Synthesis and Serotonergic Activity of 5-(Oxadiazolyl)tryptamines: Potent Agonists for 5-HT_{1D} Receptors

Leslie J. Street,*,† Raymond Baker,† Jose L. Castro,† Mark S. Chambers,† Alexander R. Guiblin,† Sarah C. Hobbs,† Victor G. Matassa,† Austin J. Reeve,† Margaret S. Beer,‡ Derek N. Middlemiss,‡ Alison J. Noble,‡ Josephine A. Stanton,‡ Kate Scholey,§ and Richard J. Hargreaves§

Chemistry, Biochemistry, and Pharmacology Departments, Merck Sharp and Dohme Research Laboratories, Neuroscience Research Centre, Terlings Park, Eastwick Road, Harlow, Essex CM20 2QR, U.K.

Received February 2, 1993

The synthesis and 5-HT_{1D} receptor activity of a novel series of 5-(oxadiazolyl)tryptamines is described. Modifications of the oxadiazole 3-substituent, length of the linking chain (n), and the amine substituents are explored and reveal a large binding pocket in the 5-HT_{1D} receptor domain. Oxadiazole substituents such as benzyl are accommodated without loss of agonist potency or efficacy. The incorporation of polar functionality on a phenyl or benzyl spacer group results in a 10-fold increase in affinity and functional potency. Optimal 5-HT_{1D} activity is observed when the heterocycle is conjugated with the indole and the benzyl sulfonamides 20t and 20u represent some of the most potent 5-HT_{1D} agonists known. Replacement of O for S in the heterocycle leads to a further increase in potency. Deletion of oxadiazole N-2 does not reduce activity, suggesting the requirement for only one H-bond acceptor in this location. The selectivity of these compounds for 5-HT_{1D} receptors over other serotonergic receptors is discussed. Sulfonamide 20t shows \geq 1000-fold selectivity for 5-HT_{1D} over 5-HT₂, 5-HT_{1C}, and 5-HT₃ receptors and 10-fold selectivity with respect to 5-HT_{1A} receptors. The functional activity of this series of compounds is studied and demonstrates high 5-HT_{1D} receptor potency and efficacy comparable to that of 5-HT.

Introduction

During the last decade, the serotonin (5-HT) (1) (Chart I) superfamily of receptors has provided a rich source of targets for drug therapy. 5-HT receptors have been classified into four main families, 5-HT1, 5-HT2, 5-HT3, and 5-HT₄, and receptor subtypes have been identified.^{2a,b} The recent cloning of several human 5-HT receptors has added further impetus to the search for 5-HT receptor subtype specific ligands for use as pharmacological tools to study the function and physiological importance of 5-HT receptors and as novel therapy for conditions associated with 5-HT neurotransmission dysfunction.3a-c,4 Of the 5-HT receptor families, the 5-HT₁ group appears to be the most complex with the existence of at least four subtypes: 5 5-HT $_{1A}$, 5-HT $_{1B}$, 5-HT $_{1D}$, and 5-HT $_{1E}$. 2a,6,7 The first three of these receptors are characterized by high affinity for the selective 5-HT₁ agonist 5-carboxamidotryptamine (5-CT) (2). 5-CT however shows no selectivity between the 5-HT₁ receptor subtypes. The 5-HT_{1D} receptor is one of the most recently discovered subtypes,8 and there have been few reports of selective ligands. 9a,b,10a,b Two 5-HT₁ selective agonists which show selectivity for 5-HT_{1D} over the other 5-HT_1 subtypes are the amide AH 25086B (3) and the sulfonamide sumatriptan (4). These compounds have been shown to be selective vasoconstrictors of cranial blood vessels,11 and 4 has proven efficacy in the acute treatment of migraine. 12a-c

A simple comparison of the 5-HT $_{\rm 1D}$ agonists 1–4 would suggest that the key groups required for binding and efficacy are a basic amine, an indole ring (the NH of which may bind by a hydrogen bond), and a 5-substituent capable of participating in hydrogen-bonding interactions as an acceptor and/or donor. However, the structural features required for binding selectivity to the 5-HT $_{\rm 1D}$ receptor

Chart I

subtype are less clear because of the limited ligands available. A program was initiated in our laboratories with the objective of identifying novel series of 5-HT_{1D} agonists for use both as novel agents for migraine therapy and as tools to study the physiological function of the $5-HT_{1D}$ receptor. Compounds were sought which had high potency and receptor selectivity, high oral bioavailability, and low central nervous system (CNS) penetration. 12c In so doing it was anticipated that we would identify structural requirements for effective binding to the 5-HT $_{1D}$ receptor and thus aid the delineation of a pharmacophore of the 5-HT_{1D} agonist binding site. We have recently shown in series of both muscarinic 13 and 5-HT₃14 receptor ligands that 5-membered heteroaromatic rings, in particular 1,2,4-oxadiazole, are excellent stable bioisosteric replacements for ester and amide groups. Our initial strategy in this program was to identify heterocyclic

Chemistry Department.

Biochemistry Department.
Pharmacology Department.

Scheme Is

^a Reagents: (a) H₂, 10% Pd/C, EtOH, 2 N HCl; (b) NaNO₂, H₂O, concentrated HCl, -10 °C; (c) SnCl₂·2H₂O, concentrated HCl; (d) 4-chlorobutanal dimethyl acetal, EtOH/H₂O (5:1), reflux, 2 h; (e) HCHO, NaCNBH₃, MeCO₂H, MeOH, 0 °C.

Scheme IIa

^a Reagents: (a) MeSO₂Cl, CH₂Cl₂, triethylamine; (b) Ac₂O, CH₂Cl₂, triethylamine; (c) NH₂OH·HCl, Na, MeOH.

replacements for the amide of the 5-H T_1 agonist 5-CT (2) and to probe for 5-H T_{1D} receptor selectivity within these series.

We describe in this paper the synthesis, 5-H T_{1D} activity, and 5-HT receptor selectivity profile of a series of 5-(oxadiazolyl)tryptamines, 5, and related analogues. To explore the pharmacophore of the 5-H T_{1D} recognition site we have studied changes in the amine substituent (R^1), the length of the linking chain (n), and the nature of the oxadiazole 3-substituent (R^1).

Synthetic Chemistry

The tryptamine esters 9a-d were prepared from the 4-nitrophenyl esters 6a-d (Scheme I). Hydrogenation of 6a-d over Pd-C gave the anilines 7a-d, which were isolated as their hydrochloride salts. Treatment of 7a-d with NaNO2 followed by reduction of the intermediate diazonium salts with SnCl₂·2H₂O gave the hydrazines 8a-d. Fischer reaction¹⁵ of 8a-d with 4-chlorobutanal dimethyl acetal,16 in refluxing EtOH/H2O (5:1), afforded the tryptamines 9a-d which were purified by silica gel chromatography. N,N-Dimethylation of 9a-d using NaCNBH₃/CH₂O/MeCO₂H gave 10a-d in high yield. The 4-substituted benzyl and phenyl amide oximes 13a,b, 15, and 19a-e were prepared as shown in Schemes II and III. Reaction of 4-aminobenzonitrile, 11a, and 4-aminobenzyl cyanide, 11b, with methanesulfonyl chloride gave the crystalline sulfonamides 12a and 12b, respectively (Scheme II). Similarly, the acetamide 14 was prepared from 11b by treatment with Ac₂O/NEt₃. The nitrile 18a was

Scheme IIIa

^a Reagents: 16 = N-methyl-p-toluenesulfonamide; (a) N-bromosuccinimide, CCl_4 , benzoyl peroxide; (b) KCN, EtOH, H_2O , reflux; 17 = 4-cyanobenzoyl chloride; (c) $NH_2Me(gas)$, CH_2Cl_2 ; (d) NH_2OH -HCl, Na, MeOH.

prepared from N-methyl-p-toluenesulfonamide by bromination with NBS followed by displacement with KCN (Scheme III). Reaction of 4-cyanobenzoyl chloride with methylamine gas afforded 18e. Treatment of the nitriles 12a,b, 14, and 18a-e with hydroxylamine hydrochloride and NaOMe gave the amide oximes 13a,b, 15, and 19a-e, respectively. Oxadiazoles 20a-x and 21a-k were prepared by one of two general procedures (Scheme IV).17 Tryptamines 20a-c, 20e, 20f, 20h, 20j, 20k and 20m-r, and N,N-dimethyltryptamines 21b, 21d, and 21j were prepared by refluxing a solution of the appropriate ester and amide oxime (3 equiv) in THF for 2 h, using NaH as base. Tryptamines 20d, 20g, 20i, 20l, and 20s-x and N,Ndimethyltryptamines 21a, 21c, 21e, and 21f-i were prepared by reaction of the ester and amide oxime in refluxing EtOH (3-24 h), using NaOEt as base. All compounds were purified by column chromatography on silica gel.

The synthetic route to aminothiadiazole 28²⁰ is shown

Scheme IV

^a Reagents: (a) NaH, THF, RC(=NOH)NH₂, reflux, 3 h; (b) Na, EtOH, RC(=NOH)NH₂, reflux 2-24 h.

in Scheme V. 4-Aminobenzyl cyanide was converted to tryptamine 22 by conversion to the hydrazine followed by Fischer reaction with 4-chlorobutanal dimethyl acetal. N,N-Dimethylation of 22 gave 23 which was hydrolyzed, and the intermediate acid was esterified to give methyl ester 24. Treatment of 24 with the lithium salt of 4-methoxybenzyl alcohol, in THF, gave 4-methoxybenzyl ester 25 in 89% yield. Boc protection of 25 using (Boc)₂O in MeCN and 4-DMAP as catalyst gave 26 which, upon treatment with NaH in DMF followed by addition of 3-amino-5-chloro-1,2,4-thiadiazole,18 afforded the alkylation product 27, in 33% yield. Reaction of 27 with TFA in CH_2Cl_2/H_2O resulted in removal of the Boc group and debenzylation. Decarboxylation of the intermediate acid was achieved by refluxing in MeOH to give the aminothiadiazole 28, in 45% yield.

Oxazole 31 was prepared in three steps from ester 10a (Scheme VI). Saponification of 10a with LiOH gave acid 29 which was coupled with propargylamine using water soluble carbodiimide to give amide 30. Cyclization of 30 was achieved using Hg(OAc)₂ in acetic acid, to afford oxazole 31, in 57% yield.

Results and Discussion

Structure-Affinity Relationships. The 5-HT_{1D} receptor affinities of compounds were measured by displacement of [3H]-5-HT from bovine caudate membranes, in the presence of cyanopindolol and mesulergine to block interactions with 5-HT_{1A}, 5-HT_{1B}, and 5-HT_{1C} sites.^{8,19} The data is presented in Tables I-III and V.

The methyloxadiazole 20a, in which the heterocyclic ring is conjugated to the indole ring, has affinity for the 5-HT_{1D} binding site similar to that of the endogenous ligand 5-HT (Table I). More bulky alkyl groups, e.g., Et, 20b, and Pr, 20c, can be accommodated without compromising affinity. However, the amino derivative 20d has reduced affinity, suggesting that a H bond to N-2 of the heterocycle may not be important in binding to the 5-HT_{1D} receptor since 3-amino substitution in an oxadiazole ring has been shown to improve the H-bond acceptor ability of N-2.13 Although the phenyl analogue 20e has reduced affinity compared to 20a, the benzyl analogue 20f has activity comparable to 5-CT. In the amino- and phenyloxadiazole series, incorporation of a methylene chain between the indole and heterocycle improved binding to the 5-HT_{1D} receptor, although affinity was reduced in the benzyl series. Extending the chain to ethylene and propylene generally increased 5-HT_{1D} affinity over the methylene-linked analogues. The effect on $\log D$ of incorporating a methylene spacer group between the heterocycle and indole ring is also illustrated in Table I. In general $\log D$ was reduced by 1 order of magnitude by removing the conjugation, e.g., compare 20i, $\log D$ -1.90, and 20d, $\log D$ –0.72. This effect is important to consider when attempting to design ligands which will not penetrate the blood-brain barrier. After identifying benzyl as an optimal substituent, substitution of the phenyl ring was explored (Table II). Methoxy substitution around the phenyl ring identified the para position to be optimum. Further improvements in binding could be achieved by modifying the para substituent. Thus, the sulfonamides 20t and 20u are 10-fold more potent than 20f and 50-100-fold more potent than 4. These compounds represent the most potent 5-HT_{1D} ligands reported to date. Similar improvements in affinity were achieved in the phenyl series by para substitution, e.g., 20v. As with the unsubstituted compounds, incorporation of a methylene spacer group between the oxadiazole and indole rings reduced activity, in this case by 1 order of magnitude, e.g., 20t (pIC₅₀ 9.5 \pm 0.19) and 20x (pIC₅₀ 8.5). The beneficial effect of the phenyl ring in this series can be seen by comparison of the benzylacetamide 20s (pIC₅₀ 9.3) (Table II) and methylacetamide 20g (pIC₅₀ 7.7) (Table I). N,N-Dimethylation of the tryptamines generally resulted in reduced affinity for the 5-HT_{1D} recognition site in all series (Table III),¹⁰ although high affinity was retained for certain 4-substituted phenyl (21f) and benzyl (21c) derivatives. The oxazole 31 has affinity comparable to methyloxadiazole 20a (Tables I and III). Interestingly, the aminothiadiazole 28 displays 10-fold higher affinity for 5-HT_{1D} receptors than its oxadiazole analogue 21e (Table V).20

The binding results for the alkyl- and benzyl-substituted oxadiazoles would suggest that the critical pharmacophoric element at the indole C5-position, for high affinity binding to the 5-HT_{1D} receptor, is an H-bond acceptor, not a donor. since these compounds do not possess an H-bond donor group. Secondly, the high affinity observed for oxazole 31 implies that the H bond of primary importance is to the N-4 lone pair of the oxadiazole ring and that N-2 in these compounds may not be required for binding. However, it should not be ruled out that in the absence of N-4 an H bond to N-2 of the resultant isoxazole may suffice for binding. The relative position of this H-bond acceptor does not appear to be critical since extension of the linking chain to two and three methylene units does not compromise 5-HT_{1D} activity. The fact that a benzyl group can be accommodated in all series, $n = 0 \rightarrow 3$, suggests that an extended pocket exists in the binding domain of the receptor, although hydrophobic interaction of the phenyl ring with the receptor may not be important because the methyl (20a) and benzyl (20f) analogues have equal affinity. However, a dramatic increase in affinity (>10-fold) is observed when an additional H-bond acceptor group is introduced into the para position of the phenyl ring, which suggests the existence of additional binding sites in the 5- HT_{1D} receptor binding pocket. This activity is optimal when the oxadiazole and indole rings are conjugated (e.g., 20r-u), possibly as a result of lower conformational flexibility. In addition, conjugated delocalization from the indole nitrogen atom lone pair into the conjugated oxadiazole ring would be expected to improve both the H-bond acceptor ability of N-4 of the oxadiazole, and the H-bond donor ability of the indole NH proton. As seen previously,10 N,N-dialkylation of the tryptamine resulted in reduced affinity, suggesting that the preferred electrostatic interaction at the receptor is with the protonated primary amine which is found in the endogenous ligand and 5-CT. The increased affinity observed on replacing O by S in going from oxadiazole 21e to thiadiazole 28 is intriguing and may be a consequence of

Scheme V^s

^a Reagents: (a) NaNO₂, H₂O, concentrated HCl, -10 °C; (b) SnCl₂·2H₂O, concentrated HCl, -10 °C; (c) 4-chlorobutanal dimethyl acetal, EtOH/H₂O (5:1), reflux, 2 h; (d) HCHO, NaCNBH₃, MeCO₂H, MeOH, 0 °C; (e) 2 N NaOH; (f) SOCl₂, MeOH; (g) 4-methoxybenzyl alcohol, THF, ⁿBuLi; (h) MeCN, (Boc)₂O, 4-DMAP; (i) NaH, 3-amino-5-chloro-1,2,4-thiadiazole; (j) TFA, CH₂Cl₂, H₂O, +25 °C, 1 h; (k) MeOH, reflux, 0.1 h.

Scheme VIa

 a Reagents: (a) LiOH, EtOH–H₂O, 60 °C, 8 h; (b) propargylamine, N-methylmorpholine, 1-hydroxybenzotriazole, water-soluble carbodiimide, CH₂Cl₂–DMF (1:1), 18 h; (c) Hg(OAc)₂, MeCO₂H, reflux, 3 h

the differences in electrostatic distributions in the two molecules.²⁰

Receptor Selectivity. In order to determine the pharmacological specificity of the compounds of this study for 5-HT_{1D} recognition sites, the affinity of a range of oxadiazoles, and the thiadiazole 28, for 5-HT_{1A}, 21 5-HT₂, 22 5-HT_{1C},²³ and 5-HT₃²⁴ receptors, was measured. The results are summarized in Tables IV and V. All compounds showed selectivity for 5-HT_{1D} receptors over the other serotonin receptors, although the degree of selectivity was dependent on the nature of the oxadiazole substituent and the length of the linking chain. In general all compounds showed 10-fold selectivity for 5-HT_{1D} over 5-HT_{1A} receptors with the exception of highly lipophilic compounds such as 20f ($\log D = +1.32$). Compounds with very high affinity for 5-HT_{1D} recognition sites such as 20r-t showed excellent receptor selectivity with ≥1000-fold selectivity over 5-H T_{1C} , 5-H T_2 , and 5-H T_3 receptors. Thus 20r-t represent some of the most potent and selective 5-HT_{1D} receptor ligands identified. In general, all compounds showed ≥100-fold selectivity for 5-HT_{1D} receptors over 5-H T_{1C} and 5-H T_2 receptors and very low affinity for the 5-HT₃ recognition site.

Table I. Displacement of [3 H]-5-HT Binding to 5-HT $_{1D}$ Recognition Sites in Pig Caudate Membranes by 5-(Oxadiazolyl)tryptamines and Standard 5-HT $_{1D}$ Agonists

		Н		
compd	n	R	$pIC_{50} \pm SEM^a$	$\log D^b$
5-HT (1)			8.0 ± 0.09	
5-CT (2)			8.4 ± 0.1	
sumatriptan (4)			7.7 ± 0.08	-1.17
20a	0	Me	8.0 ± 0.25	-0.37
20b	0	Et	7.9	+0.13
20c	0	$^{\mathrm{c}}\mathbf{Pr}$	8.1 ± 0.16	+0.60
20d	0	NH_2	7.3	-0.72
20e	0	Ph	7.1	
20 f	0	CH_2Ph	8.2 ± 0.12	+1.32
20g	0	MeCONHCH ₂	7.7	
20h	1	Me	7.5 ± 0.16	-1.70
20i	1	\mathbf{NH}_2	7.7 ± 0.09	-1.90
20j	1	Ph	7.7 ± 0.13	
20k	1	$\mathrm{CH}_{2}\mathrm{Ph}$	7.5 ± 0.12	+0.42
201	2	NH_2	8.0	-1.51
20m	2	CH_2Ph	8.3 ± 0.07	
20n	3	Me	8.3 ± 0.29	
20o	3	CH_2Ph	8.8	

^a SEM = standard error of the mean from $n \ge 3$. Where SEM is not quoted the figures are the mean of two independent determinations typically with individual values within ±10−15% of the mean. ^b log P measured at pH 7.4.

Functional Activity. The functional serotonergic activity of a selection of compounds was assessed in vitro on the New Zealand white rabbit saphenous vein preparation. In this model, contractions evoked by agonists are considered to be mediated by 5-HT_{1-like} receptors. Agonist potencies were calculated as pEC₅₀ values from plots of percentage 5-HT (1 μ M) response against concentration of the agonist. The results are presented in Table VI. All compounds caused contraction of the saphenous vein and had efficacy comparable to 5-HT. The high affinity of the acetamide 20s and sulfonamides 20t and 20u for 5-HT_{1D} receptors was reflected in the

Table II. Displacement of [3H]-5-HT Binding to 5-HT_{1D} Recognition Sites in Pig Caudate Membranes by Benzyl- and Phenyl-Substituted Oxadiazoles

compd	n	m	X	$pIC_{50} \pm SEM^a$	$\log \mathbf{D}^b$
20p	0	1	o-OMe	7.8	+1.38
20q	0	1	$m ext{-}\mathbf{OMe}$	8.9	
20 r	0	1	p-OMe	9.1 0.12	
20s	0	1	p-NHCOMe	9.3	+0.48
20t	0	1	p-NHSO ₂ Me	9.5 ± 0.19	+0.25
20u	0	1	p-SO ₂ NHMe	9.6	+0.25
20v	0	0	p-CONHMe	9.1 ± 0.23	
20w	1	1	p-NHCOMe	8.6	-0.36
20x	1	1	p-NHSO ₂ Me	8.5	-0.54

^a SEM = standard error of the mean from $n \ge 3$. Where SEM is not quoted the figures are the mean of two independent determinations typically with individual values within $\pm 10-15\%$ of the mean. ^b log P measured at pH 7.4.

Table III. Displacement of [3H]-5-HT Binding to 5-HT_{1D} Recognition Sites in Pig Caudate Membranes by N,N-Dimethyltryptamines

compd	n	R	$pIC_{50} \pm SEM^a$	$\log D^b$
21a	0	NH_2	7.1	+0.20
21b	0	$PhCH_2$	8.2	
21c	0	$p-(MeSO_2NH)Bn$	8.9 ± 0.17	+1.25
21d	1	Me	7.3 ± 0.18	+0.04
21e	1	NH_2	7.6 ± 0.21	-0.67
21 f	• 1	p-(MeNHCO)Ph	8.7	+1.45
21g	1	p-(MeSO ₂ NH)Ph	8.0	+1.22
21 h	1	p-(MeSO ₂ NH)Bn	7.5	+0.50
21i	2	NH_2	7.9 ± 0.1	-0.40
21j	2	$PhCH_2$	7.9	
21 k	3	$PhCH_2$	7.9 ± 0.12	
31		-	8.1	

 a SEM = standard error of the mean from ≥3. Where SEM is not quoted the figures are the mean of two independent determinations typically with individual values within $\pm 10-15\%$ of the mean. b log P measured at pH 7.4.

functional assay. These compounds were 10-fold more potent in the saphenous vein assay than 5-HT. The thiadiazole 28 has unusually high potency and again mirrors the high affinity of this compound for 5-HT_{1D} receptors.26

Conclusions

A novel series of 5-HT_{1D} receptor agonists has been identified which contains some of the most potent and selective agonists reported to date. It can be concluded that an H-bond acceptor group and not a donor group is required at C-5 of the indole for effective binding to 5-H T_{1D} receptors, and this could be the function of the hydroxyl and carboxamide groups of 5-HT and 5-CT, respectively. An additional H-bond binding site has been identified which results in a 10-fold increase in 5-HT_{1D} agonist potency. A large pocket is available in the binding domain of the 5-HT_{1D} receptor which will accommodate relatively bulky groups, positioned at C5 of the indole, without loss

of affinity or efficacy. Optimal potency was found when the heterocycle is conjugated to the indole ring, analogous to 5-CT, and may be a consequence of the imposed conformational rigidity and/or a more favorable electrostatic distribution. The activity of these compounds in in vivo models of migraine^{11,27} will be presented shortly.

Experimental Section

Chemical Methods: General Directions. Except where otherwise stated, the following procedures were adopted: all ¹H NMR spectra were recorded at 360 MHz on a Brucker AM 360 instrument and mass spectra with a VG70-250 mass spectrometer. Organic solvents were purified when necessary by the methods described by Perrin et al. (Perrin, D. D.; Armarego, W. L. F.; Perrin, D. R. Purification of Laboratory Chemicals; Pergamon: Oxford, 1966) or were purchased from The Aldrich Chemical Co., Sureseal. All solutions were dried over sodium sulfate and evaporated on a Büchi rotary evaporator at reduced pressure. Thin-layer chromatography and preparative chromatography were performed on silica, with use of plates (Merck Art No. 5719) and columns (Merck Art No. 7734). log D's were determined using 1-octanol and pH 7.4 buffer by the shake flask method. Melting points are uncorrected.

General Procedure for the Preparation of Anilines 7a-d. Ethyl 3-(4-Aminophenyl) propionate Hydrochloride (7c). A suspension of ethyl 4-nitrocinnamate (50 g, 0.23 mol) in EtOH $(500 \,\mathrm{mL})$ and $5\,\mathrm{N}\,\mathrm{HCl}\,(46\,\mathrm{mL})$ was hydrogenated over $10\,\%\,\,\mathrm{Pd/C}$ (5 g) in a Parr shake apparatus at 50 psi for 0.5 h. The product remaining after filtration through hyflo and evaporation of the solvent was recrystallized from EtOAc/EtOH to give 7c (50.4 g, 97%): mp 170–173 °C; MS m/z 194 (M + 1)+; ¹H NMR (D₂O) δ 1.17 (3H, t, J = 7.1 Hz, CH₃), 2.73 (2H, t, J = 7.2 Hz, 2-CH₂), 2.99 (2H, t, J = 7.2 Hz, 1-CH₂), 4.09 (2H, q, J = 7.1 Hz, CH₂O), 7.34 and 7.41 (each 2H, each d, J = 8.6 Hz, 3'-CH and 5'-CH, and 2'-CH and 6'-CH). Anal. (C₁₁H₁₅NO₂-HCl) C, H, N.

General Procedure for the Preparation of Tryptamines 9a-d, and 22. 2-(5-Carbethoxy-1H-indol-3-yl)ethylamine Hydrogen Maleate (9a). A solution of NaNO₂ (17.0 g, 0.25 mol) in H₂O (90 mL) was added to a cooled (-10 °C) solution of ethyl 4-aminobenzoate (40.0 g, 0.24 mol) in concentrated HCl (225 mL), at such a rate that the temperature did not exceed 0 °C. The mixture was stirred at 0 °C for 0.1 h and then added portionwise to a cooled (-10 °C) and rapidly stirred solution of SnCl₂·2H₂O (202.0 g, 0.90 mol) in concentrated HCl (135 mL), at such a rate that the temperature did not exceed -5 °C. The resulting cream-colored suspension was warmed to 25 °C, filtered under vacuum, and washed with Et2O. The product was dried at 80 °C under vacuum to give ethyl 4-hydrazinobenzoate hydrochloride, 8a (32.1 g, 61%): mp 202-203 °C (EtOH); MS m/z 180 (M⁺); ¹H NMR (D₂O) δ 1.38 (3H, t, J = 7.1 Hz, CH₃), 4.37 (2H, q, J = 7.1 Hz, CH₂O), 7.06 (2H, d, J = 9.0 Hz, 3-CH and 5-CH), 8.03 (2H, d, J = 9.0 Hz, 2-CH and 6-CH). Anal. $(C_9H_{12}N_2O_2\cdot HCl)$ C, H, N.

To a solution of 8a (10.0 g, 46.2 mmol) in EtOH/ H_2O (5:1, 500 mL) was added 4-chlorobutanal dimethyl acetal¹⁶ (7.0 g, 46.0 mmol) and the mixture heated at reflux for 2 h. The solvent was evaporated and the residue chromatographed on silicagel, eluting with $CH_2Cl_2/EtOH/NH_3$ (40:8:1) to give **9a** (3.69 g, 34.4%). The hydrogen maleate salt was prepared: mp 127 °C; MS m/z 232 (M⁺); ¹H NMR (D₂O) δ 1.43 (3H, t, J = 7.1 Hz, CH₃), 3.21 and 3.37 (each 2H, each t, J = 7.0 Hz, 1-CH₂ and 2-CH₂), 4.42 (2H, $q, J = 7.1 \text{ Hz}, CH_2O), 6.23 (2H, s, maleate H), 7.40 (1H, s, 2'-CH),$ 7.56 (1H, d, J = 8.6 Hz, 7'-CH), 7.88 (1H, dd, J = 1.6 and 8.6 Hz, 6'-CH), 8.38 (1H, d, J = 1.6 Hz, 4'-CH). Anal. ($C_{13}H_{16}N_2O_{2}$ --(CHCOOH)₂) C, H, N.

General Procedure for the Preparation of N.N-Dimethyltryptamines 10a-d, and 23. N,N-Dimethyl-2-(5-(carbethoxymethyl)-1H-indol-3-yl)ethylamine (10b). A solution of formaldehyde (1.1g of a 37% w/w solution, 13.6 mmol) in MeOH (20 mL) was added dropwise to a stirred solution of 2-(5-(carbethoxymethyl)-1H-indol-3-yl)ethylamine, 9b (1.0 g, 4.07 mmol), glacial acetic acid (0.65 g, 10.8 mmol), and NaCNBH₃ (0.45 g, 7.2 mmol) in MeOH (20 mL) at 0 °C. The solution was warmed to 25 °C and stirred for 2.5 h before adding saturated

Table IV. Selectivity of 5-(Oxadiazolyl)tryptamines in Binding to 5-HT_{1D} Serotonin Receptors

$$R^2$$

					F	$IC_{50} \pm SEM^a$		
compd	n	\mathbf{R}^1	${f R}^2$	5-HT _{1D} ^b	5-HT _{1A} c	$5-\mathrm{HT_{1C}}^d$	5-HT ₂ e	5-HT₃⁄
20a	0	Н	Me	8.0 ± 0.25	7.2 ± 0.04	5.9	5.8	<5.0
20c	0	Н	∘ Pr	8.1 ± 0.16	7.5	6.0	5.6	<5.0
20f	0	Н	$PhCH_2$	8.2 ± 0.12	7.9 ± 0.10	5.4	5.9	<5.0
20r	0	Н	p-(MeO)Bn	9.1 ± 0.12	8.3 ± 0.20	6.1	6.0	<5.0
20s	0	H	p-(MeCONH)Bn	9.3	8.3	5.8^g	6.4	<5.0
20t	0	H	p-(MeSO ₂ NH)Bn	9.5 ± 0.19	8.5	6.5 ± 0.27	6.5	<5.0
20h	1	н	Me	7.5 ± 0.16	6.4	5.9	5.5	<5.0
20i	1	Н	NH_2	7.7 ± 0.09	6.5	5.5	6.1	<5.0
21d	1	Me	Me	7.3 ± 0.18	6.3	6.0 ± 0.38	5.6	5.4
21e	1	Me	NH_2	7.6 ± 0.21	6.5 ± 0.05	5.9 ± 0.09	6.4	5.6
21i	$ar{2}$	Me	NH_2	7.9 ± 0.10	7.3	6.0	6.7	5.2
20m	2	Н	\mathbf{PhCH}_2	8.3 ± 0.07	7.8 ± 0.14	6.1	6.6	<5.0

 a SEM = standard error of the mean from $n \ge 3$. Where SEM is not quoted the figures are the mean of two independent determinations typically with individual values within ±10–15% of the mean. b Displacement of $[^3H]$ -5-HT binding to 5-HT_{1D} recognition sites in pig caudate membranes. c Displacement of $[^3H]$ -8-OH-DPAT from pig cortex. d Displacement of $[^3H]$ mesulergine from pig cortex. c Displacement of $[^3H]$ -Q-ICS 205–930 from rat cortex homogenates. g Value derived from a single determination.

Table V. Comparison of the in Vitro Binding Profiles of Aminooxadiazole (21e) and Aminothiadiazole (28)

			$pIC_{50} \pm SEM^a$							
compd	\mathbf{X}	$5\text{-}\mathbf{HT}_{1\mathrm{D}}{}^{b}$	$5-\mathrm{HT_{1A}^c}$	$5\text{-HT}_{1\mathrm{C}}{}^d$	$5\text{-}\mathbf{HT}_{2}^{e}$	5-HT ₃ /				
21e 28	-		6.5 ± 0.05 7.3 ± 0.1			5.6 5.62 ± 0.07				

a-f See corresponding footnotes of Table IV.

Table VI. In Vitro Functional Activity of 5-(Oxadiazolyl)- and 5-(Thiadiazolyl)tryptamines

compd	n	X	\mathbf{R}^1	\mathbf{R}^2	$\mathrm{pEC}_{50}{}^a$	relative ^b maximum
5-HT (1)					6.8	1.0
20a	0	0	H	Me	6.6	1.0
20s	0	0	H	p-(MeCONH)Bn	7.9	1.0
20t	0	0	Н	p-(MeSO ₂ NH)Bn	7.8	1.0
20u	0	0	H	p-(MeNHSO ₂)Bn	7.9	0.9
20i	1	0	Н	NH_2	6.8	1.1
21e	1	0	Me	NH_2	6.3	0.9
21i	2	О	Me	NH_2	6.7	1.0
28	1	\mathbf{s}	Me	NH_2	8.0	1.1

 a Contraction of the New Zealand white rabbit saphenous vein. The figures are the mean of two independent determinations typically with individual values within $\pm 10{\text -}15\%$ of the mean. b Relative maximum = relative efficacy of the agonist with respect to 1 μM 5-HT.

 K_2CO_3 solution (5 mL). The MeOH was removed under vacuum, and H_2O (15 mL) was added to the residue and extracted with EtOAc (3×). The crude product was chromatographed on silica gel, eluting with $CH_2Cl_2/EtOH/NH_3$ (40:8:1) to give 10b (0.81 g, 73%) as a low melting solid: mp 35 °C; MS m/z 274 (M⁺); ¹H

NMR (CDCl₃) δ 1.24 (3H, t, J = 7.0 Hz, CH₃), 2.34 (6H, s, N(CH₃)₂), 2.64 and 2.92 (each 2H, each t, J = 7.5 Hz, 1-CH₂ and 2-CH₂), 3.71 (2H, s, CH_2 CO₂Et), 4.15 (2H, q, J = 7.0 Hz, CH₂O), 7.00 (1H, d, J = 2.2 Hz, 4'-CH), 7.11 (1H, dd, J = 2.2 and 8.4 Hz, 6'-CH), 7.29 (1H, d, J = 8.4 Hz, 7'-CH), 7.49 (1H, s, 2'-CH), 8.00 (1H, br s, NH). Anal. (C₁₆H₂₂N₂O₂-0.25H₂O) C, H, N.

4-((Methylsulfonyl)amino)benzonitrile (12a). A solution of methanesulfonyl chloride (11.45 g, 0.1 mol) in CH₂Cl₂ (20 mL) was added dropwise to a stirred solution of 4-aminobenzonitrile (11.8 g, 0.1 mol) and pyridine (7.9 g, 0.1 mol) in CH₂Cl₂ (100 mL), at 0 °C. The solution was stirred at room temperature for 1.0 h before adding H₂O (150 mL) and stirring for 0.1 h. The precipitated product was filtered off, washed with H₂O, and dried under vacuum over P₂O₅ to give 12a (15.0 g, 76.5%): mp 195–196 °C; MS m/z 196 (M⁺); ¹H NMR (CD₃OD) δ 2.98 (3H, s, CH₃), 7.27 and 7.60 (each 2H, each d, J = 8.7 Hz, Ar-H). Anal. (C₈H₈N₂O₂S) C, H, N.

4-((Methylsulfonyl)amino)benzyl Cyanide (12b). Methanesulfonyl chloride (17.3 g, 0.15 mol) was added to a mixture of 4-aminobenzyl cyanide hydrochloride (25.5 g, 0.15 mol) and NEt₃ (30.5 g, 0.30 mol) in CH₂Cl₂ (250 mL) and stirred at 25 °C for 4 h. The solution was washed with NaHCO₃ solution (2×), 0.1 N HCl (1×), and brine (1×), dried, and evaporated. The product was purified by crystallization from EtOH/H₂O (15.09 g, 48%): mp 118 °C; MS m/z 210 (M⁺); ¹H NMR (CD₃OD) δ 2.86 (3H, s, CH₃), 3.76 (2H, s, CH₂CN), 7.17 and 7.24 (each 2H, each d, J = 8.6 Hz, Ar-H). Anal. (C₉H₁₀N₂O₂S) C, H, N.

4-(Acetylamino)benzyl Cyanide (14). A solution of 4-aminobenzyl cyanide (15.0 g, 0.11 mol), NEt₃ (15 mL), and acetic anhydride (15 mL) in CH₂Cl₂ (250 mL) was stirred for 16 h at room temperature. The solvents were evaporated, and the crude product was purified by crystallization from H₂O (140 g, 71%): mp 85–87 °C; ¹H NMR (CDCl₃) δ 2.18 (3H, s, CH₃), 3.71 (2H, s, CH₂CN), 7.26 and 7.54 (each 2H, each d, J = 8.4 Hz, Ar-H), 7.63 (1H, br s, NH). Anal. (C₁₀H₁₀N₂O-0.5H₂O) C, H, N.

4-((N-Methylamino)sulfonyl)benzyl Cyanide (18a). To a mixture of N-methyl-p-toluenesulfonamide (23.9 g, 0.13 mol) in CCl₄ (250 mL) was added N-bromosuccinimide (22.9 g, 0.13 mol), and the mixture was purged with N₂ for 0.1 h. Benzoyl peroxide (0.1 g) was added, and the mixture was irradiated (800-W lamp) and heated at reflux for 3 h. The reaction mixture was stirred at room temperature for 16 h. The resulting succinimide was removed by filtration and the filtrate evaporated to give \simeq 1:2 mixture of N-methyl-p-toluenesulfonamide and the desired 4-((methylamino)sulfonyl)benzyl bromide, respectively (32.1 g), which coeluted on TLC (EtOAc/hexane, 1:1). This material was used without further purification: 1 H NMR (DMSO-d₆) δ 2.39

Table VII. Physical Data for 5-(Oxadiazolyl)tryptamines

no.	empirical formula	mp, °C	no.	empirical formula	mp, °C
20a	C ₁₃ H ₁₄ N ₄ O·1.2(COOH) ₂	230	201	C ₁₄ H ₁₇ N ₅ O•cis-(CHCOOH) ₂ •0.75H ₂ O	147-148
20b	$C_{14}H_{16}N_4O \cdot 2(COOH)_2 \cdot 0.5H_2O$	195-197	20m	$C_{21}H_{22}N_4O \cdot 0.5cis \cdot (CHCOOH)_2$	113-114
20c	$C_{15}H_{16}N_3O \cdot 0.5(CH_2COOH)_2 \cdot 0.15H_2O$	205-207	20n	$C_{16}H_{20}N_4O \cdot 0.9cis \cdot (CHCOOH)_2$	136-137
20d	$C_{12}H_{13}N_5O \cdot 2(COOH)_2 \cdot 0.75H_2O$	160-164	20p	$C_{20}H_{20}N_4O_2\cdot 0.6(COOH)_2$	244-245
20e	$C_{18}H_{16}N_4O \cdot 0.85(COOH)_2$	212-213	20q	$C_{20}H_{20}N_4O_2$ ·cis-(CHCOOH) ₂ ·0.1H ₂ O	173-175
20 f	$C_{19}H_{18}N_4O \cdot (COOH)_2 \cdot 0.85H_2O$	229	20 r	$C_{20}H_{20}N_4O_2$ ·cis-(CHCOOH) ₂	195-196
20g	$C_{15}H_{17}N_5O_2 \cdot 0.5(CH_2COOH)_2 \cdot 1.0H_2O \cdot 0.2(iPA)^b$	107-110	20s	$C_{21}H_{21}N_5O_{2} \cdot 2(COOH)_{2} \cdot 0.25H_2O$	113-115
20h	$C_{14}H_{16}N_4O\cdot(COOH)_2\cdot0.75H_2O$	72-74	20u	$C_{20}H_{21}N_5O_3S\cdot2(CH_2COOH)_2\cdot0.75H_2O$	$49-50^{\circ}$
20i	$C_{13}H_{15}N_5O \cdot (COOH)_2 \cdot 1.2H_2O$	85-87	20v	$C_{20}H_{19}N_5O_{2} \cdot (CH_2COOH)_2 \cdot 0.75H_2O$	126-128
20j	$C_{19}H_{18}N_4O \cdot (COOH)_2 \cdot 0.3(EtOH)^b$	82-84	20w	C ₂₂ H ₂₃ N ₅ O ₂ ·1.5HCl	147
20k	$C_{20}H_{20}N_4O\cdot(COOH)_2$	176-178	20x	$C_{21}H_{23}N_5O_3S-1.25(COOH)_2-0.33(EtOH)^b$	110-112

^a All compounds were crystallized from either ⁱPrOH/Et₂O or EtOH and gave satisfactory microanalyses for C, H, and N. ^b ¹H NMR of these compounds suggested that the salt had crystallized with solvent. c Hygroscopic salt.

Table VIII. Physical Data for N,N-Dimethyl-5-(oxadiazolyl)tryptamines^a

no.	empirical formula	mp, °C	no.	empirical formula	mp, °C
21a	C ₁₄ H ₁₇ N ₅ O·1.8(COOH) ₂ ·1.0H ₂ O	156-158	21g	$C_{22}H_{25}N_5O_3S\cdot(COOH)_2\cdot0.4(Et_2O)^b$	213-215
21b	$C_{21}H_{22}N_4O\cdot 1.6(COOH)_2$	157-158	21 h	$C_{23}H_{27}N_5O_3S\cdot(COOH)_2\cdot0.25H_2O$	156-159
21c	$C_{22}H_{25}N_5O_3S \cdot (CH_2COOH)_2 \cdot 1.75H_2O$	65-66	21i	$C_{16}H_{21}N_5O\cdot 1.1(COOH)_2$	164-167
21d	$C_{16}H_{20}N_4O \cdot 1.5(COOH)_2 \cdot 0.1H_2O$	159-160	21k	$C_{24}H_{28}N_4O \cdot (CH_2COOH)_2 \cdot 0.35H_2O$	132-135
21 f	$C_{23}H_{25}N_5O_{2^{\bullet}}(COOH)_{2^{\bullet}}0.5H_2O$	205-207			

^a All compounds were crystallized from PrOH/Et₂O and gave satisfactory microanalyses for C, H, and N. ^b ¹H NMR of this compound suggested that the salt had crystallized with solvent.

(3H, s, CH₃), 4.58 (2H, s, CH₂Br), 7.53 and 7.66 (each 2H, each d, J = 8.3 Hz, Ar-H).

A solution of the product from stage 1 (32.1 g) in EtOH (100 mL) was added to a solution of KCN (5.45 g, 84.0 mmol) in EtOH/ H₂O (1:1, 250 mL) at 100 °C, and the mixture was heated at reflux for 4 h. The solvents were evaporated, and the residue was partitioned between CH₂Cl₂ (250 mL) and brine (200 mL). The aqueous layer was further extracted with CH₂Cl₂ (3×), and the resulting crude product was chromatographed on silica gel, eluting with EtOAc/hexane (1:3 \rightarrow 2:1) to give 18a (8.58 g): ¹H NMR (CDCl₃) δ 2.68 (3H, d, J = 7.7 Hz, CH₃), 3.85 (2H, s, CH₂-CN), 4.42 (1H, br q, NH), 7.52 (2H, d, J = 8.7 Hz, 2-CH and 6-CH), 7.89 (2H, d, J = 8.7 Hz, 3-CH and 5-CH); MS m/z 210 $(M^+).$

4-(N-Methylcarbamoyl)phenyl Cyanide (18e). Methylamine (gas) was bubbled through a solution of 4-cyanobenzoyl chloride (10.0 g, 60.4 mmol) in CH_2Cl_2 (150 mL) until the solution was saturated. The precipitate was filtered off, washed with H_2O , and dried over P_2O_5 to give 18e (8.5 g, 88%): mp 158-160 °C; ¹H NMR (CD₃OD) δ 2.83 (3H, s, CH₃), 7.74 and 7.85 (each 2H, each d, J = 8.6 Hz, Ar-H). Anal. (C₉H₈N₂O·0.125H₂O) C, H, N.

General Procedure for the Preparation of Amide Oximes 13a,b, 15, and 19a-e. 4-((Methylsulfonyl)amino)benzenecarboxamide Oxime (13a). Hydroxylamine hydrochloride (3.48 g, 50.0 mmol) was added to a solution of Na metal (1.15 g, 50 mmol) in MeOH (100 mL), and the mixture was stirred at 25 °C for 0.1 h. 12a (9.8 g, 50 mmol) was added, and the mixture was refluxed for 2 h and then stirred at 25 °C for 16 h. The resulting precipitate was filtered off, washed with H₂O, and dried under vacuum to give 13a (7.5 g, 65.5%): mp 197 °C; ¹H NMR (CD₃-OD) δ 2.89 (3H, s, CH₃), 7.16 and 7.52 (each 2H, each d, J = 8.7Hz, Ar-H). Anal. $(C_8H_{11}N_3O_3S)$ C, H, N.

General Procedures for the Preparation of 5-(Oxadiazolyl)tryptamines 20a-x. General Method A. 2-[5-[3-(3-Benzyl-1,2,4-oxadiazol-5-yl)propyl]-1H-indol-3-yl]ethylamine Oxalate (200). This procedure illustrates the general method for preparation of 20a-c,e,f,h,j,k,m-r. NaH (0.34 g of an 80% dispersion in oil, 11.3 mmol) was added to a solution of benzeneacetamide oxime¹³ (1.64 g, 10.9 mmol), in THF (25 mL), and heated at 60 °C for 0.25 h. A solution of 9d (1.0 g, 3.7 mmol) in THF (10 mL) was added and the mixture heated at reflux for 2 h. The solvent was evaporated and the residue partitioned between CH₂Cl₂ (100 mL) and H₂O (100 mL). The aqueous portion was further extracted with $CH_2Cl_2(4\times)$ and the resultant crude product chromatographed on silica gel, eluting with CH2- $Cl_2/EtOH/NH_3$ (60:8:1) to give **200** (0.74 g, 56.3%). The oxalate salt was prepared: mp 188-189 °C (iPrOH/Et₂O); iH NMR

(DMSO- d_6) δ 1.98-2.07 (2H, m, CH₂CH₂CH₂), 2.70 (2H, t, J = 7.3 Hz, 2-CH₂), 2.83–2.96 (6H, m, 1-CH₂ and $CH_2CH_2CH_2$), 4.05 $(2H, s, CH_2Ph), 6.91$ (1H, d, J = 8.3 Hz, 7'-CH), 7.14 (1H, s, 2'-CH), 7.22-7.34 (7H, m, 4'-CH, 6'-CH, and Ph). Anal. $(C_{22}H_{24}N_4O\cdot 0.5(COOH)_2)$ C, H, N.

General Method B. 2-[5-[3-[4-[(Methylsulfonyl)amino]benzyl]-1,2,4-oxadiazol-5-yl]-1H-indol-3-yl]ethylamine Sesquioxalate (20t). This procedure illustrates the general method for preparation of 20d,g,i,l,s-x. 4-[(Methylsulfonyl)amino]benzeneacetamide oxime, 13b (1.83 g, 7.5 mmol), was added to a solution of Na (0.4g, 17.4mmol) in EtOH (50 mL), and the mixture was stirred under reflux for 0.5 h. 9a (9.5 g, 2.2 mmol) was added and the mixture refluxed for 24 h. The solvent was evaporated and the residue chromatographed on silicagel, eluting with $CH_2Cl_2/EtOH/NH_3$ (30:8:1) to give 20t (0.16 g, 18.6%). The sesquioxalate salt was prepared: mp 219-220 °C (PrOH/Et₂O); MS m/z 412 (M + 1)+; ¹H NMR (DMSO- d_6) δ 2.97 (3H, s, CH₃), 3.06 (4H, br s, 1-CH₂ and 2-CH₂), 4.10 (2H, s, CH₂Ph), 7.18 and 7.32 (each 2H, each d, J = 8.4 Hz, Ar-H), 7.42 (1H, s, 2'-CH), 7.55(1H, d, J = 8.6 Hz, 7'-CH), 7.81 (1H, dd, J = 1.6 and 8.6 Hz,6'-CH), 8.36 (1H, d, J = 1.6 Hz, 4'-CH), 11.50 (1H, s, NH). Anal. $(C_{20}H_{21}N_5O_3S\cdot 1.5(COOH)_2)$ C, H, N.

General Procedures for the Preparation of N,N-Dimethyl-5-(oxadiazolyl)tryptamines 21a-k. General Method A. N,N-Dimethyl-2-[5-[2-(3-benzyl-1,2,4-oxadiazol-5-yl)ethyl]-1H-indol-3-yl]ethylamine Hydrogen Oxalate (21j). This procedure illustrates the general method for preparation of 21b,d,j. NaH (0.4 g, 13.3 mmol) was added to a solution of benzeneacetamide oxime (1.8 g, 12.0 mmol), in THF (40 mL), and stirred at 60 °C for 0.25 h. A solution of 10c (1.1 g, 3.82 mmol) in THF (10 mL) was added, and the mixture was refluxed for 2 h. The solvent was evaporated and the residue partitioned between CH₂Cl₂ (200 mL) and H₂O (50 mL). The aqueous portion was separated and further extracted with $CH_2Cl_2(3\times)$. The crude product was chromatographed on silica gel, eluting with CH₂-Cl₂/EtOH/NH₃ (60:8:1) to give 21j (0.4 g, 28%). The hydrogen oxalate salt was prepared: mp 141-143 °C (PrOH); ¹H NMR (D_2O) δ 2.84 $(6H, s, N(CH_3)_2)$, 3.04-3.30 $(8H, m, 1-CH_2, 2-CH_2,$ and (CH₂)₂), 3.96 (2H, s, CH₂Ph), 6.95-7.00 (3H, m, 2'-CH, 4'-CH, and 7'-CH), 7.17-7.26 (5H, m, Ph), 7.34 (1H, d, J = 8.4 Hz, 6'-CH). Anal. (C₂₃H₂₆N₄O·(COOH)₂) C, H, N.

General Method B. N,N-Dimethyl-2-[5-[(3-Amino-1,2,4oxadiazol-5-yl)methyl]-1*H*-indol-3-yl]ethylamine Hydrochloride (21e). This procedure illustrates the general method for preparation of 21a,c,e,f-i. Hydroxyguanidine sulfate (56.3 g, 0.21 mol) was added to a solution of Na (16.2 g, 0.7 mol) in EtOH (900 mL) and the mixture refluxed for 0.2 h before adding a solution of 10b (19.3 g, 70.5 mmol) in EtOH (50 mL) and

refluxing for 3 h. The solvent was evaporated and the residue partitioned between CH₂Cl₂ (700 mL) and H₂O (200 mL). The aqueous portion was separated and further extracted (4×). The crude product was chromatographed on silica gel, eluting with CH₂Cl₂/EtOH/NH₃ (30:8:1) to give 21e (6.84 g, 34%). The hydrochloride salt was prepared: mp 186–188 °C (MeOH/Et₂O); MS m/z 286 (M⁺); ¹H NMR (D₂O) δ 2.92 (6H, s, N(CH₃)₂), 3.22 (2H, t, J = 7.4 Hz, 2-CH₂), 3.47 (2H, t, J = 7.4 Hz, 2-CH₂), 4.28 (2H, s, CH₂), 7.22 (1H, dd, J = 1.5 and 8.4 Hz, 6'-CH), 7.35 (1H, s, 2'-CH), 7.52 (1H, d, J = 8.4 Hz, 7'-CH), 7.62 (1H, s, 4'-CH). Anal. (C₁₅H₁₉N₅O·HCl) C, H, N.

N, N-Dimethyl-2-[5-[[[(4-methoxybenzyl)oxy]carbonyl]methyl]-1H-indol-3-yl]ethylamine (25). A solution of 23 (16.4 g, 72.3 mmol) in MeOH (25 mL) and 2 N NaOH (250 mL) was heated at 80 °C for 16 h. The solvents were evaporated, and the residue was dried by azeotroping with toluene (3 \times). SOCl₂ (12.9 g, 0.11 mol) was added to a rapidly stirred suspension of the residue in MeOH (750 mL) and the mixture stirred for 2 h. The solvent was evaporated and the residue partitioned between EtOAc (400 mL) and saturated K₂CO₃ solution (100 mL). The aqueous layer was further extracted with EtOAc (3 × 200 mL) and dried and the solvent evaporated to give 24 (18.4 g, 98%). ⁿBuLi (20 mL of a 1.6 M solution in hexane, 32.0 mmol) was added dropwise, over 0.2 h, to a cooled (-70 °C) and stirred solution of 4-methoxybenzyl alcohol (6.3 g, 45.6 mmol) in THF (50 mL). A solution of 24 (2.5 g, 9.6 mmol) in THF (20 mL) was added dropwise and the solution allowed to warm to room temperature and stir for 1 h. The solvent was evaporated, H₂O (50 mL) was added, and the mixture was extracted with Et₂O (2×). The combined extracts were washed with brine (50 mL), dried, and evaporated. Flash chromatography of the resulting oil, eluting with $CH_2Cl_2/MeOH/NH_3$ (90:10:1), gave 25 (3.1 g, 89%); ¹H NMR (CDCl₃) δ 2.33 (6H, s, N(CH₃)₂), 2.59–2.65 and 2.87-2.94 (each 2H, each m, 1-CH₂ and 2-CH₃), 3.74 (2H, s, CH₂-Ar), 3.80 (3H, s, OCH₃), 5.07 (2H, s, CH₂O), 6.83-6.88 (2H, m, ArH), 6.99 (1H, d, J = 2.5 Hz, 4'-CH), 7.10 (1H, dd, J = 1.7 and 8.4 Hz, 6'-CH), 7.23-7.29 (3H, m, 7'-CH and ArH), 7.48 (1H, s, 2'-CH), 8.04 (1H, br s, NH); MS m/z 366 (M⁺); HRMS calcd for $C_{22}H_{26}N_2O_3$ 366.1943, found 366.1967.

N,N-Dimethyl-2-[5-[[[(4-methoxybenzyl)oxy]carbonyl]-methyl]-1-(tert-butoxycarbonyl)indol-3-yl]ethylamine (26). Di-tert-butyl dicarbonate (2.63 g, 12.06 mmol) and 4-DMAP (0.11 g) were added to a solution of 25 (3.4 g, 9.27 mmol) in MeCN (25 mL), and the mixture was stirred at room temperature for 1 h. The solvent was evaporated and the residue chromatographed on silica gel, eluting with CH₂Cl₂/MeOH (95:5) to give 26 (3.33g, 77%): ¹H NMR (CDCl₃) δ 1.66 (9H, s, (CH₃)₃), 2.32 (6H, s, N(CH₃)₂), 2.58-2.65 and 2.80-2.88 (each 2H, each m, 1-CH₂ and 2-CH₂), 3.74 (2H, s, CH₂Ar), 3.80 (3H, s, OCH₃), 5.07 (2H, s, CH₂O), 6.84-6.89 (2H, m, ArH), 7.18-7.28 (3H, m, 6'-CH and ArH), 7.38 (1H, s, 2'-CH), 7.41 (1H, d, J = 1.2 Hz, 4'-CH), 8.03 (1H, br d, J = 8.1 Hz, 7'-CH); MS m/z 466 (M⁺); HRMS calcd for C₂₇H₃₄N₂O₅ 466.2467, found 466.2456.

N,N-Dimethyl-2-[5-[(3-amino-1,2,4-thiadiazol-5-yl)methyl]-1H-indol-3-yl]ethylamine Hydrogen Oxalate (28). To a solution of 26 (2.0 g, 4.28 mmol) in DMF (25 mL) was added NaH (0.43 g of a 60% dispersion in oil, 10.70 mmol), and the mixture was stirred for 0.25 h before a solution of 3-amino-5-chloro-1,2,4thiadiazole 18 (1.22 g, 8.99 mmol) in DMF (5 mL) was added. The mixture was stirred for 2.5 h, H₂O (50 mL) and brine (40 mL) were added, and the mixture was extracted into EtOAc (3×). The combined extracts were washed with brine $(1\times)$, dried, and evaporated. The crude product was chromatographed on silica gel, eluting with $CH_2Cl_2/MeOH$ (84:16) to give 27 (0.8 g, 33%): MS m/z 566 (M + 1)+; ¹H NMR (CDCl₃) δ 1.65 (9H, s, (CH₃)₃), $2.32 (6H, s, N(CH_3)_2), 2.57-2.64$ and 2.78-2.84 (each 2H, each m, 1-CH₂ and 2-CH₂), 3.78 (3H, s, OCH₃), 4.83 (2H, s, NH₂), 5.08 $(1H, d, J = 11.9 \text{ Hz}, 1 \text{ of } CH_2O), 5.19 (1H, d, J = 11.9 \text{ Hz}, \text{ one})$ of CH₂O), 5.35 (1H, s, CHCO₂), 6.79-6.84 and 7.16-7.21 (each 2H, each m, ArH), 7.28 (1H, dd, J = 1.9 and 8.7 Hz, 6'-CH), 7.41(1H, s, 2'-CH), 7.50 (1H, d, J = 1.9 Hz, 4'-CH), 8.06 (1H, d, J = 1.9 Hz, 4'-CH)

A solution of 27 (0.8 g, 1.41 mmol) in CH₂Cl₂ (120 mL), H₂O (5 mL), and trifluoroacetic acid (21 mL) was stirred at room temperature for 1 h. The solvents were evaporated, and the residue was dried by azeotroping with toluene-MeOH. The

product was dissolved in MeOH (50 mL) and refluxed for 0.1 h. The solvent was evaporated, saturated $\rm K_2CO_3$ solution (20 mL) was added, and the mixture was extracted into EtOAc (2×). The crude product was chromatographed on silica gel, eluting with CH₂Cl₂/MeOH/NH₃ (90:10:1.5) to give 28 (0.19 g, 44.8%). The hydrogen oxalate salt was prepared: mp 185–188 °C (MeOH/Et₂O); MS m/z 301 (M⁺); ¹H NMR (DMSO- d_6) & 2.75 (6H, s, N(CH₃)₂), 3.00–3.05 and 3.20–3.25 (each 2H, each m, 1-CH₂ and 2-CH₂), 4.32 (2H, s, CH₂Ar), 6.55 (2H, s, NH₂), 7.08 (1H, dd, J = 1.5 and 8.3 Hz, 6'-CH), 7.25 (1H, d, J = 1.5 Hz, 4'-CH), 7.34 (1H, d, J = 8.3 Hz, 7'-CH), 7.57 (1H, s, 2'-CH), 10.99 (1H, br s, NH). Anal. (C₁₅H₁₉N₅S·(COOH)₂) C, H, N.

N,N-Dimethyl-2-[5-(5-methyl-1,3-oxazol-2-yl)-1H-indol-3yl]ethylamine Sesquioxalate (31). A solution of 10a (1.4 g, 5.4 mmol) and LiOH (0.45 g, 10.8 mmol) in EtOH/H₂O (10:1, 40mL) was heated at 60 °C for 8 h and then stirred at room temperature for 16 h. The solvent was evaporated and the residue chromatographed on silica gel, eluting with Et₂O/EtOH/H₂O/ NH_3 (20:15:5:1) to give **29** (0.94 g, 75%). To a solution of **29** (0.2) g, 0.86 mmol), 1-hydroxybenzotriazole (0.14 g, 1.0 mmol), N-methylmorpholine (0.2 mL, 1.7 mmol), and propargylamine (71 μ L, 1.0 mmol) in CH₂Cl₂-DMF (1:1, 25 mL), at 0 °C, was added 1-(3-(dimethylamino)propyl)-3-ethylcarbodiimide hydrochloride (98 mg, 1.03 mmol). The solution was stirred for 18 h and washed with water (50 mL), and the aqueous layer was separated and extracted with CH2Cl2 (4×). The combined extracts were dried and evaporated, and the residue was chromatographed on silica gel, eluting with CH₂Cl₂/EtOH/NH₃ (40:8:1) to give the propargylamide 30 (88 mg, 38%): ¹H NMR $(CDCl_3) \delta 2.33 (7H, m, CH = C \text{ and } N(CH_3)_2), 2.65 \text{ and } 2.92 (each)$ 2H, each t, J = 7.0 Hz, 1-CH₂ and 2-CH₂), 4.32 (2H, dd, J = 1.0and 7.0 Hz, CH₂NHCO), 6.50 (1H, br t, NHCO), 7.02 (1H, s, 2'-CH), 7.24 (1H, d, J = 9.0 Hz, 7'-CH), 7.54 (1H, dd, J = 1.0 and 9.0 Hz, 6'-CH), 8.09 (1H, s, 4'-CH), 8.79 (1H, br s, NH).

A solution of 30 (88 mg, 0.33 mmol) and Hg(OAc)₂ (7 mg, 0.02 mmol) in acetic acid (4 mL) was refluxed for 3 h. The solvent was evaporated, saturated K_2CO_3 solution (10 mL) was added, and the mixture was extracted with CH_2Cl_2 (5×). The crude product obtained was chromatographed on silicagel, eluting with $CH_2Cl_2/EtOH/NH_3$ (60:8:1) to give the desired oxazole 31 (50 mg, 57%). The sesquioxalate salt was prepared: mp 164–166 °C; MS m/z 269 (M⁺); ¹H NMR (D₂O) δ 2.49 (3H, s, CH₃), 2.93 (6H, s, N(CH₃)₂), 3.25 and 3.51 (each 2H, each t, J = 7.0 Hz, 1-CH₂ and 2-CH₂), 7.30 (1H, s, oxazole-CH), 7.43 (1H, s, 2'-CH), 7.61 (1H, d, J = 9.0 Hz, 7'-CH), 7.72 (1H, dd, J = 1.0 and 9.0 Hz, 6'-CH), 8.20 (1H, d, J = 1.0 Hz, 4'-CH). Anal. (C₁₆H₁₉N₃O·1.6-(COOH)₂) C, H, N.

Biochemical Methods. Binding Experiments: (a) Brain Membrane Preparations. Crude membrane homogenates were prepared from pig cerebral cortex for 5-H T_{1A} and 5-H T_{1C} assays and from pig caudate for the 5-HT_{1D} assay.¹⁹ Thawed material was homogenized in 10–15 volumes of ice-cold 50 mM TRIS·HCl (pH 7.7 at room temperature) using a Kinematica polytron and centrifuged at 48000g at 4 °C for 11 min. The supernatant was discarded and the pellet resuspended in the same volume of icecold TRIS-HCl buffer and recentrifuged at 48000g at 4 °C for a further 11 min. The pellet was then resuspended in 10 volumes of 50 mM TRIS-HCl followed by a 10-min incubation at 37 °C to remove any endogenous 5-HT. Finally the tissue was recentrifuged at 48000g, 4 °C for 11 min, and the pellet resuspended in assay buffer (see below) to give the required volume for the assay, immediately prior to use. Crude P2 pellet homogenates were prepared from rat frontal cortex for the 5-HT $_2$ assay and from rat whole cortex for the 5-HT3 assay. Brains of male Sprague-Dawley rats (250-300 g) were dissected on ice and promptly transferred to 10-15 volumes of ice-cold 0.32 mM sucrose. The tissue was then homogenized using 10 strokes of a motor-driven Teflon/glass homogenizer (Janke and Kunkel) at 500 rpm. The homogenate was centrifuged at 1000g, 4 °C for 10 min, and the supernatant recentrifuged at 48000g, 4 °C for 21 min. The resulting pellet was resuspended in 10-15 volumes of 50 mM TRIS·HCl, pH 7.7 at room temperature (5-HT₂), 2.5 mM Hepes, pH 7.4 at room temperature (5-HT₃), to remove endogenous 5-HT. Finally, the homogenates were recentrifuged for a further 21 min at 48000g, 4 °C, and the resulting pellet was stored

on ice. Immediately prior to use the pellet was made up to the required volume in assay buffer (see below).

- (b) Binding Assays. Membranes, ligand, and drugs were prepared, in duplicate, in assay buffer which consisted of 50 mM TRIS-HCl containing 10 μ M pargyline, 0.1% ascorbate, 5.7 mM CaCl₂, pH 7.7 at room temperature for the 5-HT_{1A} assay, 50 mM TRIS-HCl containing 10 µM pargyline, 0.1% ascorbate, 4.0 mM CaCl₂, pH 7.7 at room temperature for the 5-HT_{1C} and 5-HT_{1D} assays, 50 mM TRIS-HCl containing 10 µM pargyline, 0.1% ascorbate, 10 mM MgCl₂, 0.5 mM EDTA, pH 7.4 at room temperature for the 5-HT₂ assay, and 10 mM Hepes containing 10 µM pargyline, 0.1% ascorbate, pH 7.1 at room temperature for the 5-HT₃ assay. Test compound was incubated with appropriate radioligand to give a final volume of 1 mL with the exception of the 5-HT2 assay which was carried out in a total volume of 2 mL. [3H]-8-OH-DPAT (1.5 nM), [3H] mesulergine (1.5 nM), [3H]-5-HT (2 nM) in the presence of 100 nM cyanopindolol and 100 nM mesulergine, [3H]DOB (0.6 nM), and [3H]-Q-ICS 205-930 (0.5 nM) were used to label 5-HT_{1A}, 5-HT_{1C}, $5-HT_{1D}$, $5-HT_2$, and $5-HT_3$ binding sites, respectively. 5-HT (10 μ M) was used to define nonspecific binding in the 5-HT_{1A}, 5-HT_{1C}, and 5-HT_{1D} assays, cyproheptidine (1 μ M) in the 5-HT₂ assay, and MDL 72222 (10 μ M) in the 5-HT₃ assay. 5-HT_{1A}, 5-HT_{1C}, $5-HT_{1D}$, and $5-HT_2$ assay incubations were carried out in a shaking water bath at 37 °C for 20, 30, 30, and 15 min, respectively. 5-H T_3 assay incubations were carried out on ice for 15 min. In all cases the reaction was started by the addition of the membrane solution and terminated by rapid filtration through Whatman G/FB glass fibre filters (ice cold for the 5-HT_{1C} assay) using a Brandel cell harvester, followed by 2 × 4-mL washes with 50 mM TRIS-HCl (5 mM HEPES for the 5-HT₃ assay). The filters had previously been soaked in 0.3% poly(ethylenimine) (PEI)/0.5% Triton X to minimize nonspecific binding. The filter were then transferred to scintillation vials containing 10 mL of Hydrofluor, and the radioactivity was determined by liquid scintillation spectrometry at 30-40% efficiency.
- (c) Data Analysis. Experiments were performed on two to three separate occasions in duplicate. Each displacement curve consisted of 18 (5-HT_{1D}), 10 (5-HT_{1A}), or 9 (all other assays) separate concentrations ranging from 100 µM to 30 pM. The data represent in all cases specific binding (total-nonspecific) only. Each inhibition curve was analyzed by nonlinear regression analysis using the function fitting routine provided by the data manipulation software RS/1. All curves were analyzed based on the assumption of a one-site model. 5-HT_{1D} displacement curves were also fitted to a two-site model, and improvement of the fit was assessed using the partial F-test procedure.28 A two-site model was only accepted if the probability of the models being the same was less than 1:20 (P < 0.05). All compounds, with exception of 5-HT, tested for 5-HT_{1D} receptor activity yielded displacement curves best fit to a two-site model, and the pIC₅₀ values quoted refer to the high affinity component only.

Functional Experiment: New Zealand White Rabbit Saphenous Vein Preparation. Rabbits were anaesthetized with 45 mg/kg pentobarbitone (intravenously) and decapitated, and the saphenous veins were cannulated and removed. The vessels were cleared of connective and adipose tissue, cut into 5-mm sections, and placed on tissue holders in organ baths containing Krebs-Henseleit solution at 37 °C. Tension was set at 2 g and reset regularly over a period of at least 30 min while the tissues were exposed to phenoxybenzamine (0.3 µM) and pargyline (500 μM). After the tissues were washed to remove excess inhibitors, 1 µM 5-HT was added from which relative efficacy values were calculated. Agonist potencies were calculated as pEC₅₀ values from plots of percentage 5-HT (1 μ M) response against concentration of the agonist.24

Acknowledgment. We thank our colleague Mr. William Davey for technical assistance and Mrs. E. Brawn and Mrs. C. J. Street for typing the manuscript.

Supplementary Material Available: A table of microanalytical data for novel compounds and table of HRMS data for novel compounds (4 pages). Ordering information is given on any current masthead page.

References

- (1) Glennon, R. A. Central Serotonin Receptors as Targets for Drug Research. J. Med. Chem. 1987, 30, 1-12.
- (2) (a) Peroutka, S. J. 5-Hydroxytryptamine Receptor Subtypes. Pharmacol. Toxicol. 1990, 67, 373-383. (b) Bockaert, J.; Fozard, J. R.; Dumuis, A.; Clarke, D. E. The 5-HT₄ Receptor: A Place in the Sun. Trends Pharmacol. Sci. 1992, 13, 141-145.
- (3) (a) Hartig, P. R.; Adham, N.; Zgombick, J.; Weinshank, R.; Branchek, T. Molecular Biology of the 5-HT₁ Receptor Subfamily. Drug Dev. Res. 1992, 26, 215–224. (b) Weinshank, R. L.; Zgombick, J. M.; Macchi, M.; Branchek, T. A.; Hartig, P. R. Human Serotonin 1D Receptor is Encoded by a Subfamily of Two Distinct Genes: 5-HT_{1Dc} and 5-HT_{1Dd}. *Proc. Natl. Acad. Sci. U.S.A.* **1992**, *89*, 3630–3634. (c) Hartig, P. R.; Branchek, T. A.; Weinshank, R. L. A Subfamily of 5-HT_{1D} Receptor Genes. Trends Pharmacol. Sci. 1992, 13, 152-159.
- Middlemiss, D. N.; Tricklebank, M. D. Centrally Active 5-HT Receptor Agonists and Antagonists. Neurosci. Biobehav. Rev. 1992,
- (5) The 5-HT_{1C} Receptor has been reclassified as a subtype of the 5-HT2 receptor "family". Like the 5-HT2 receptor it is linked to PI. The 5-HT_{1A}, 5-HT_{1B}, and 5-HT_{1D} receptors are negatively coupled to adenylate cyclase. See ref 2a.
- (6) Parsons, A. A. 5-HT Receptors in Human and Animal Cerebrovasculature. Trends Pharmacol. Sci. 1991, 12, 310-315.
- Leonhardt, S.; Herrick-Davis, K.; Titeler, M. Detection of a Novel Serotonin Receptor Subtype (5-HT_{1.5}) in Human Brain: Interaction with a GTP-Binding Protein. J. Neurochem. 1989, 53, 465-471.
- (8) Heuring, R. E.; Peroutka, S. J. Characterisation of a Novel 3H-5-Hydroxytryptamine Binding Site Subtype in Bovine Brain Membranes. J. Neurosci. 1987, 7 (3), 894-903.
- (a) Peroutka, S. J.; McCarthy, B. G. Sumatriptan (GR 43175) Interacts Selectively with 5-HT_{1B} and 5-HT_{1D} Binding Sites. Eur. J. Pharmacol. 1989, 163, 133-136. (b) Schoeffter, P.; Hoyer, D. How Selective is GR 43175? Interactions with Functional 5-HT_{1A}, 5-HT_{1C} and 5-HT_{1D} Receptors. Naunyn-Schmiedebergs Arch. Pharmacol. 1989, 340, 135-138.
- (10) (a) Glennon, R. A.; Ismaiel, A. M.; Chaurasia, C.; Titeler, M. 5-HT_{1D} Serotonin Receptors: Results of a Structure-Affinity Investigation. Drug Dev. Res. 1991, 22, 25-36. (b) Robertson, A. D.; Graeme, R. M.; Buckingham, J. A. Therapeutic Heterocyclic Compounds. European Patent Appl. 0313397, 1989.
- $(11) \ \ Feniuk, W.; Humphrey, P.\,P.\,A.; Perren, J.\,J.\,The\,Selective\,Carotid$ Arterial Vasoconstrictor Action of GR 43175 in Anaesthetized Dogs. Br. J. Pharmacol. 1989, 96, 83-90.
- (a) Feniuk, W.; Humphrey, P. P. A. The Development of a Highly Selective 5-HT₁ Receptor Agonist, Sumatriptan, for the Treatment of Migraine. Drug Dev. Res. 1992, 26, 235-240. (b) Peroutka, S. J. Serotonin Receptor Subtypes and Neuropsychiatric Diseases: Focus on 5-HT_{1D} and 5-HT₃ Receptor Agents. *Pharmacol. Rev.* 1991, 43 (4), 579-586. (c) Dechant, K. L.; Clissold, S. P. Sumatriptan: A Review of its Pharmacodynamic and Pharmacokinetic Properties, and Therapeutic Efficacy in the Acute Treatment of Migraine and Cluster Headache. Drugs 1992, 43 (5), 776-798.
- (13) Saunders, J.; Cassidy, M.; Freedman, S. B.; Harley, E. A.; Iversen, L. L.; Kneen, C.; MacLeod, A.; Merchant, K.; Snow, R. J.; Baker, R. Novel Quinuclidine Based Ligands for the Muscarinic Cholinergic Receptor. J. Med. Chem. 1990, 33, 1128-1138.
- (14) Swain, C. J.; Baker, R.; Kneen, C.; Moseley, J.; Saunders, J.; Seward E. M.; Stevenson, G.; Beer, M.; Stanton, J.; Watling, K. Novel 5-HT₃ Antagonists: Indole Oxadiazoles. J. Med. Chem. 1991, 34, L40-151.
- (15) This is the Grandberg modification of the Fischer Indole Synthesis. Robinson, B. The Fischer Indole Synthesis; John Wiley and Sons: New York, 1982; pp 487–495.
- Fleming, I.; Pearce, A. Controlling the Outcome of a Carbocation-Initiated Cyclisation. J. Chem. Soc., Perkin Trans. 1 1981, 251-
- (17) Baker, R.; Reeve, A. J.; Street, L. J. Indole-Substituted Five-Membered Heteroaromatic Compounds. European Patent Appl. 0438230, 1991
- Franz, J. E.; Dhingra, O. P. 1,2,4-Thiadiazoles. Comprehensive Heterocyclic Chemistry; Potts, K. T., Ed.; Pergamon Press: New York, 1984; Vol. 6, p 463.
- (19) Beer, M. S.; Stanton, J. A.; Bevan, Y.; Chauhan, N. S.; Middlemiss, D. N. An Investigation of the 5-HT_{1D} Receptor Binding Affinity of 5-Hydroxytryptamine, 5-Carboxyamidotryptamine and Sumatrip tan in the Central Nervous System of Seven Species. Eur. J.
- Pharmacol. 1992, 213, 193-197.
 (20) Castro, J. L.; Matassa, V. G.; Broughton, H.; Mosley, R. T.; Street, L. J.; Baker, R. Synthesis, Biological Activity and Electrostatic Properties of 3-[2-(Dimethylamino)ethyl]-5-[(3-amino-1,2,4-thiadiazol-5-yl)methyl]-1H-indole, a Novel 5-HT_{1D} Agonist. Bio. Med. Chem. Lett., in press.
- (21) Hoyer, D.; Engel, G.; Kalkman, H. O. Molecular Pharmacology of 5-HT₁ and 5-HT₂ Recognition Sites in Rat and Pig Brain Membranes: Radioligand Binding Studies with [3H]-5-HT, [3H]-8-OH-DPAT, (-)-[125I] Iodocyanopindolol, [3H] Mesulergine and [3H] Ketanserin. Eur. J. Pharmacol. 1985, 118, 13-23.

- (22) Titeler, M.; Leonhardt, S.; Weisberg, E. L.; Hoffman, B. J. 4-[1251]-Iodo-(2,5-dimethoxy)phenylisopropylamine and [3H] Ketanserin Labelling of 5-Hydroxytryptamine₂ (5-HT₂) Receptors in Mammalian Cells Transfected with Rat 5-HT₂ cDNA: Evidence for Multiple States and Not Multiple 5-HT₂ Receptor Subtypes. *Mol. Pharmacol.* 1990, 38, 594-598.
- (23) Pazos, A.; Hoyer, D.; Palacios, J. M. The Binding of Serotonergic Ligands to the Porcine Choroid Plexus: Characterization of a New Type of Serotonin Recognition Site. Eur. J. Pharmacol. 1985, 106, 539–546.
- (24) Richardson, B. P.; Engel, G. The Pharmacology and Functions of 5-HT₃ Receptors. *Trends Neurosci.* 1986, 9, 424-428.
- (25) Martin, G. R.; MacLennan, S. J. Analysis of the 5-HT Receptor in Rabbit Saphenous Vein Exemplifies the Problems of Using

- Exclusion Criteria for Receptor Classification. Naunyn-Schmiedebergs Arch. Pharmacol. 1990, 342, 111-119.
- (26) The in vivo functional activity and pharmacokinetic profile of these compounds shall be presented in a separate publication. Hargreaves, R. J.; Graham, M. I.; et al. Unpublished results.
- (27) Gabriella Buzzi, M.; Moskowitz, M. A. The Antimigraine Drug, Sumatriptan (GR 43175), Selectively Blocks Neurogenic Plasma Extravasation from Blood Vessels in Dura Mater. Br. J. Pharmacol. 1990, 99, 202-206.
- (28) De Lean, A.; Munson, P.; Rodbard, D. Simultaneous Analysis of Families of Sigmoidal Curves: Application to Bioassay, Radioligand Assay, and Physiological Dose Response Curves. Am. J. Physiol. 1978, 235, 97-102.