta$ 6.76 (d, J = 7.5 Hz, 1H), 6.64-6.56 (m, 2H), $5.32(\mathrm{~s}, \mathrm{OH}, 1 \mathrm{H}), 4.93-$ $4.80(\mathrm{~m}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 2.56$ (td, $J=14.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.49$ (td, $J=14.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}), 1.85(\mathrm{td}, J=14.9$, $6.7 \mathrm{~Hz}, 1 \mathrm{H}$), 1.69 (td, $J=13.9,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.54-1.44(\mathrm{~m}, 2 \mathrm{H})$, $1.42-1.35(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.19(\mathrm{~m}, 8 \mathrm{H}), 0.89(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 170.6,170.5,146.2,143.7,133.1,120.8$, 114.2, 110.9, 71.1, 70.8, 55.8, 38.4, 35.8, 34.1, 31.5, 31.2, 24.7, 22.4, 21.1, 21.0, 13.9; ESI: $m / z=403[\mathrm{M}+\mathrm{Na}]^{+}$. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}_{6} \mathrm{Na}$: 403.2096, found: 403.2088.

4.1.15. (4R,6S)-4-(3,4-Dimethoxylphenetyl)-2,2-dimethyl-6-pentyl-1,3-dioxane 23

To a stirred suspension of sodium hydride $(0.019 \mathrm{~g}$, 0.832 mmol) in dry THF (5 mL) at $0^{\circ} \mathrm{C}$, alcohol $18(0.14 \mathrm{~g}$, 0.416 mmol) in dry THF (5 mL) was added dropwise. After stirring for 30 min , MeI ($0.038 \mathrm{~mL}, 0.624 \mathrm{mmol}$) was added. After completion of the reaction, the reaction mixture was quenched with a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with EtOAc. The organic layer was washed with water and brine, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed in vacuo, and the residue was purified by silica gel column chromatography (EtOAc/pet-
ether, $1: 19$) to afford the pure compound $23(0.137 \mathrm{~g}, 94 \%)$ as a light yellow liquid. $[\alpha]_{\mathrm{D}}^{25}=+8.9$ (c 1.5, CHCl_{3}); IR (neat): $v_{\max }$ 2991, 2933, 2859, 1514, 1461, 1379, 1262, 1157, 1032; $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 6.72(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.67-6.63$ (m, $2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.76-3.67(\mathrm{~m}, 2 \mathrm{H}), 2.65$ (ddd, $J=13.8,8.9,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.56$ (ddd, $J=13.8,7.9,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.81-$ $1.71(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.38$ (s, 3H), 1.37 (s, 3H), 1.51$1.22(\mathrm{~m}, 10 \mathrm{H}), 0.89(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$: $\delta 148.7,147.1,134.7,120.3,114.8,111.2,98.4,69.0,67.9,55.9$, $55.8,38.2,37.0,36.4,31.8,30.7,30.3,24.6,22.6,19.9,14.0$; ESI: $m / z=373 \quad[\mathrm{M}+\mathrm{Na}]^{+}$. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{Na}$: 373.2354 , found: 373.2352 .

4.1.16. (3R,5S)-1-(3,4-Dimethoxyphenyl)decane-3,5-diol 24

Compound 23 ($0.1 \mathrm{~g}, 0.258 \mathrm{mmol}$) was converted into compound $24(0.079 \mathrm{~g}, 90 \%)$ following the procedure adopted for the preparation of compound 21. $[\alpha]_{\mathrm{D}}^{25}=+9.8\left(c 3, \mathrm{CHCl}_{3}\right)$; IR (neat): $v_{\max } 3380,2931,2858,1514,1460,1261,1150,1030 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 6.73$ (d, $\left.J=8.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.69-6.66$ (m, 2 H), 3.85 (s, 3H), 3.83 (s, 3H), 3.84-3.77 (m, 2H), 2.68 (ddd, $J=13.8,8.9,5.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.61 (pent, $J=13.8,8.91 \mathrm{H}$), $1.80-1.65$ (m, 2H), 1.59-1.22 (m, 8H), $0.90(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(CDCl} 3$, 50 MHz): $\delta 148.8,147.1,134.6,120.1,111.7,111.3,73.2,72.3,55.9$, 55.8, 42.9, 39.9, 38.2, 37.7, 31.3, 24.9, 22.5, 14.0; ESI: $m / z=333$ $[\mathrm{M}+\mathrm{Na}]^{+}$. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{Na}$: 333.2041, found: 333.2035.

4.1.17. (3R,5S)-1-(3,4-Dimethoxyphenyl)decane-3,5-diyl diacetate 5

Compound 24 ($0.04 \mathrm{~g}, 0.128 \mathrm{mmol}$) was converted into compound $5(0.047 \mathrm{~g}, 94 \%)$ following the procedure adopted for the preparation of compound 22. $[\alpha]_{\mathrm{D}}^{25}=-1.2\left(c 3, \mathrm{CHCl}_{3}\right)$. IR (neat): $v_{\max } 3450,2927,2859,1732,1637,1530,1455,1370,1236$, $1026 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 6.73(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, 6.66-6.61, (m, 2H), 4.92-4.83 (m, 2H), 3.86 (s, 3H), 3.83 (s, 3H), 2.57 (td, $J=7.9,14.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.50$ (td, $J=7.9,14.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.03$ $(\mathrm{s}, 3 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}), 1.86(\mathrm{td}, J=6.9,14.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.69(\mathrm{td}, J=6.9$, $14.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.52-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.34(\mathrm{~m}, 2 \mathrm{H}), 1.33-1.19(\mathrm{~m}$, $8 \mathrm{H}), 0.88(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 170.6$, $170.5,148.7,147.1,133.8,120.0,111.5,111.1,71.0,70.8,55.8$, 55.7, 38.3, 35.7, 34.1, 31.5, 31.0, 24.7, 22.4, 21.1, 20.1, 13.8; ESI: $m / z=417 \quad[\mathrm{M}+\mathrm{Na}]^{+}$. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{O}_{6} \mathrm{Na}$: 417.2253, found: 417.2248.

4.1.18. (E)-Ethyl-3-(3,4,5-trimethoxyphenyl)acrylate 25a

Ethyl(triphenylphosphoranylidene)acetate ($1.55 \mathrm{~g}, 4.46 \mathrm{mmol}$) was added to a stirred solution of 3,4,5-trimethoxy benzaldehyde $13 \mathbf{a}(0.73 \mathrm{~g}, 3.72 \mathrm{mmol})$ in benzene (10 mL). Then the reaction mixture was refluxed for 4 h . The solvent was removed in vacuo, and the residue was purified by silica gel column chromatography (EtOAc/pet-ether, 1:19) to afford the pure compound $25 a(0.89 \mathrm{~g}$, 90%) as a white solid. IR (neat): $v_{\max } 2999,2974,2942,1702$, 1633, 1583, 1505, 1453, 1314, 1278, 1123, $991 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 7.60(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~s}, 2 \mathrm{H}), 6.35(\mathrm{~d}$, $J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{q}, J=14.6,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 6 \mathrm{H}), 3.88(\mathrm{~s}$, $3 \mathrm{H}), 1.34(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 3 \mathrm{H})$; ESI: $m / z=289[\mathrm{M}+\mathrm{Na}]^{+}$.

4.1.19. 3-(3,4,5-Trimethoxyphenyl)propan-1-ol 26a

To a stirred suspension of $\mathrm{LiAlH}_{4}(0.303 \mathrm{~g}, 7.98 \mathrm{mmol})$ in dry THF (10 mL) at $0^{\circ} \mathrm{C}$, a solution of α, β unsaturated ester 25a ($0.85 \mathrm{~g}, 3.19 \mathrm{mmol}$) in dry THF (10 mL) was added drop wise. Then the reaction mixture was refluxed for 4 h and cooled to $0^{\circ} \mathrm{C}$, diluted with ether and quenched by the dropwise addition of saturated aqueous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solid material was filtered and washed thoroughly with hot ethyl acetate several times. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The
solvent was removed in vacuo and the residue was purified by silica gel column chromatography (EtOAc/pet-ether, 3:7) to afford pure compound $\mathbf{2 6 a}(0.628 \mathrm{~g}, 87 \%)$ as a viscous liquid.

IR (neat): $v_{\max } 3371,2941,1711,1613,1514,1446,1366,1228$, 1147, $1033 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 6.36(\mathrm{~s}, 2 \mathrm{H}), 3.84(\mathrm{~s}$, $6 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.63(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H})$, 1.89-1.82 (m, 2H), 1.40 (br s, OH, 1H); ESI: $m / z=249[\mathrm{M}+\mathrm{Na}]^{+}$.

4.1.20. 3-(3,4,5-Trimethoxyphenyl)propanal 27a

To an ice-cooled solution of 2-iodoxybenzoic acid $(0.876 \mathrm{~g}$, $3.129 \mathrm{mmol})$ in DMSO ($1.11 \mathrm{~mL}, 15.64 \mathrm{mmol}$) was added a solution of alcohol $26 \mathbf{a}(0.59 \mathrm{~g}, 2.607 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The mixture was stirred at room temperature for 2 h and then filtered through a Celite pad and washed with ether. The combined organic filtrates were washed with water, brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by silica gel column chromatography (EtOAc/pet-ether, 1:9) to afford the pure compound 27a ($0.508 \mathrm{~g}, 87 \%$) as a viscous liquid. The unstable aldehyde used immediately for the next reaction.

4.1.21. (S)-1-((S)-4-Benzyl-2-thioxothiazolidin-3-yl)-3-hydroxy-5-(3,4,5-trimethoxyphenyl)pentan-1-one 28a

To a solution of thiazolidinethione acetate $(0.49 \mathrm{~g}, 1.87 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added $\mathrm{TiCl}_{4}\left(1 \mathrm{M}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1.91 \mathrm{~mL}$, 1.91 mmol) at $-78^{\circ} \mathrm{C}$, forming a red-orange slurry. After 5 min , DIPEA ($0.358 \mathrm{~mL}, 2.09 \mathrm{mmol}$) was slowly added, forming the characteristic enolate color (deep red). After 30 min at $-78^{\circ} \mathrm{C}$ aldehyde 27a ($0.46 \mathrm{~g}, 2.06 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added. Within 5 min , the color had faded to a pale brown color, indicating the consumption of the enolate. The reaction mixture was quenched with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$, and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with brine. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography (EtOAc/petether, 1:9) to afford the pure compound 28a ($0.704 \mathrm{~g}, 79 \%$) as a yellow viscous liquid. $[\alpha]_{\mathrm{D}}^{25}=+16.6$ ($c 0.9, \mathrm{CHCl}_{3}$); IR (neat): $v_{\max }$ 3453, 2935, 2837, 1697, 1589, 1503, 1458, 1238, 1125, $1006 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 7.37-7.20(\mathrm{~m}, 5 \mathrm{H}), 6.39$ (s, 2H), 5.36 (dddd, $J=10.7,6.9,4.1,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.15-4.05$ (m, $1 \mathrm{H}), 3.82(\mathrm{~s}, 6 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{dd}, J=17.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.30$ (dd, $J=11.7,7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.21 (dd, $J=13.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.14-2.97 ($\mathrm{m}, 2 \mathrm{H}$) , $2.89(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.84-2.71(\mathrm{~m}, 1 \mathrm{H}), 2.69-2.57$ $(\mathrm{m}, 1 \mathrm{H}), 1.95-1.70(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 201.4$, 173.1, 153.0, 137.4, 136.2, 129.3, 129.1, 128.9, 128.8, 127.4, 127.2, 105.2, 68.2, 64.9, 60.8, 56.0, 45.8, 41.0, 40.0, 36.7, 32.1; ESI: $m / z=498[\mathrm{M}+\mathrm{Na}]^{+}$. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{NO}_{5} \mathrm{~S}_{2} \mathrm{Na}: 498.1384$, found: 498.1400.

4.1.22. (S)-1-((S)-4-Benzyl-2-thioxothiazolidin-3-yl)-3-(tert-butyldimethylsilyloxy)-5-(3,4,5-trimethoxyphenyl)pentan-1one 29a

To a stirred solution of $\mathbf{2 8 a}(0.66 \mathrm{~g}, 1.38 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(20 \mathrm{ml})$ were sequentially added 2,6 -lutidine ($0.32 \mathrm{ml}, 2.77 \mathrm{mmol}$) and t-butyldimethylsilyltrifluoromethane sulfonate $(0.35 \mathrm{ml}$, 1.52 mmol). After completion of the reaction, it was quenched with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$. After separation of the layers, the aqueous layer was further extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by silica gel column chromatography (EtOAc/pet-ether, 1:19) to afford the pure compound 29a $(0.760 \mathrm{~g}, 93 \%)$ as a yellow viscous liquid. $[\alpha]_{\mathrm{D}}^{25}=+133.2$ (c 0.8 , CHCl_{3}); IR (neat): $v_{\text {max }} 2930,2855,1696,1588,1506,1459,1241$, $1129 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$): $\delta 7.36-7.21(\mathrm{~m}, 5 \mathrm{H}), 6.35$ (s, 2H), 5.30-5.19 (dddd, $J=10.4,7.2,3.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.43-4.34$ (m, 1H), $3.85(\mathrm{~s}, 6 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.56(\mathrm{dd}, J=16.8,7.5 \mathrm{~Hz}, 1 \mathrm{H})$,
3.33 (dd, $J=10.0,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.29-3.16(\mathrm{~m}, 2 \mathrm{H}), 3.02(\mathrm{dd}, J=12.6$, $10.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}) 2.61(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}) 1.90-$ $1.79(\mathrm{~m}, 2 \mathrm{H}) 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}, $75 \mathrm{MHz}): \delta 201.2,172.0,153.1,137.9,136.4,135.9,129.4,128.9$, 127.2, 105.1, 68.6, 60.8, 56.0, 45.7, 39.4, 36.5, 32.1, 31.6, 25.8, 18.0, -4.4, -4.6; ESI: $m / z=612[\mathrm{M}+\mathrm{Na}]^{+}$. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+} m /$ z calcd for $\mathrm{C}_{34} \mathrm{H}_{43} \mathrm{NO}_{5} \mathrm{~S}_{2} \mathrm{SiNa}$: 612.2249, found: 612.2275 .

4.1.23. (S)-3-(tert-Butyldimethylsilyloxy)-5-(3,4,5-trimeth oxyphenyl)pentanal 30a

To a solution of $29 a(0.7 \mathrm{~g}, 1.186 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78^{\circ} \mathrm{C}$, was added DIBAL (1.7 M in toluene, $1.39 \mathrm{~mL}, 2.37 \mathrm{mmol}$). The bright yellow color solution was stirred until the color faded. Then the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and quenched with a saturated aqueous Na / K tartrate solution, and allowed to warm to rt , and stirred for 2 h . After separation of the layers, the aqueous layer was further extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography (EtOAc/pet-ether, 1:19) to afford the pure compound 30a ($0.385 \mathrm{~g}, 85 \%$) as a brown viscous liquid.

4.1.24. (S)-5-(tert-Butyldimethylsilyloxy)-1,7-bis(3,4,5-trimeth

 oxyphenyl)hept-1-yn-3-one 31aAldehyde $\mathbf{3 0 a}(0.358 \mathrm{~g}, 0.937 \mathrm{mmol})$ was converted into compound 31 a ($0.461 \mathrm{~g}, 86 \%$, for two steps) using alkyne $15 a(0.18 \mathrm{~g}$, 0.937 mmol) following the procedure adopted for the preparation of compound 16. $[\alpha]_{\mathrm{D}}^{25}=-3.3$ (c 0.6, CHCl_{3}); IR (neat): $v_{\text {max }} 2934$, 2855, 2191, 1666, 1580, 1503, 1461, 1241, $11281005 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$): $\delta 6.76(\mathrm{~s}, 2 \mathrm{H}), 6.35(\mathrm{~s}, 2 \mathrm{H}), 4.40-4.29(\mathrm{~m}$, 1 H), 3.86 (s, 9H), 3.82 ($\mathrm{s}, 6 \mathrm{H}$), 3.77 (s, 3H), 2.89 (dd, $J=15.3$, $6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{dd}, J=15.3,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$ 1.85 (td, $J=14.4,7.7 \mathrm{~Hz}, 2 \mathrm{H}$) 0.91 (s, 9H), 0.10 (s, 3H), 0.08 (s, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$): $\delta 185.9,153.2,153.1,137.7$, 114.4, 110.4, 105.1, 68.5, 61.0, 60.8, 56.2, 56.0, 52.9, 39.3, 31.6, 25.8, 18.1, $-4.6,-4.9$; ESI: $m / z=595[\mathrm{M}+\mathrm{Na}]^{+}$. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{31} \mathrm{H}_{44} \mathrm{O}_{8} \mathrm{SiNa}$ 595.2703, found: 595.2728.

4.1.25. (S)-5-(tert-Butyldimethylsilyloxy)-1,7-bis(3,4,5-trimeth oxyphenyl)heptan-3-one 32a

Compound 31a ($0.34 \mathrm{~g}, 0.593 \mathrm{mmol}$) was converted into compound 32 a ($0.315 \mathrm{~g}, 92 \%$) following the procedure adopted for preparation of compound 17. $[\alpha]_{\mathrm{D}}^{25}=-12.8\left(c 0.7, \mathrm{CHCl}_{3}\right)$; IR (neat): $v_{\text {max }} 2933,2855,1712,1589,1506,1459,1421,1238,1127$, $1009 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 6.33(\mathrm{~s}, 2 \mathrm{H}), 6.32$ (s, 2H), 4.25-4.15 (m, 1H), $3.84(\mathrm{~s}, 6 \mathrm{H}), 3.82(\mathrm{~s}, 6 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H})$, 3.77 ($\mathrm{s}, 3 \mathrm{H}$), 2.84-2.66 (m, 4H), 2.65-2.39 (m, 4H), 1.80-1.68 (m, $2 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}, 75 MHz): $\delta 208.7,153.1,137.8,136.7,105,68.6,60.8,55.9,50.1$, 46.3, 39.4, 31.8, 29.8, 25.8, 18.0, $-4.6,-4.7$; ESI: $m / z=599$ $[\mathrm{M}+\mathrm{Na}]^{+}$. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{31} \mathrm{H}_{48} \mathrm{O}_{8} \mathrm{SiNa}$: 599.3016, found: 599.3028.

4.1.26. (S)-5-Hydroxy-1,7-bis(3,4,5-trimethoxyphenyl)heptan-3one 33a

To a solution of $\mathbf{3 2 a}(0.25 \mathrm{~g}, 0.433 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ was added TBAF ($0.520 \mathrm{ml}, 0.520 \mathrm{mmol}, 1 \mathrm{M}$ solution in THF) at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 6 h and then diluted with water and extracted with EtOAc. The organic layer was washed with water, and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The crude product was purified by silica gel column chromatography (EtOAc/pet-ether, 2:8) to afford pure compound 33a ($0.172 \mathrm{~g}, 86 \%$) as a brown viscous liquid. $[\alpha]_{\mathrm{D}}^{25}=-2.4$ (c 1.2, CHCl_{3}); IR (neat): $v_{\max } 3453,2936,2836$, 1707, 1589, 1505, 1458, 1421, 1237, 1124, $1006 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 6.35(\mathrm{~s}, 2 \mathrm{H}), 6.32(\mathrm{~s}, 2 \mathrm{H}), 4.04-3.95(\mathrm{~m}, 1 \mathrm{H})$,
3.83 (s, 6H), 3.81 (s, 6H), 3.78 (s, 3H), 3.77 (s, 3H), 2.80 (t, J = 7.1 Hz, $4 \mathrm{H}), 2.69(\mathrm{t}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 2.74-2.66(\mathrm{~m}, 1 \mathrm{H}), 2.62-2.45(\mathrm{~m}, 3 \mathrm{H})$, $1.79-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.55(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$: $\delta 211.0,153.1,153.0,137.5,136.4,105.2,105.1,66.8,60.7,55.9$, 49.3, 45.1, 38.1, 32.1, 29.8; ESI: $m / z=485[\mathrm{M}+\mathrm{Na}]^{+}$. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{O}_{8} \mathrm{Na}: 485.2151$, found: 485.2144 .

4.1.27. (3S,5S)-1,7-Bis(3,4,5-trimethoxyphenyl)heptane-3,5-diol 34

Compound 32a ($0.11 \mathrm{~g}, 0.237 \mathrm{mmol}$) was converted into compound $34(0.095 \mathrm{~g}, 85 \%)$ following the procedure adopted for the preparation of compound 3. $[\alpha]_{\mathrm{D}}^{25}=+3.1\left(c 0.5, \mathrm{CHCl}_{3}\right)$; IR (neat): $v_{\text {max }} 3443,2924,2852,1590,1505,1459,1237,1125 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (CDCl ${ }_{3}, 300 \mathrm{MHz}$): $\delta 6.35(\mathrm{~s}, 4 \mathrm{H}), 4.03-3.90(\mathrm{~m}, 2 \mathrm{H}), 3.83(\mathrm{~s}$, 12 H), 3.78(s, 6H), 2.76-2.51 (m, 4H), 1.89-1.55 (m, 6H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 153.1,137.6,136.0,105.2,68.8,60.8,56.0$, 42.6, 39.1, 32.6; ESI: $m / z=487[\mathrm{M}+\mathrm{Na}]^{+}$. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} /$ z calcd for $\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{O}_{8} \mathrm{Na}$: 487.2307, found: 487.2297.
4.1.28. (3S,5S)-1,7-Bis(3,4,5-trimethoxyphenyl)heptane-3,5-diyl diacetate 6

Compound 34 ($0.04 \mathrm{~g}, 0.861 \mathrm{mmol}$) was converted into compound $6(0.043 \mathrm{~g}, 93 \%)$ following the procedure adopted for the preparation of compound 22. $[\alpha]_{\mathrm{D}}^{25}=+4.7\left(c 0.5, \mathrm{CHCl}_{3}\right)$; IR (neat): $v_{\text {max }} 2926,2853,1734,1663,1589,1506,1459,1423,1240,1127$, $1012 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$): $\delta 6.34(\mathrm{~s}, 4 \mathrm{H}), 4.99$ (quint, $J=5.3 \mathrm{~Hz}, 2 \mathrm{H}$), $3.84(\mathrm{~s}, 12 \mathrm{H}), 3.78(\mathrm{~s}, 6 \mathrm{H}), 2.57-2.46(\mathrm{~m}, 4 \mathrm{H}), 2.01$ (s, 6H), 1.98-1.68 (m, 6H); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$): $\delta 170.7$, 153.1, 137.0, 136.1, 105.1, 70.5, 60.8, 56.0, 38.7, 35.7, 32.0, 21.1; ESI: $m / z=571[\mathrm{M}+\mathrm{Na}]^{+}$. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{29} \mathrm{H}_{40} \mathrm{O}_{10} \mathrm{Na}: 571.2519$, found: 571.2515.

4.1.29. (E)-Ethyl-3-(4-(benzyloxy)-3-methoxyphenyl)acrylate 25b

Compound 13b ($1.2 \mathrm{~g}, 4.95 \mathrm{mmol}$) was converted into compound $\mathbf{2 5 b}$ ($1.67 \mathrm{~g}, 91 \%$) following the procedure adopted for the preparation of compound 25a. IR (neat): $v_{\max }$ 2938, 1707, 1631, 1591, 1507, 1460, 1375, 1255, 1161, 1137, $1030 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.61(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.29(\mathrm{~m}, 5 \mathrm{H})$, $7.07(\mathrm{~s}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.30$ (d, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}$), $5.19(\mathrm{~s}, 2 \mathrm{H}), 4.25(\mathrm{q}, J=14.0,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.91$ $(\mathrm{s}, 3 \mathrm{H}), 1.33(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H})$; ESI: $m / z=335[\mathrm{M}+\mathrm{Na}]^{+}$.

4.1.30. 3-(4-(Benzyloxy)-3-methoxyphenyl)propan-1-ol 26b

Compound 25b ($1.3 \mathrm{~g}, 4.16 \mathrm{mmol}$) was converted into compound 26b ($0.997 \mathrm{~g}, 88 \%$) following the procedure adopted for the preparation of compound 26a. IR (neat): $v_{\max } 3397,2936$, 2869, 1596, 1511, 1457, 1263, 1226, 1146, $1030 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 7.42-7.25(\mathrm{~m}, 5 \mathrm{H}), 6.74(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, $6.69(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.61$ (dd, $J=8.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~s}, 2 \mathrm{H})$, $3.86(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.62(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.89-$ $1.78(\mathrm{~m}, 2 \mathrm{H})$; ESI: $m / z=295[\mathrm{M}+\mathrm{Na}]^{+}$.

4.1.31. 3-(4-(Benzyloxy)-3-methoxyphenyl)propanal 27b

Compound 26b ($0.94 \mathrm{~g}, 3.45 \mathrm{mmol}$) was converted to compound 27 b ($0.802 \mathrm{~g}, 86 \%$) following the procedure adopted for preparation of compound 27a.

4.1.32. (S)-1-((S)-4-Benzyl-2-thioxothiazolidin-3-yl)-5-(4-(benzyloxy)-3-methoxyphenyl)-3-hydroxypentan-1-one 28b

Aldehyde 27b ($0.773 \mathrm{~g}, 2.86 \mathrm{mmol}$) was converted into compound $\mathbf{2 8 b}$ ($1.08 \mathrm{~g}, 80 \%$) using thiazolidinethione acetate (0.68 g , 2.60 mmol) following the procedure adopted for the preparation of compound 28a. $[\alpha]_{\mathrm{D}}^{25}=+131.8$ (c 1.1, CHCl_{3}); IR (neat): $v_{\max }$ 3448, 2924, 2860, 1683, 1513, 1328, 1257, 1225, 1135, $1037 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 7.46-7.21(\mathrm{~m}, 10 \mathrm{H})$,
6.79 (d, $J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.74$ (d, $J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.65$ (dd, $J=8.1$, $2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.36$ (dddd, $J=10.7,6.9,3.9,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~s}, 2 \mathrm{H})$, 4.17-4.03 (m, 1H), 3.88 (s, 3H), 3.65 (dd, $J=17.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.39 (dd, $J=11.1,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{dd}, J=13.0,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.10$ (dd, $J=17.9,9.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.02 (dd, $J=12.8,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.88$ (d, $J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.83-2.57(\mathrm{~m}, 2 \mathrm{H}), 1.97-1.68(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 201.3,173.1,149.5,146.3,137.3,136.3,134.9$, 129.3, 128.9, 128.4, 127.7, 127.2, 120.2, 114.2, 112.3, 71.1, 68.2, $67.0,55.9,45.8,37.9,36.8,31.9,31.4$; ESI: $m / z=544[\mathrm{M}+\mathrm{Na}]^{+}$.

4.1.33. (S)-1-((S)-4-Benzyl-2-thioxothiazolidin-3-yl)-5-(4-

 (benzyloxy)-3-methoxyphenyl)-3-(methoxymethoxy)pentan-1one 29bTo a stirred solution of alcohol $\mathbf{2 8 b}(1.0 \mathrm{~g}, 1.918 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under $\mathrm{N}_{2},{ }^{i} \mathrm{Pr}_{2} \mathrm{NEt}(0.655 \mathrm{~mL}, 3.83 \mathrm{mmol})$ was added followed by the dropwise addition of MOMCl ($0.230 \mathrm{~mL}, 2.87 \mathrm{mmol}$). After stirring for 4 h at room temperature, the reaction mixture was diluted with water, and washed with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$, and brine. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography (EtOAc/pet-ether, 1:9) to afford the pure compound $29 \mathbf{b}$ ($0.86 \mathrm{~g}, 80 \%$) as a yellow liquid. $[\alpha]_{D}^{25}=+97.9$ (c 2.9, CHCl_{3}); IR (neat): $v_{\max } 3027,2935,1696$, 1511, 1456, 1262, 1142, $1031 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta$ $7.45-7.14(\mathrm{~m}, 10 \mathrm{H}), 6.74(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=6.2 \mathrm{~Hz}$, 1 H), 6.63 (dd, $J=8.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 5.24 (dddd, $J=11.1,6.9,3.9$, $0.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~s}, 2 \mathrm{H}), 4.65(\mathrm{ABq}, J=20.0,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.19-$ $4.03(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.53(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H})$, $3.35-3.15(\mathrm{~m}, 2 \mathrm{H}), 3.06-2.78(\mathrm{~m}, 2 \mathrm{H}), 2.77-2.53(\mathrm{~m}, 2 \mathrm{H}), 1.96-$ $1.80(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 200.1,171.6,149.4$, 146.2, 137.2, 136.3, 134.9, 129.3, 128.7, 128.4, 128.3, 127.6, 127.1, 120.0, 114.1, 112.1, 96.7, 74.5, 71.0, 68.5, 55.8, 55.7, 44.2, 36.9, 36.5, 32.0, 31.0; ESI: $m / z=588[\mathrm{M}+\mathrm{Na}]^{+}$. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{31} \mathrm{H}_{35} \mathrm{NO}_{5} \mathrm{~S}_{2} \mathrm{Na}$: 588.1854, found: 588.1866.

4.1.34. (S)-5-(4-(Benzyloxy)-3-methoxyphenyl)-3-(methoxy methoxy)pentanal 30b

Compound 29b ($0.8 \mathrm{~g}, 1.41 \mathrm{mmol}$) was converted into compound $\mathbf{3 0 b}(0.436 \mathrm{~g}, 86 \%)$ following the procedure adopted for the preparation of compound 30a.

4.1.35. (S)-1,7-Bis(4-(benzyloxy)-3-methoxyphenyl)-5-(methoxy methoxy)hept-1-yn-3-one 31b

Aldehyde 30b ($0.391 \mathrm{~g}, 1.09 \mathrm{mmol}$) was converted into compound $\mathbf{3 1 b}(0.56 \mathrm{~g}, 87 \%$, for two steps) using alkyne $\mathbf{1 5 b}(0.26 \mathrm{~g}$, 1.09 mmol) following the procedure adopted for the preparation of compound 16. $[\alpha]_{\mathrm{D}}^{25}=-6.2$ ($c 0.8, \mathrm{CHCl}_{3}$); IR (neat): $v_{\max } 2934$, 2185, 1661, 1594, 1511, 1457, 1245, 1141, $1025 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.43-7.24(\mathrm{~m}, 10 \mathrm{H}), 7.05(\mathrm{dd}, J=8.0,2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.01$ (bs, 1H), 6.81 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.73$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), $6.70(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.11$ (s, 2H), 5.04 (s, 2H), $4.66(\mathrm{ABq}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.21-4.14(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H})$, 3.84 (s, 3H), 3.37 (s, 3H), 2.96 (dd, $J=16.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.73 (dd, $J=15.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.65$ (ddd, $J=16.0,9.0,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.96-1.82$ (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$): $\delta 185.3,150.7,149.4,146.4$, 136.0, 134.8, 128.6, 128.4, 128.1, 127.7, 127.2, 127.1, 120.1, 115.7, 114.1, 113.1, 112.1, 96.1, 92.5, 87.8, 73.7, 71.1, 70.7, 56.0, 55.9, 55.6, 50.8, 36.7, 31.0; ESI: $m / z=617[\mathrm{M}+\mathrm{Na}]^{+}$. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{37} \mathrm{H}_{38} \mathrm{O}_{7} \mathrm{Na}$: 617.2515, found: 617.2532.

4.1.36. (S)-1,7-Bis(4-hydroxy-3-methoxyphenyl)-5-(methoxy methoxy)heptan-3-one 32b

Compound 31b ($0.45 \mathrm{~g}, 0.756 \mathrm{mmol}$) was converted into compound $\mathbf{3 2 b}(0.294 \mathrm{~g}, 93 \%)$ following the procedure adopted for the preparation of compound 17. $[\alpha]_{\mathrm{D}}^{25}=+5.7$ (c 1.4, CHCl_{3}); IR
(neat): $v_{\max } 3420,2929,2852,1709,1606,1515,1458,1369$, 1270, 1151, $1031 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 6.77$ (d, $J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 4 \mathrm{H})$, $5.33(\mathrm{~s}, \mathrm{OH}, 1 \mathrm{H}), 5.32(\mathrm{~s}, \mathrm{OH}, 1 \mathrm{H}), 4.58(\mathrm{ABq}, J=16.6,6.8 \mathrm{~Hz}$, $2 \mathrm{H}), 4.05-3.96(\mathrm{~m}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H})$, $2.78(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.67(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}) 2.64-2.37(\mathrm{~m}$, $4 \mathrm{H}), 1.80-1.69(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 208.2$, $146.4,143.9,143.7,133.6,132.8,120.8,114.3,114.2,111.0$, $110.9,96.3,73.9,55.8,55.6,48.3,45.6,37.0,31.2,29.2$; ESI: $m /$ $z=441[\mathrm{M}+\mathrm{Na}]^{+}$. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / z$ calcd for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{7} \mathrm{Na}$: 441.1889, found: 441.1895.

4.1.37. (S)-5-Hydroxy-1,7-bis(4-hydroxy-3-methoxyphenyl) heptan-3-one 33b

To a stirred solution of compound $\mathbf{3 2 b}(0.25 \mathrm{~g}, 0.597 \mathrm{mmol})$ in methanol (20 mL) was added a catalytic amount of $p \mathrm{TSA}$. The reaction mixture was stirred at room temperature for 6 h . Solid $\mathrm{NaH}-$ CO_{3} was added to neutralize the pTSA and filtered. The filtrate was concentrated under reduced pressure and purification by silica gel column chromatography (EtOAc/pet-ether, 8:2) and afforded 33b $\left(0.178 \mathrm{~g}, 80 \%\right.$) as a liquid. $[\alpha]_{\mathrm{D}}^{25}=+4.0$ (c $1, \mathrm{CHCl}_{3}$); IR (neat): $v_{\max } 3428,2931,1704,1604,1515,1457,1267,1163,1032 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 6.86(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}$, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.62(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 3 \mathrm{H}), 5.35(\mathrm{br} \mathrm{s}, \mathrm{OH}, 1 \mathrm{H}), 5.33$ (br s, OH, 1H), 4.03-3.91 (m, 1H), $3.88(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 2.80$ ($\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$), $2.67(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.62-2.44(\mathrm{~m}, 4 \mathrm{H}), 1.77-$ $1.52(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 211.4,146.3,144.1$, 133.6, 132.5, 129.6, 120.8, 120.7, 115.8, 114.3, 114.2, 111.0, 110.9, 66.8, 55.8, 49.3, 45.4, 38.3, 31.3, 29.2; ESI: $m / z=397$ $[\mathrm{M}+\mathrm{Na}]^{+}$. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{6} \mathrm{Na}$: 397.1627, found: 397.1645.

4.1.38. (3R,5S)-1,7-Bis(4-hydroxy-3-methoxyphenyl)heptane-3,5-diol 7

Compound $\mathbf{3 3 b}(0.07 \mathrm{~g}, 0.186 \mathrm{mmol})$ was converted into compound 7 ($0.054 \mathrm{~g}, 78 \%$) following the procedure adopted for the preparation of compound 2. $[\alpha]_{D}^{25}=0.0$ (c 0.5, EtOH); IR (neat): $v_{\max } 3443,2931,2860,1604,1514,1457,1265,1165$, $1032 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 6.77(\mathrm{~d}, \mathrm{~J}=9.1 \mathrm{~Hz}$, $2 \mathrm{H}), 6.66-6.61(\mathrm{~m}, 4 \mathrm{H}), 5.36$ (bs, OH, 2H), 3.99-3.88 (m, 1H), $3.87(\mathrm{~s}, 6 \mathrm{H}), 3.86-3.77(\mathrm{~m}, 1 \mathrm{H}), 2.74-2.50(\mathrm{~m}, 4 \mathrm{H}), 1.88-1.35$ $(\mathrm{m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 146.4,143.7,133.4$, $120.8,114.2,110.9,71.6,55.8,43.6,40.7,31.3$; ESI: $m / z=399$ $[\mathrm{M}+\mathrm{Na}]^{+}$. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{6} \mathrm{Na}$: 399.1783, found: 399.1793.

4.1.39. (3S,5S)-1,7-Bis(4-hydroxy-3-methoxyphenyl)heptane-3,5-diol 8

Compound 33b ($0.06 \mathrm{~g}, 0.160 \mathrm{mmol}$) was converted into compound $8(0.050 \mathrm{~g}, 84 \%)$ following the procedure adopted for the preparation of compound 3. $[\alpha]_{\mathrm{D}}^{25}=-13.5$ (c 0.5, EtOH); IR (neat): $v_{\max } 3443,2931,2860,1604,1514,1457,1265,1165,1032 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 6.77(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.67-6.60$ $(\mathrm{m}, 4 \mathrm{H}), 5.33(\mathrm{bs}, \mathrm{OH}, 2 \mathrm{H}), 4.10-4.01(\mathrm{~m}, 1 \mathrm{H}), 3.97-3.89(\mathrm{~m}, 1 \mathrm{H})$, $3.88(\mathrm{~s}, 6 \mathrm{H}), 2.79-2.49(\mathrm{~m}, 4 \mathrm{H}), 1.92-1.52(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $75 \mathrm{MHz}): \delta 146.4,143.7,133.6,120.9,114.2,110.9,68.9,55.8,43.8$, 40.1, 31.8; ESI: $m / z=399[\mathrm{M}+\mathrm{Na}]^{+}$. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{6} \mathrm{Na}$: 399.1783, found: 399.1793.

Acknowledgments

C.H.S., T.R.M.R. and K.Y.G. thank UGC-New Delhi for the award of fellowship. Author acknowledges the partial support by King Saud University for Global Research Network for Organic Synthesis (GRNOS).

References

1. Kikuzaki, H.; Tasi, S.-M.; Nakatani, N. Phytochemistry 1992, 31, 1783-1786.
2. Zhou, S.; Liang, H.; Cai, S.-Q.; Zhao, Y.-Y. J. Chin. Pharm. Sci. 2007, 16, 24-26.
3. Chen, H.; Zhou, A. X.; Guo, S. Y., et al Chin. J. Exp. Trad. Med. Form. 1999, 5, 1215.
4. (a) Kunnumakkara, A. B.; Anand, P.; Aggarwal, B. B. Cancer Lett. 2008, 269, 199225; (b) Duvoix, A.; Blasius, R.; Delhalle, S.; Schnekenburger, M.; Morceau, F.; Henry, E.; Dicato, M.; Diederich, M. Cancer Lett. 2005, 223, 181-190; (c) Hatcher, H.; Planalp, R.; Cho, J.; Torti, F. M.; Torti, S. V. Cell. Mol. Life Sci. 2008, 65, 1631-1652.
5. Schraufstatter, E.; Bernt, H. Nature 1949, 164, 456-457.
6. Kiuchi, F.; Goto, Y.; Sugimoto, N.; Akao, N.; Kondo, K.; Tsuda, Y. Chem. Pharm. Bull. 1993, 41, 1640-1643.
7. Chareonkla, A.; Pohmakotr, M.; Reutrakul, V.; Yoosook, C.; Kasisit, J.; Napaswad, C.; Tuchinda, P. Fitoterapia 2011, 82, 534-538.
8. Kikuzaki, H.; Kobayashi, M.; Nakatani, N. Phytochemistry 1991, 30, 3647-3651.
9. Keck, G. E.; Tarbet, K. H.; Geraci, L. S. J. Am. Chem. Soc. 1993, 115, 8467-8468.
10. Gibtner, T.; Hampel, F.; Gisselbrecht, J.-P.; Hirsch, A. Chem. Eur. J. 2002, $68,408$.
11. Corey, E. J.; Fuchs, P. L. Tetrahedron Lett. 1972, 13, 3769.
12. Chen, K.; Hardtmann, G. E.; Prasad, K.; Repic, O.; Shapiro, M. J. Tetrahedron Lett. 1987, 28, 155-158.
13. (a) Evans, D. A.; Chapman, K. T.; Carreira, E. M. J. Am. Chem. Soc. 1988, 110 , 3560-3578; (b) Evans, D. A.; Chapman, K. T. Tetrahedron Lett. 1986, 27, 59395942.
14. (a) Rychnovsky, S. D.; Skalitzky, D. J. Tetrahedron Lett. 1990, 31, 945-948; (b) Evans, D. A.; Rieger, D. L.; Gage, J. R. Tetrahedron Lett. 1990, 39, 7099-7100.
15. (a) Crimmins, M. T.; Chaudhary, K. Org. Lett. 2000, 2, 775; For the Crimmins aldol approach see: (b) Crimmins, M. T.; King, B. W.; Tabet, E. A.; Chaudhary, K. J. Org. Chem. 2001, 66, 894.
16. For the synthesis of the N-acetylthiazolidinethione complex see: Yadav, J. S.; Naveen Kumar, V.; Srinivasa Rao, R.; Srihari, P. Synthesis 2008, 1938-1942.

[^0]: * Corresponding author. Tel.: +91 40 27191629; fax: +91 4027160512.

 E-mail address: gowravaramsr@yahoo.com (G. Sabitha).

