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ABSTRACT: An environmentally benign approach for the synthesis of vinylogous esters from 

1,3-diketone and its reverse reaction  under continuous flow has been developed with alcohols in 

the presence of inexpensive Amberlyst®-15 as a catalyst. This methodology is highly selective 

and general for a range of cyclic 1,3-dicarbonyl compounds which gives a library of linear 

alkylated and arylated vinylogous esters in good to excellent yield under solvent and metal free 

condition. Furthermore, the long-time experiment in a continuous-flow up to 40 hrs afforded 8.0 

g of the vinylogous ester with TON = 28.6 and TOF = 0.715 h
-1

 using Amberlyst-15 as a 

catalyst. Furthermore, a continuous flow sequential transetherification of vinylogous esters with 

various alcohols has been achieved in high yield. Reversibly, this vinylogous ester was 

deprotected or hydrolysed into ketone using environmentally benign water as a solvent and 

Amberlyst-15 as a catalyst under continuous flow process. 

KEYWORDS: Vinylogous Esters, Transetherification, Vinylogous ethers Hydrolysis, Reverse 

Reaction, Continuous Flow Reaction, Amberlyst-15 

INTRODUCTION: 

Functional group interconversions (FGI) are the imperative reactions in organic synthesis and 

among the most common synthetic methods. The development of new strategy for the 

protection/deprotection of functional groups in chemical synthesis remains attractive research 

area and wide array of synthetic methodologies continuing to be reported.
1
 The vinylogous esters 

are considered as a versatile and reactive key intermediates in many chemical transformations 

due to their ability to undergo FGI.
2
 Numerous studies have been performed to convert β-keto-

vinylogous esters into other functional groups, such as C-C bond formation
3
 (coupling reactions), 

ene reaction,
4
 cycloaddition,

5
 oxidation,

6
 homologation,

7
 acid catalyzed reactions with acetals or 
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 4 

ketals to give aldol-type adducts, and other reactions
7
 (Scheme 1). The widespread applications 

in the synthesis of natural products,
8
 bioactive molecules,

9
 and materials

10
 make β-keto-

vinylogous esters promising precursor in synthetic organic chemistry. A plethora of synthetic 

methods are available for the synthesis of β-keto-vinylogous esters starting from di-keto 

compounds and alcohols using stoichiometric or catalytic pathway.
11

 The use of stoichiometric 

strong organic acids, higher temperature, and longer reaction time precludes their use with the 

substrate bearing sensitive functionalities. 

 

Scheme 1. The versatility of cyclic vinylogous ester 

The vinylogous esters are reactive functional groups towards the acids (Brönsted and Lewis), 

which has been prepared in the presence of stoichiometric/catalytic acid with great care i.e. 

continuous removal of water being produced in this transformation is required. This is due to the 

equilibrium between ketone and vinylogous ester under prolonged acidic reaction condition in 

Page 4 of 39

ACS Paragon Plus Environment

Organic Process Research & Development

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 5 

the presence of water. Further, this reversible nature of the vinylogous esters renders direct 

impact on the yield and stability of the vinylogous esters in the course of the reaction.  

Continuous-flow chemistry has emerged as a powerful process intensification technology for 

various synthetic transformations
12

 which comprises several advantages includes precise control 

of reaction time, temperature, concentration and stoichiometry. As a result, it obeys the many of 

the green chemistry principles such as reduced energy requirements and time, minimized 

exposure to hazardous chemicals or reactive intermediates and avoids the generation of 

unwanted by-products and waste. Consequently, manufacturing of bulk chemicals, 

pharmaceuticals, and petrochemicals has been carried out in a continuous passion. This machine-

assisted approach is very useful to avoid labor-intensive practices and gives access to work on 

24/7 regime. Furthermore, it permits to access safer and greener route along with on-demand 

synthesis as a choice. 

Thus, we envision in developing the reactive vinylogous ester synthesis under continuous flow 

in shorter duration; which can shift the equilibrium into vinylogous ester avoiding the prolonged 

exposure to hydrated acidic condition.  To overcome the drawbacks mentioned above, catalysis 

integrated with continuous-flow often has the superior choice due to greater selectivity, increased 

safety, improved yield, and expeditious nature. In an extension of our efforts to develop greener 

and efficient process for the valuable chemical synthesis, we have anticipated the synthesis of 

chemically important intermediate vinylogous esters in a continuous flow. 
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 6 

 

Scheme 2. Present studies on the synthesis of enol ether, reverse reaction and trans-

etherification in continuous flow. 

Herein, we report, Amberlyst®-15 as the H
+
 source, catalyzed the synthesis of β-keto-

vinylogous esters, transetherification and there reverse reaction in continuous flow using simple 

and ample precursors such as di-keto compounds, alcohols and water (Scheme 2). To the best of 

our knowledge, this is the first report on the selective synthesis of β-vinylogous esters in a 

continuous flow process using Amberlyst®-15 as a supported catalyst. 

RESULTS AND DISCUSSION 

In the course of our investigation, we have chosen cyclohexane-1,3-dione and ethanol as a 

model substrate. Initially, we do not observe any product in control experiments which were 

performed in the absence of any acidic source at room temperature and 80 
o
C (Table 1, entry 1-

2). The addition of 25 mg of amberlyst-15 in 0.5 mmol ketone and 2 mL ethanol at room 

temperature afforded 2a, in 72% isolated yield (Table 1, entry 3). Higher yield for the formation 

of 2a was observed when increasing the catalyst concentration to 50 mg at room temperature and 

heating at 60 
o
C (Table 1, entries 4-5). 

 

Page 6 of 39

ACS Paragon Plus Environment

Organic Process Research & Development

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 7 

Table 1. Optimization of reaction conditions in batch 

 

 

 

entry catalyst 

in (mg) 

temp (
o
C) time yield 

(%) 

1 - rt 5 h no reaction 

2 - 80 5 h no reaction 

3 25  rt 5 h 72 

4 50 rt 5 h 76 

5 50 60 5 h 82 

6 50 80 5 h 88 

Reaction condition: 1,3-cyclohexanedione  (0.5 mmol), amberlyst-15, and ethanol (2 mL)  

were stirred at specified temperature. 

 

Tfable 2 Optimization of reaction conditions in continuous-flow
a
 

 

Entry flow rate  

in (mL) 

temp 

 (
o
C) 

substrate 

concentration 

(M) 

tR/number 

of runs 

yield 

(%) 

1 0.3 rt 0.2 M 4.6/1 48 

2 0.3 Rt 0.2 M 4.6/2 93 
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 8 

3 0.3 60 0.1 M 4.6/1 95 

4 0.3 80 0.2 M 4.6/1 73 

5 0.3 100 0.2 M 4.6/1  86 

5 0.2 80 0.2 M 6.8/1 93 

6 0.2 100 0.2 M 6.8/1 88 

7 0.3 80 0.15 M 4.6/1 83 

8 0.3 80 0.1 M 4.6/1 99 

9 0.5 80 0.1 M 2.7/1 78 

10
b
 0.3 80 0.1 M 4.6/1 72 

a
Reaction condition: 0.1 molar solution of 1a in ethanol were prepared and was flown through 

the 6.6 x 150 mm Omnifit® packed bed reactor (628 mg of Amberlyst-15, 4 cm bed height) 

(Vapourtec R-series) at a specified temperature, tR= residence time in minute.
b
 Reaction carried 

out using Amberlite-120. The mentioned yields are isolated yields. 

However, a slight improvement in yield (88%) was observed when the reaction mixture heated 

at 80 
o
C (Table 1, entry 6). With these optimized conditions in the batch, we sought to transform 

them in a continuous flow. 

 

 

Figure 1. Full setup for continuous-flow reactor 
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 9 

Initial optimization was performed at room temperature with one and two runs with 0.3 mL 

flow rate and 0.2 M concentration, which provided 48 and 93% isolated yield of the product 2a 

(Table 2, entries 1-2). To check the effect of temperature, flow rate, and concentration various 

experiments were performed, and results are summarized in Table 2 (entries 3-9). For instance, 

0.1 M solution of 1a in ethanol at 0.3 mL flow rate at 60 
o
C afforded 95% of product 2a (Table 

2, entry 3). Later, decrease in yield was observed when the concentration increased to 0.2 M at 

80 
o
C and 100 

o
C (Table 2, entries 4, 5). Finally reaction with 0.3 mL flow rate and 0.1 M 

solution at 80 
o
C proven to be the best-optimized condition which afforded 2a (99%) in 4.6 

minutes of residence time (tR) (Table 2, entry 8). The use of other resin viz Amberlite-120 

afforded 2a in 72% yield (Table 2, entry 10). 
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 10 

 

 

Scheme 3. Substrate scope for β-keto-enol ether in continuous-flow. Reaction condition: 0.1 

molar solution of 1,3-diketone 1 in alcohol was prepared and 0.3 mL/min was flown through the 

6.6 x 150 mm Omnifit® packed bed reactor (628 mg of Amberlyst-15, 4 cm bed height, 

residence time tR = 4.6 min) (Vapourtec R-series) at 80 
o
C. 
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 11 

With these investigations, the generality of the reaction was explored with a variety of alcohols 

using different di-keto compounds. The reaction of cyclohexane-1,3-dione with linear alcohols 

such as ethanol, methanol, propanol, butanol, hexanol and octanol afforded an excellent yield of 

the products (Scheme 3, 2a-2f). Furthermore, the reaction of secondary alcohol iso-propyl 

alcohol with the diketone afforded 2g excellent yield (Scheme 3). To our delight, this reaction is 

not only restricted to aliphatic alcohols, the reaction of benzyl alcohol and allyl alcohol with 

cyclohexane-1,3-dione provided 3-(benzyloxy)cyclohex-2-en-1-one 2h and 3-

(allyloxy)cyclohex-2-en-1-one 2i in very good yield. Additionally, we have extended the 

reaction scope with 5,5-dimethylcyclohexane-1,3-dione and  cyclopentane-1,3-dione using linear 

or branched alcohols to yield 2j-2p in excellent yield. However, the reaction of isatin with 

ethanol and propanol provided 3,3-dialkoxyindolin-2-one 2q and 2r in very good yield (Scheme 

3). Interestingly, reaction of acyclic 1,3-dicarbonyl compounds with methanol and propanol 

under similar reaction condition afforded the respective ketal 2s and 2t in 86% and 96% yield 

respectively (Scheme 3). 

 

 

Scheme 4. Gram-scale synthesis in continuous flow 
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Figure 2. 
1
H-NMR monitoring of the reaction in long run experiments; (a) after 2 h,( b) after 10 

h, (c) after 20 h.  

(a) 

(b) 

(c) 
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 13 

 Figure 3. Continuous-flow synthesis of 2a over 40 hrs. 

To show the stability and efficiency of the Amberlyst-15, we have performed long time 

experiment in continuous flow. The substrate 1a and ethanol was chosen as a model substrate for 

this purpose. For instance, 72.12 mmol of reactant was pumped continuously for 40 hrs with a 

flow rate of 0.3 mL/min to afford 57.22 mmol of product with TON (turnover number) = 28.61 

and TOF (turnover frequency) = 0.715 h
-1

 (Scheme 4). The conversion of the product 2a was 

determined by using 
1
H-NMR, clearly indicates that up to 20 hrs of continuous flow synthesis 

led to compound 2a in >94% yield (Figure 2). Continuing the synthesis after 20 hrs, the yield is 

slightly decreased to 90% after 40 hrs. Periodically, the yield of the continuous flow synthesis of 

2a was monitored by 
1
H-NMR and accounted in Figure 3. Although we have stopped our 

reaction after 40 hrs, the catalyst is still affording 90% of the product 2a. This clearly shows that 

the Amberlyst-15 is still active for this transformation. Although it is known that significant loss 

in activity of Amberlyst-15 for the other chemical transformation,
16

 we found that very nominal 

loss in activity was observed over longer period of the reaction.  
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Table 3. Optimization of reaction conditions in continuous-flow 

 

 

 

entry conc of 

1a 

conc. of 

benzyl 

alcohol 

solvent flow rate 

in mL 

time 

 

yield 

(%) 

Batch conditions (conc in mmole)
a
 

1 0.5 0.5 1,4-dioxane - 1.5 hrs 80 

2 0.5 0.5 Toluene - 1.5 hrs 90 

3 0.5 0.5 THF - 1.5 hrs 75 

Flow conditions (benzyl alcohol conc in molar)
b
 

4 1 mmol 0.1 M 1,4-dioxane 0.3 4.6 min trace 

5 1 mmol 0.3 M 1,4-dioxane 0.3 4.6 min 50 

6 1 mmol 0.5 M 1,4-dioxane 0.3 4.6 min 65 

Reaction conditions: 
a
0.5 mmol of 1a + 0.5 mmole of benzyl alcohol and 2ml solvent + 

amberlyst-15 (50 mg) were heated at 80 
o
C in a resealable tube for 2 hrs.  

b
1 mmole of 1a was 

dissolved in + 0.1 M, or 0.3 M or 0.5 M solution of benzyl alcohol were flown through the 

Omnifit® packed bed reactor (628 mg of Amberlyst-15, 4 cm bed height, for residence time tR, 
see table) (Vapourtec R-series) at 80 

o
C. 

To avoid excess usage of special alcohols, further optimizations of the reaction especially for 

the highly viscous alcohols were performed using co-solvent and the optimised results are shown 

in Table 3. Under this optimized conditions, alcohol bearing sensitive alkyne functionality was 

worked efficiently to afford 3-(but-2-yn-1-yloxy)cyclohex-2-en-1-one 2u in 76% yield (Scheme 

5). Similar reaction with cyclopentane-1,3-dione afforded the respective vinylogous ester 2v in 

65% yield.  Secondary alcohols such as 3-pentanol, 2-hexanol and 1-phenylethanol were also 

successfully reacted well to afford β-vinylogous esters 2w-y in moderate yield (Scheme 5). 
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 15 

 

Scheme 5. Substrate scope for β-keto enol ether in continuous-flow. Reaction condition: 1 

mmole of 1a was dissolved in 0.1 M solution of alcohol in 1,4-dioxane (10 mL) and was flown 

through the 6.6 x 150 mm Omnifit® packed bed reactor (628 mg of Amberlyst-15, 4 cm bed 

height, residence time tR = 4.6 min) at 80 
o
C. 

Use of water as a reagent as well as solvent for the chemical transformation is one of the 

attractive goals in green chemistry. In this aspect, the reversible transformation of vinylogous 

ester to the dicarbonyl compounds is one of the important transformation catalysed by acid.
13

 

Therefore, we sought to achieve the reversible transformation i.e. selective and milder hydrolysis 

of vinylogous ester under environmentally benign continuous flow approach. To achieve 

hydrolysis of vinylogous ester under continuous flow, a set reaction was attempted (Scheme 6). 

Thus, vinylogous ester 2a was allowed to hydrolysis in the presence of water, led 10% yield after 

4 hrs under batch condition.  Addition of stoichiometry Amberlyst-15 in the same reaction, a 

complete conversion of 2a was observed in to ketone 1a after 3 hours. Interestingly, vinylogous 

esters 2a and 2b are highly soluble in water, which were flown (0.1M, 0.1 mL/min, tr = 13.6 

min) in to the Omnifit column reactor prepacked with the Amberlyst-15, results in >98% 
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 16 

conversion to ketone (Scheme 6). However, compounds 2c, d, l and o were not soluble in water. 

As a result of vinylogous ester insoluble in water, these compounds were dissolved 1:1 mixture 

of water and ACN, flown into the reactor afforded the 48-52% conversion of the ketone under 

continuous flow (Scheme 6). Interestingly, water suspension of these compounds was flown into 

the Omnifit column reactor prepacked with the Amberlyst-15, which led rapid hydrolysis to 

afford the1,3-diketone in >95% yield. Similarly, ketal derivatives 2s and 2t were also flown into 

the column reactor for the hydrolysis to give the respective dicarbonyl compounds in >98% 

yield. 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 6. Continuous-flow hydrolysis of vinylogous ester using water and Amberlyst-15. 

Reaction condition: 0.1 M solution of 2 in water was flown (0.1 mL/min) through the 6.6 x 150 

mm Omnifit® packed bed reactor (628 mg of Amberlyst-15, 4 cm bed height) at room 

temperature (Residence time tR = 13.6 min). 
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Transetherification
14

 is an important transformation in organic synthesis due to its reactivity 

and easy accessibility.  Developing environmentally benign approach for the transetherification 

is important aspect in chemical process. Thus, transetherification using vinylogous ester under 

continuous flow mode was investigated (Scheme 7). For this study, vinylogous ester 2b was 

chosen as a model substrate and set of conditions were attempted. The optimised condition for 

the trans-etherification was established by flowing 0.3 mL/min of the 0.1 M solution of 

vinylogous ester in ethanol to the Omnifit column reactor prepacked with the Amberlyst-15 and 

heated at 80 
o
C to afford the vinylogous ester 2a in 92% yield (Scheme 7). Under similar 

experimental condition and flow rate, vinylogous ester 2b was transetherified using propanol 

solvent to give the vinylogous ester 2c in 93% yield (Scheme 7). Similarly, continuous 

transetherification was carried to the vinylogous ester 2e in 84% yield (for two consecutive 

transetherification steps) in continuous flow mode. Finally, hexyl group exchanged with the 

methyl via transetherification of vinylogous ester 2e in methanol under continuous flow process 

to afford the corresponding vinylogous ester 2b in 92% yield (Scheme 7). Furthermore, these 

transetherification of vinylogous ester was performed in gram under continuous flow. 
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Scheme 7. Transetherification of vinylogous ester using alcohols under continuous-flow 

The mechanism of the amberlyst-15 mediated transetherification of vinylogous ester is 

proposed in Scheme 8. Initially protonation of the C=O of the cyclic vinylogous ester A to give 

the intermediate B. The absence of the C=O functional group of the reaction mixture in the IR-

spectra clearly indicate the formation of the intermediate B (Figure 4 (ii)). The interemediate B is 

resonance stabilised to generate the intermediates C and D. Further, the oxonium intermediate D 

is attacked by the alcohol to afford the ketal intermediate E. The HRMS spectra of the 

amberlyst-15 mediated reaction of A and n-propanol shows peak at m/z 200.1308 confirms the 

formation of the intermediate E (Figure 4 (iii)). Finally, the keto-enol taumerism assisted 

elimination of ethanol from the the intermediate E to form the transetherified product F. 
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Scheme 8. Plausible mechanism for the transetherification of vinylogous ester using alcohol 
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ii)  
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Figure 4. Mechanistic evidences; (i) IR spectra of 2a; (ii) IR spectra of transetherification 

reaction mixture; (iii) HR-MS spectra of reaction mixture. 

CONCLUSIONS 

In conclusion, we have developed environmentally benign approach for the synthesis of 

vinylogous ester from commercially available 1,3-diketone using Amberlyst-15 under 

continuous flow mode. This process has been generalised with variety of vinylogous esters 

tethered by aliphatic, alkene, alkyne and aromatic substituents with rapid access (tR = 4.6 min) in 

excellent yield with high selectivity. The long-time studies in a continuous-flow up to 40 hrs 
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revealed the efficiency of the Amberlyst-15 catalyst with TON= 28.6 and TOF= 0.715 h
-1

, which 

generated 8 g of vinylogous ester in 40 hrs continuous synthesis. This methodology was also 

extended for continuous transetherification of vinylogous ester to another vinylogous ester in 

higher yield under continuous flow mode. Interestingly, the possible reverse reaction of 

vinylogous esters to ketones (hydrolysis of vinylogous ester) was achieved effectively under 

continuous flow process. Mechanism for the transetherification was also proposed with the 

experimental evidences. 

EXPERIMENTAL SECTION 

General information and data collection: 

All the chemicals were purchased from Sigma Aldrich and SD Fine Chemicals and used without 

further modification. All solvents were purchased from Rankem and Finar Chemicals. 

Deuterated solvents were used as received. Column chromatographic separations performed over 

100-200 Silica-gel. Visualization was accomplished with UV light and/or PMA stain followed 

by heating. The flow chemistry experiments were carried on Vapourtec R-series with glass 

column (Omntifit, 6.6 x 150 mm). 
1
H and 

13
C NMR spectra were recorded on 400 and 100 MHz 

respectively, using a Bruker 400 MHz or JEOL 400 MHz spectrometers. Abbreviations used in 

the NMR follow-up experiments: b, broad; s, singlet; d, doublet; t, triplet; q, quartet; m, 

multiplet. High resolution mass spectra were obtained with Waters-synapt G2 using electrospray 

ionization (ESI). Fourier-transform infrared (FT-IR) spectra were obtained with a Bruker Alpha-

E Fourier transform infrared spectrometer. 

A) General procedure for preparation of vinylogous esters ether compounds by using 

Amberlyst-15 under batch reaction: 
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In a 20 mL glass tube, 1,3-cyclohexadione (56 mg, 0.5 mmol) and Amberlyst-15 (50 mg) were 

added to alcohol (2 mL) and the tube was sealed using a crimper. The reaction mixture was 

stirred at 80 °C for 5 hrs. After cooling to room temperature, the reaction mixture was filtered 

and washed with DCM. The organic layer was concentrated under reduced pressure and the 

residue was subjected to column chromatography purification (EtOAc : n-hexane = 25:75) 

afforded cyclic vinylogous esters ether as a pure compound 2. Similar reaction protocol was 

followed for the synthesis of other cyclic vinylogous ester derivatives by taking 1,3-cyclic 

diketone (0.5 mmol) and 50 mg of Amberlyst-15 (50 mg). 

B) General procedure for preparation of vinylogous esters by using Amberlyst-15 under 

continuous flow: 

0.1 M solution of the 1,3-cyclodiketone (1 mmol in 10 mL alcohol) was flown through the 

packed bed reactor (Omnifit®, 6.6 mm i.d. × 150.0 mm length) loaded with amberlyst-15 up to 4 

cm (628 mg, swollen up to 6 cm after passing solvent) of bed heated at 80 
o
C temperature at 3.3 

bar pressure. The organic layer was concentrated under reduced pressure and the residue was 

subjected to column chromatography (EtOAc : n-hexane = 25:75) purification afforded 

corresponding vinylogous esters compounds. 

C) General procedure for preparation of vinylogous esters using alcohol and 1,3-diketone 

in the presence of Amberlyst-15 under continuous flow: 

0.5 M solution of alcohol was made with 1,4-dioxane. 0.1 M solution of the 1,3-cyclodiketone (1 

mmol in 10 mL of 0.5 M alcohol solution) was flown through the packed bed reactor (Omnifit®, 

6.6 mm i.d. × 150.0 mm length) loaded with amberlyst-15 up to 4 cm (628 mg, swollen up to 

5.5cm after passing solvent) of bed heated at 80 
o
C temperature at 3.3 bar pressure. The organic 
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layer was concentrated under reduced pressure followed by column chromatography (EtOAc : n-

hexane = 10:90) purification afforded corresponding vinylogous esters. 

D) General procedure for transetherification of vinylogous esters using alcohol in the 

presence of Amberlyst-15 under continuous flow: 

   0.1 M solution of 3-ethoxycyclohex-2-en-1-one (2a, 4mmol) was prepared in n-propanol (30 

mL) and flown (0.3 mL/min) through the packed bed reactor (Omnifit®, 6.6 mm i.d. × 150.0 mm 

length) loaded with amberlyst-15 up to 4 cm (628 mg, swollen up to 6 cm after passing solvent) 

of bed heated at 80 
o
C temperature at 3.3 bar pressure. The organic layer was concentrated under 

reduced pressure to get the vinylogous ester product. Further, the residue was made 0.1 M 

solution in n-butanol and the above procedure was repeated to afford corresponding vinylogous 

esters. In a similar manner, sequential transetherification of vinylogous esters has been achieved 

using solvent n-hexanol, methanol and ethanol. In all the reactions, the starting material of 

vinylogous ester was completely converted to other vinylogous esters. 

E) General procedure for hydrolysis of vinylogous esters under continuous flow: 

0.1 M solution vinylogous esters or ketal (0.5 mmol) was prepared in water (5 mL) and flown 

through packed bed reactor (Omnifit®, 6.6 mm i.d. × 150.0 mm length) loaded with amberlyst-

15 up to 4 cm (628 mg, swollen up to 6 cm after passing solvent) of bed at room temperature at 

1.2 bar pressure having flow rate 0.1 mL/min. The reaction was monitored by TLC and the 

reaction fraction was concentrated in rotary evaporator to afford 1,3-cyclohexadione. 

F) Study of life time of catalyst and gram scale synthesis of vinylogous esters: 

The gram scale synthesis of vinylogous esters was prepared by using general procedure B. 0.1 M 

solution of 1,3-cyclohexadione (8.085 g in 720 mL ethanol) was prepared and flown through 

packed bed reactor (Omnifit®, 6.6 mm i.d. × 150.0 mm length) loaded with amberlyst-15 up to 4 
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cm (628 mg, swollen up to 6 cm after passing solvent) of bed heated at 80 
o
C temperature at 3.3 

bar pressure for 40 hrs. The reaction mixture was monitored periodically by 
1
H-NMR analysis. 

All the reaction fraction was concentrated in rotary evaporator to afford 8.112 gm of vinylogous 

esters 2a as a yellowish oil. 

G) Experimental procedure for detection of intermediate in transetherification reaction: 

In a 20 mL of glass tube, 3-ethoxycyclohex-2-en-1-one (2a, 0.5 mmol) was taken in n-propanol 

(2 mL) followed by amberlyst-15 and the tube was sealed using a crimper. The reaction mixture 

was stirred for 1 hr at room temperature. The reaction mixture was directly taken in syringe and 

the IR and HRMS analysis for the reaction mixture was recorded. 

H) Analytical data for the product: 

3-ethoxycyclohex-2-en-1-one (2a)
16

 was synthesized by following the experimental procedure B 

using 1,3-cyclohexadione (0.1 M solution in 10 mL ethanol) afforded 99% (138.5 mg) as a 

yellowish oil compound. 
1
H NMR (400 MHz, CDCl3) δ 5.28 (s, 1H), 3.84 (q, J = 6.8 Hz, 2H), 

2.34 (t, J = 6.4 Hz, 2H), 2.27 (t, J = 6.8 Hz, 2H) 1.94-1.88 (m, 2H), 1.30 (t, J = 6.8 Hz, 2H); 
13

C 

NMR (100 MHz, CDCl3) δ 199.78, 177.90, 102.67, 64.15, 36.75, 29.08, 21.25, 14.12; FT-IR: 

2954.24, 1728.68, 1598.77, 1412.65, 1314, 1222.42, 1125.60, 1091.52, 769.23 568.24 cm
-1

; 

HRMS (ESI) m/z calculated for C8H12O2 (M+H)
+
: 141.0916, found: 141.0925. 

3-methoxycyclohex-2-en-1-one (2b)
17

 was synthesized by following the experimental procedure 

B using 1,3-cyclohexadione (0.1M solution in 10 mL methanol) afforded 99% (124.8 mg) as a 

yellowish oil compound. 
1
H NMR (400 MHz, CDCl3) δ 5.37 (s, 1H), 3.69 (s, 3H), 2.40 (t, J = 

6.4 Hz, 2H), 2.34 (t, J = 6.4 Hz 2H), 2.01-1.94 (m, 2H); 
13

C NMR (100 MHz, CDCl3,) δ 199.99, 

178.90, 102.48, 55.75, 36.86, 28.96, 21.36; FT-IR (neat): 2953.87, 2315.29, 1724.89, 1590.46, 

1458.78, 1369.83, 1226.41, 1179.69 1060.78, 753.04, 601.90 cm
-1

; HRMS (ESI) m/z calculated 

for C7H10O2 (M+H)
+
: 127.0759, found: 127.0762. 

3-propoxycyclohex-2-en-1-one (2c)
18

 was synthesized by following the experimental procedure 

B using 1,3-cyclohexadione (0.1 M solution in 10 mL propanol) afforded 97% (149.3 mg) as a 

yellowish oil compound. 
1
H NMR (400 MHz, CDCl3) δ 5.34 (s, 1H), 3.78 (t, J = 6.4 Hz, 2H), 
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2.39 (t, J = 6.4 Hz, 2H), 2.33 (t, J = 6.4 Hz, 2H), 2.00-1.93 (m, 2H), 1.78-1.70 (m, 2H), 0.98 (t, J 

= 7.2 Hz, 3H); 
13

C NMR (100 MHz, CDCl3) δ 200.04, 178.27, 102.81, 70.13, 36.87, 29.16, 

22.02, 21.37, 10.52; FT-IR:  2952.28, 1727.07, 1601.11, 1453.93, 1380, 1232.65, 1183.99, 

1001.03, 758.03, 597.32 cm
-1

; HRMS (ESI) m/z calculated for C9H14O2 (M+H)
+
: 155.1072, 

found: 155.1078. 

3-butoxycyclohex-2-en-1-one (2d) was synthesized by following the experimental procedure B 

using 1,3-cyclohexadione (0.1 M solution in 10 mL n-butanol), afforded 85% (142.4 mg) as a 

yellowish oil compound. 
1
H NMR (400 MHz, CDCl3) δ 5.31 (s, 1H), 3.79 (t, J = 6.4 Hz, 2H), 

2.36 (t, J = 6.4 Hz, 2H), 2.30 (t, J = 6 Hz, 2H), 1.97-1.90 (m, 2H), 1.70-1.63 (m, 2H), 1.43-1.34 

(m, 2H), 0.91 (t, J = 7.2 Hz, 1H); 
13

C NMR (100 MHz, CDCl3) δ 199.84, 178.14, 102.73, 68.33, 

36.81, 30.58, 29.11, 21.31, 19.19, 13.75; FT-IR (neat): 2954.40, 2879.20, 2313.28, 1724.37, 

1593.24, 1461.02, 1222.62, 1181.79, 1065.22, 748.22, 667.12 cm
-1

; HRMS (ESI) m/z calculated 

for C10H16O2 (M+H)
+
:169.1229 found: 169.1238. 

3-(hexyloxy)cyclohex-2-en-1-one (2e) was synthesized by following the experimental procedure 

of trans etherification using 3-butoxycyclohex-2-en-1-one (2d) in (0.1 M solution in 25 mL of n-

hexanol ) afforded 95% (462.5 mg) as a yellowish oil compound. 
1
H NMR (400 MHz, CDCl3) δ 

5.34 (s, 1H), 3.82 (t, J = 6.4 Hz, 2H), 2.40 (t, J = 6.4Hz, 2H), 2.34 (t, J = 6Hz, 2H), 2.01-1.94 (m, 

2H), 1.75-1.68 (m,2H), 1.42-1.29 (m, 6H), 0.9 (t, J = 6.8 Hz, 3H); 
13

C NMR (100 MHz, CDCl3) 

δ 200.03, 178.27, 102.84, 68.75, 36.90, 31.57, 29.20, 28.63, 25.74, 22.67, 21.39, 14.13; FT-IR: 

2944.26, 2834.76, 2310.19, 1718.52, 1589.98, 1465.80, 1298.50, 1110.66, 1034.34, 786.44, 

610.97 cm
-1

; HRMS (ESI) m/z calculated for C12H20O2 (M+H)
+
: 197.1463, found: 197.1469. 

3-(octyloxy)cyclohex-2-en-1-one (2f) was synthesized by using syringe pump. Due to high 

viscosity of octanol, Vapourtec R-series pump was not able to flow the n-octanol. 1,3-

cyclohexadione (0.1 M solution in 10 mL octanol) was taken in syringe and flown through 

reactor bed at 0.3 mL /min, at 80 
o
C temperature, afforded 94% (210.3 mg) as a yellowish oil 

compound. 
1
H NMR (400 MHz, CDCl3) δ 5.33 (s, 1H), 3.80 (t, J = 6.8 Hz, 2H), 2.39 (t, J = 6.4 

Hz, 2H), 2.33 (t, J = 6 Hz, 2H), 1.99-1.93 (m, 2H), 1.74-1.64 (m, 2H), 1.37-1.22 (m, 10H), 0.87 

(t, J =7.2 Hz, 3H); 
13

C NMR (100 MHz, CDCl3) δ 200.23, 178.21, 102.78, 68.69, 36.84, 31.83, 

29.29, 29.23, 29.14, 28.59, 26.00, 22.71, 21.33, 14.16; FT-IR (neat): 2929.90, 2862.30, 2314.45, 
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1727.50, 1592.35, 1461.24, 1233.15, 1184.78, 1090.23, 756.55, 607.87 cm
-1

; HRMS (ESI) m/z 

calculated for C14H24O2 (M+H)
+
: 225.1855, found: 225.1861. 

3-isopropoxycyclohex-2-en-1-one (2g)
19

 was synthesized by following the experimental 

procedure B using 1,3-cyclohexadione (0.1M solution in 10 mL propan-2-ol), afforded 87% 

(134.1 mg) as a yellowish oil compound. 
1
H NMR (400 MHz, CDCl3) δ 5.32 (s, 1H), 4.45-4.36 

(m, 1H), 2.34 (t, J = 6.4Hz, 2H), 2.31 (t, J = 6.8 Hz, 2H), 1.97-1.91 (m, 2H), 1.27 (d, J = 6 Hz, 

6H); 
13

C NMR (100 MHz, CDCl3) δ 200.02, 177.10, 103.09, 71.26, 36.79, 29.66, 21.57, 21.31; 

FT-IR (neat): 2978.67, 2310.65, 1730.60, 1641.95, 1595.51, 1461.11, 1230.90, 1187.26, 

1000.27, 757.95, 608.98 cm
-1

; HRMS (ESI) m/z calculated for C9H14O2 (M+H)
+
: 155.1072, 

found:155.1078. 

3-(benzyloxy)cyclohex-2-en-1-one (2h)
20

 was synthesized by following the experimental 

procedure B using 1,3-cyclohexadione (0.1M solution in 10 mL benzylalcohol), afforded 80% 

(161.8 mg) as a yellowish oil compound. 
1
H NMR (400 MHz, MeOD-d4) δ 7.39-7.38 (m, 3H), 

7.37-7.32 (m, 2H), 5.51 (s, 1H), 5.00 (s, 2H), 2.52 (t, J = 6.4Hz, 2H), 2.35 (t, J = 6Hz, 2H), 2.04-

1.97 (m, 2H); 
13

C NMR (100 MHz, MeOH-d4) δ 203.14, 181.17, 136.81, 129.65, 129.44, 

128.95, 103.72, 71.85, 37.46, 30.02, 22.34; FT-IR: 3029.14, 2947.04, 2947.04, 2881.89, 

2315.54, 1734.79, 1648.08, 1597.17, 1359.34, 1221.55, 1175.66, 863.08, 743.15 cm-
1
; HRMS 

(ESI) m/z calculated for C13H14O2 (M+H)
+
: 203.1072, found: 203.1079. 

3-(allyloxy)cyclohex-2-en-1-one (2i)
11g

 was synthesized by following the experimental 

procedure B, using 1,3-cyclopentadione (0.1 M solution in 10 mL allyl alcohol), afforded 88% 

(133.6mg) as a yellowish liquid compound. 
1
H NMR (400 MHz, CDCl3+CCl4) δ 6.00-5.90 (m, 

1H), 5.39-5.28 (m, 3H), 4.37 (d, J = 5.6Hz, 2H), 2.43 (t, J = 6.4Hz, 2H), 2.33 (t, J = 6.4 Hz, 

2Hz), 2.02-1.95 (m, 2H); 
13

C NMR (100 MHz, CDCl3 + CCl4) δ 199.30, 177.17, 131.59, 119.10, 

103.41, 62.24, 36.91, 29.20, 21.43; FT-IR : 2947.30, 2896.91, 2213.25, 2166.25, 1589.46, 

1345.83, 1222.23, 1179.43, 1135.53, 988.73, 761.04 cm
-1

; HRMS (ESI) m/z calculated for 

C9H12O2 (M+Na)
+
: 175.0735, found: 175.0739. 

3-methoxy-5,5-dimethylcyclohex-2-en-1-one (2j)
21

 was synthesized by following the 

experimental procedure B using 5,5-dimethyl-1,3-cyclohexadione (0.1 M solution in 10 mL 

methanol), afforded 99% (152.4 mg) as a yellowish oil compound. 
1
H NMR (400 MHz, CDCl3) 
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δ 5.35 (s, 1H), 3.67 (s, 3H), 2.25 (s, 2H), 2.19 (s, 2H), 1.05 (s, 6H); 
13

C NMR (100 MHz, 

CDCl3) δ 199.77, 177.14, 101.20, 55.77, 50.80, 42.75, 32.61, 28.34; FT-IR (neat): 2956.40, 

2312.12, 1649.43, 1601.68, 1456.82, 1373.03, 1221.59, 1147.82, 1013.68, 754.09, 602.35 cm
-1

; 

HRMS (ESI) m/z calculated for C9H14O2 (M+H)
+
: 155.1072, found: 155.1080. 

3-ethoxy-5,5-dimethylcyclohex-2-en-1-one (2k)
22

 was synthesized by following the 

experimental procedure B using 5,5-dimethyl-1,3-cyclohexadione (0.1 M solution in 10 mL 

ethanol), afforded 99% (163.1 mg) as a yellowish oil compound. 
1
H NMR (400 MHz, CDCl3) δ 

5.31 (s, 1H), 3.87 (q, J =7.2 Hz, 2H), 2.24 (s, 2H), 2.17 (s, 2H), 1.33 (t, J=7.2Hz, 3H), 1.03 (s, 

6H); 
13

C NMR (100 MHz, CDCl3) δ 199.77, 176.32, 101.55, 64.30, 50.79, 43.01, 32.54, 28.54, 

14.18; FT-IR (neat):2956.43, 2884.89, 2312.03, 1723.53, 1649.47, 1599.53, 1464.58, 1368.81, 

1216.68, 1149.36, 1031.43, 752.88, 628.50 cm
-1

; HRMS (ESI) m/z calculated for C10H16O2 

(M+H)
+
: 169.1229, found: 169.1235. 

5,5-dimethyl-3-propoxycyclohex-2-en-1-one (2l)
22

 was synthesized by following the 

experimental procedure B using 5,5-dimethyl-1,3-cyclohexadione (0.1 M solution in 10 mL 

propanol), afforded 95% (191.1 mg) as a yellowish oil compound. 
1
H NMR (400 MHz, CDCl3) 

δ 5.32 (S, 1H), 3.77 (t, J = 6.4Hz, 2H), 2.26 (s, 2H), 2.19 (s, 2H), 1.72 (m, 2H), 1.05 (s, 6H), 

0.96 (t, J = 7.2 Hz, 3H); 
13

C NMR (100 MHz, CDCl3) δ 199.80, 176.53, 101.57, 70.16, 50.84, 

43.01, 32.56, 28.39, 22.01, 10.48; FT-IR: 2959.17, 2881.44, 2310.50, 1722.54, 1598.80, 

1463.91, 1367.11, 1218.58, 1147.97; HRMS (ESI) m/z calculated for C11H18O2 (M+H)
+
: 

183.1385, found: 183.1390. 

3-isopropoxy-5,5-dimethylcyclohex-2-en-1-one (2m) was synthesized by following the 

experimental procedure B using 5,5-dimethyl-1,3-cyclohexadione (0.1 M solution in 10 mL 

propan-2-ol), afforded 99% (180.3 mg) as a yellowish oil compound. 
1
H NMR (400 MHz, 

CDCl3) δ 5.32 (s, 1H), 4.41 (m, 1H), 2.21 (s, 2H), 2.19 (s, 2H), 1.27 (d, J = 6Hz 6H), 1.04 (s, 

6H); 
13

C NMR (100 MHz, CDCl3) δ 199.80, 175.25, 101.90, 71.02, 50.78, 43.49, 32.50, 28.33, 

21.55; FT-IR: 2966.01, 2881.94, 2310.43, 1726.02, 1650.87, 1600.63, 1464.21, 1380.26, 

1226.90, 1152.05, 1054.82, 758.78, 639.20 cm
-1

; HRMS (ESI) m/z calculated for C11H18O2 

(M+H)
+
: 183.1385, found: 183.1389. 
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3-(2-methoxyethoxy)-5,5-dimethylcyclohex-2-en-1-one (2n) was synthesized by following the 

experimental procedure B using 5,5-dimethyl-1,3-cyclohexadione (0.1 M solution in 10 mL 2-

methoxyethanol), afforded 94% (186.3 mg) as a yellowish oil compound. 
1
H NMR (400 MHz, 

CDCl3) δ 5.33 (s, 1H), 3.98-3.95 (m, 2H), 3.69-3.67 (m, 2H), 3.41 (s, 3H), 2.32 (s, 2H), 2.20 

(s,2H), 1.05 (s, 6H);  
13

C NMR (100 MHz, CDCl3) δ 199.77, 176.23, 101.81, 70.22, 67.82, 

59.30, 50.79, 42.79, 32.57, 28.36; FT-IR (neat): 2959.92, 2311.92, 2170.72, 1729.73, 1650.26, 

1607.76, 1463.70, 1376.35, 1228.08, 1136.64, 1041.23, 751.46, 659.57 cm
-1

; HRMS (ESI) m/z 

calculated for C11H18O3 (M+H)
+
: 199.1334, found: 199.1343. 

3-propoxycyclopent-2-en-1-one (2o) was synthesized by following the experimental procedure 

B, using 1,3-cyclopentadione (0.1 M solution in 10 mL n-propanol), afforded 73% (102.5 mg) as 

a yellowish oil compound. 
1
H NMR (400 MHz, CDCl3) δ 5.27 (m, 1H), 3.92 (t, J = 6.8Hz, 2H), 

2.61-2.59 (m, 2H), 2.44-2.41 (m, 2H), 1.83-1.74 (m, 2H), 1.00 (t, J = 7.2Hz, 3H);  
13

C NMR 

(100 MHz, CDCl3) δ 206.30, 190.59, 104.78, 73.60, 34.08, 28.64, 22.06, 10.42; FT-IR: 2967.17, 

2934.64, 2246.12 1676.46, 1584.73, 1411.72, 1344.25, 1289.43, 1183.57, 724.32, 651.14 cm
-1

; 

HRMS (ESI) m/z calculated for C8H12O2 (M+Na)
+
:  163.0735, found: 163.0739. 

3-(2-methoxyethoxy)cyclopent-2-en-1-one (2p)  was synthesized by following the experimental 

procedure B, using 1,3-cyclopentadione (0.1 M solution in 10 mL 2-methoxyethanol), afforded 

83% (130.2 mg) as a yellowish oil compound. 
1
H NMR (400 MHz, CDCl3) δ 5.31 (m, 1H), 

4.13-4.11 (m, 2H), 3.73-3.71 (m, 2H), 3.43 (s, 3H), 2.67-2.61 (m, 2H), 2.46-2.44 (m, 2H); 
13

C 

NMR (100 MHz, CDCl3) δ 206.15, 190.24, 105.17, 71.12, 70.21, 59.37, 34.24, 28.63; FT-IR: 

2964.77, 2251.33, 1738.96, 1590.97, 1345.35, 1189.58, 1126.01, 1039.62, 719.60, 649.78 cm
-1

; 

HRMS (ESI) m/z calculated for C8H12O3 (M+Na)
+
:  179.0684, found: 179.0692. 

3,3-diethoxyindolin-2-one (2q) was synthesized by following the experimental procedure B, 

using isatin (0.1M solution in 10 mL ethanol), afforded 80% (177.2 mg) as a yellowish solid 

compound. Melting point: 69 
o
C – 72 

o
C; 

 1
H NMR (400 MHz, CDCl3) δ 8.02 (bs, 1H), 7.40 (d, 

J = 7.6Hz, 1H), 7.29(td, J = 7.6Hz, 1.2Hz, 1H), 7.06 (td, J = 7.6 Hz, 0.8Hz, 1H), 3.98-3.90 (m, 

2H), 3.84-3.77 (m, 2H), 1.24 (t, J = 7.2Hz, 6H); 
13

C NMR (100 MHz, CDCl3) δ 173.22, 140.41, 

130.64, 126.17, 125.32, 122.87, 110.76, 97.22, 59.04, 15.43; FT-IR (neat): 3198.45, 2978.91, 

2922.69, 2309.47, 1727.33, 1615.39, 1466.95, 1259.02, 1054.35, 751.51, 659.57 cm
-1

; HRMS 

(ESI) m/z calculated for C12H15NO3 (M+Na)
+
: 244.0950, found: 244.0956. 
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3,3-dipropoxyindolin-2-one (2r) was synthesized by following the experimental procedure B 

using isatin (0.1 M solution in 10 mL propanol), afforded 76% (211.9 mg) as a yellowish solid 

compound. Melting point: 79 
o
C- 83 

o
C;

 1
H NMR (400 MHz, MeOD-d4) δ 7.36 (d, J = 7.6 Hz, 

1H), 7.29 (t, J = 7.6 Hz, 1H), 7.04 (t, J = 7.6 Hz, 1H), 6.86 (d, J = 7.6 Hz, 1H), 3.77-3.72 (m, 

2H), 3.65-3.61 (m, 2H), 1.62-1.53 (m, 4H), 0.91 (t, J = 7.6 Hz, 6H); 
13

C NMR (100 MHz, 

MeOH-d4) δ 175.02, 142.69, 131.67, 127.26, 126.29, 123.39, 111.66, 90.74, 65.88, 65.88, 24.09, 

10.95; FT-IR: 2967.60, 2882.16, 2312.22, 1734.96, 1617.66, 1467.37, 1201.92, 1059.91, 757.02 

cm
-1

; HRMS (ESI) m/z calculated for C14H19NO3 (M+Na)
+
: 272.1263, found: 272.1266. 

ethyl 3,3-dimethoxybutanoate (2s) was synthesized by 0.1 M solution of the ethyl acetoacetate 

(1 mmol in 10 mL methanol ) was flown through the packed bed reactor (Omnifit®, 6.6 mm i.d. 

× 150.0 mm length) at flow rate 0.3 mL / min, loaded with amberlyst-15 up to 4 cm (628 mg, 

swollen up to 6 cm after passing solvent) of bed at room temperature at 1.3 bar pressure. The 

organic layer was concentrated under reduced pressure and the residue was subjected to column 

chromatography using n-hexane purification afforded 86% (151.5 mg) ethyl 3,3-

dimethoxybutanoate compounds. 
1
H NMR (400 MHz, CDCl3+CCl4) δ 4.15 (q, J = 7.2 Hz, 2H), 

3.21 (s, 6H), 2.64 (s, 2H), 1.45 (s, 3H), 1.26 (t, J = 7.2 Hz, 3H); 
13

C NMR (100 MHz, CDCl3+ 

CCl4) δ 169.68, 99.99, 60.60, 48.53, 42.47, 22.00, 14.37; FT-IR: 2983.81, 2942.16, 2832.30, 

1735.06, 1626.09, 1462.19, 1380.78, 1227.42, 1139.80, 1096.74, 931.19, 762.90, 649.42 cm
-1

 ; 

HRMS (ESI) m/z calculated for C8H16O4 (M+Na)
+
:  199.0946, found: 199.0948. 

ethyl 3,3-dipropoxybutanoate (2t) was synthesized by 0.1 M solution of the ethyl acetoacetate 

(1 mmol in 10 mL propanol) was flown through the packed bed reactor (Omnifit®, 6.6 mm i.d. × 

150.0 mm length) at flow rate 0.3 mL / min, loaded with amberlyst-15 up to 4 cm (628 mg, 

swollen up to 6 cm after passing solvent) of bed at room temperature at 1.3 bar pressure. The 

organic layer was concentrated under reduced pressure and the residue was subjected to column 

chromatography using n-hexane purification afforded 95% (220 mg) ethyl 3,3-

dipropoxybutanoate compounds. 
1
H NMR (400 MHz, CDCl3+CCl4) δ 4.13 (q, J = 6.8Hz, 2H), 

3.43-3.34 (m, 4H), 2.66 (s, 2H), 1.59-1.50 (m, 4H), 1.48 (s, 3H), 1.25 (t, J = 6.8 Hz, 3H), 0.9 (t, J 

= 7.6 Hz, 6H); 
13

C NMR (100 MHz, CDCl3+ CCl4) δ 169.92, 99.54, 62.39, 60.46, 43.36, 23.28, 

23.12, 14.41, 11.00; FT-IR : 2984.61, 2934.43, 1737.43, 1712.73, 1627.17, 1391.98, 1315.37, 
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1149.57, 1065.52, 915.12, 754.28 cm
-1

; HRMS (ESI) m/z calculated for C12H24O2 (M+Na)
+
:  

255.1572, found: 255.1579. 

3-(but-2-yn-1-yloxy)cyclohex-2-en-1-one (2u) was synthesized by following the experimental 

procedure C, using 1,3-cyclohexadione (1 mmol) in 0.5 M solution of but-2-yn-1-ol in 1,4-

dioxane, afforded 76% (121.1mg) as a yellowish solid compound. Melting point: 57 
o
C – 65 

o
C;

 

1
H NMR (400 MHz, CDCl3) δ 5.44 (s, 1H), 4.50 (q, J = 2.4Hz, 2H), 2.43 (t, J = 6Hz, 2H), 2.35 

(t, J = 6.4Hz, 2H), 2.02-1.96 (m, 2H), 1.86 (dt, J = 2.8 Hz, 0.4 Hz, 3H); 
13

C NMR (100 MHz, 

CDCl3) δ 199.88, 176.79, 103.71, 85.36, 72.27, 57.03, 36.83, 28.97, 21.29, 3.86; FT-IR: 

2954.22, 2313.21, 2240.62, 1731.10, 1650.10, 1603.87, 1358.40, 1222.68, 1180.52, 1069.84, 

907.60, 762.26, 600.72 cm
-1

; HRMS (ESI) m/z calculated for C10H12O2 (M+H)
+
: 165.0916, 

found: 165.0921. 

3-(pent-3-yn-1-yloxy)cyclopent-2-en-1-one (2v) was synthesized by following the experimental 

procedure C, using 1,3-cyclopentadione (1 mmol) in 0.5 M solution of pent-3-yn-1-ol in 1,4-

dioxane, afforded 64% (105.3 mg) as a yellowish solid compound. Melting point : 50 
o
C – 51 

o
C; 

1
H NMR (400 MHz, CDCl3) δ 5.31 (m, 1H), 4.03 (t, J = 7.2 Hz, 2H), 2.65-2.62 (m, 2H), 

2.46-2.43 (m, 2H), 1.79 (t, J = 2.8 Hz, 2H), 1.64 (s, 3H); 
13

C NMR (100 MHz, CDCl3) δ 199.77, 

176.23, 101.81, 70.22, 67.82, 59.30, 50.79, 42.79, 32.57, 28.36; FT-IR: 2927.29, 2243.55, 

1702.41, 1591.31, 1439.77, 1347.61, 1184.29, 1059.36, 954.63, 705.52, 599.66 cm
-1

; HRMS 

(ESI) m/z calculated for C10H12O2 (M+Na)
+
: 187.0735, found: 187.0739. 

3-(pentan-3-yloxy)cyclohex-2-en-1-one (2w) was synthesized by following the experimental 

procedure C using 1,3-cyclohexadione (1 mmol) in 0.5 M solution  of pentane-3-ol in 1,4-

dioxane, afforded 65% (118.5 mg) as a yellowish oil compound. 
1
H NMR (400 MHz, CDCl3) δ 

5.33 (s, 1H), 4.06-4.00 (m, 1H), 2.39 (t, J = 6.4Hz, 2H), 2.34 (t, J = 6Hz, 2H), 2.00-1.94 (m,2H), 

1.66-1.59 (m,4H), 0.89 (t, J = 6Hz, 6H); 
13

C NMR (100 MHz, CDCl3) δ 200.73, 177.86, 103.06, 

80.94, 36.84, 29.58, 25.72, 21.35, 9.59; FT-IR (neat): 2959.92, 2311.92, 2170.72, 1729.73, 

1650.26, 1607.76, 1463.70, 1376.35, 1228.08, 1136.64, 1041.23, 751.46, 659.57 cm
-1

; HRMS 

(ESI) m/z calculated for C11H18O2 (M+Na)
+
: 205.1204, found: 205.1212. 

3-(hexan-2-yloxy)-cyclopent-2-en-1-one (2x) was synthesized by following the experimental 

procedure C, using 1,3-cyclopentadione (1 mmol) in 0.5 M solution of hexan-2-ol in 1,4-
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dioxane, afforded 61% (111.4 mg) as a yellowish liquid compound. 
1
H NMR (400 MHz, CDCl3) 

δ 5.25 (m, 1H), 4.27-4.19 (m, 1H), 2.60-2.57 (m, 2H), 2.43-2.41 (m, 2H), 1.73-1.52 (m, 4H), 

1.31 (d, J = 6Hz, 5H), .90 (t, J = 6.8Hz, 3H); 
13

C NMR (100 MHz, CDCl3) δ 206.47, 189.69, 

104.72, 79.27, 35.66, 33.84, 29.13, 27.60, 22.65, 19.35, 14.12; FT-IR : 2934.77, 2824.34, 

2234.22 1712.66, 1565.73, 1423.82, 1355.55, 1278.64, 1182.57, 745.23, 661.14 cm-1; HRMS 

(ESI) m/z calculated for C11H18O2 (M+Na)
+
: 205.1204; found: 205.1210. 

5,5-dimethyl-3-(1-phenylethoxy)cyclohex-2-en-1-one (2y) was synthesized by following the 

experimental procedure C, using 5,5-dimethyl-1,3-cyclohexadione (1 mmol) in 0.5 M solution of 

1-phenylethan-1-ol in 1,4-dioxane, afforded 64% (140 mg) as a yellowish oil  compound. 
1
H 

NMR (400 MHz, MeOD-d4) δ 7.39-7.34 (m, 3H), 7.32-7.29 (m, 2H), 5.37 (q, J = 6.4 Hz,1H), 

5.27 (s, 1H), 2.41 (dd, J = 27.6Hz, 17.6 Hz, 2H), 2.16 (dd, J = 25.6 Hz, 16.4 Hz, 2H), 1.59 (d, J 

= 6.4 Hz, 3H), 1.08 (s, 3H), 1.01 (s, 3H); 
13

C NMR (100 MHz, MeOH-d4) δ 202.65, 178.32, 

143.01, 129.84, 120.02, 126.40, 104.16, 78.37, 51.19, 44.01, 33.53, 28.41, 28.10, 24.19; FT-IR: 

3022.63, 2964.80, 2313.47, 1725.35, 1601.88, 1457.35, 1216.51, 753.31, 667.96 cm
-1

; HRMS 

(ESI) m/z calculated for C14H16O2 (M+H)
+
: 245.1542, found: 245.1544. 
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Org. Chem. 1970, 35, 3462–3467. (f) Čorić, I.; Kim, J. H.; Vlaar, T.; Patil, M. W.; List, B. 

Brønsted Acid Catalyzed Asymmetric SN2‐Type O‐Alkylations. Angew. Chem. Int. Ed. 2013, 52, 

3490-3493. (h) Yang, L. Seshan, K. Li, Y. Transetherification of Guaiacol to O-ethoxyphenol 

with Gamma Al2O3 as a Catalyst in Supercritical Ethanol. Catal. Commun. 2013, 30, 36–39. 

(15) Sampath, G.; Kannan, S. Fructose dehydration to 5-hydroxymethylfurfural: Remarkable 

solvent influence on recyclability of Amberlyst-15 Catalyst and Regeneration Studies. Catal. 

Commun. 2013, 37, 41–44. 

(16) Findley, T. J. K.; Sucunza, D.; Miller, L. C.; Davies, D. T.;  Procter, D. J. A Flexible, 

Stereoselective Approach to the Decorated cis-Hydrindane Skeleton: Synthesis of the 

ProposedStructu re of Faurinone. Chem. Eur. J. 2008, 14, 6862 – 6865 

(17) Winkler, C. K.; Stueckler, C.; Mueller, N. J.; Pressnitz, D.; Faber, K. Asymmetric 

Synthesis of O-Protected Acyloins Using Enoate Reductases: Stereochemical Control through 

Protecting Group Modification. Eur. J. Org. Chem. 2010, 6354–6358. 

(18) Moriya, O.; Urata, Y.; Ikeda, Y.; Ueno, Y.; Endo, T. Synthesis of Tetrahydrofurans from 

Active Methylene Compounds via Radical Cyclization. J. Org. Chem. 1986, 51, 4708-4709. 

(19) Toshio, K.; Masaru, S.; Itaru, K.; Makoto, W.; Oyo, M. Stereospecific and Stereoselective 

Reactions. V. Alkylation of Active Methylene Compounds by the Use of Alcohols, Diethyl 

Azodicarboxylate, and Triphenylphosphine.  Bull. Chem. Soc. Jpn. 1981, 54, 2107-2112. 

Page 38 of 39

ACS Paragon Plus Environment

Organic Process Research & Development

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 39 

(20) Theobald, D.W. The Reaction of Some Dibromocyclohexanediones with Bases. 

Tetrahedron 1978, 34, 1567-1569. 

(21) Yoshino, T.; Ng, F.; Danishefsky, S. J. A Total Synthesis of Xestodecalactone A and 

Proof of Its Absolute Stereochemistry:  Interesting Observations on Dienophilic Control with 

1,3-Disubstituted Nonequivalent Allenes. J. Am. Chem. Soc. 2006, 128, 14185-14191. 

(22) Frank, R. L.; Hall, H. K. Monocyclic Terpenes from Cyclic 1,3-Diketones. J. Am. Chem. 

Soc. 1950, 72, 1645-1648. 

 

 

 

 

 

 

 

 

 

 

Page 39 of 39

ACS Paragon Plus Environment

Organic Process Research & Development

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


