# Enantioselective biocatalytic reduction of 2,2-disubstituted ethylacetoacetates: an indirect desymmetrization approach for the synthesis of enantiopure ( $S$ )-4-hydroxy-3,3-disubstituted pentane-2-ones 

Joydev Halder, Debabrata Das, Samik Nanda*<br>Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India

## ARTICLE INFO

## Article history:

Received 19 August 2015
Accepted 16 September 2015
Available online 3 October 2015


#### Abstract

Ethyl 2,2-disubstituted-3-oxobutanoates were biocatalytically reduced to the corresponding (S)-ethyl 3-hydroxy-2,2-disubstitutedbutanoate with the growing cells of Klebsiella pneumoniae (NBRC 3319) with excellent enantioselection. The biocatalytically derived enantiopure hydroxyl esters were then synthetically manipulated to give (S)-4-hydroxy-3,3-disubstituted pentane-2-ones. The whole process can be regarded as an indirect enantioselective enzymatic desymmetrization method for the synthesis of (S)-4-hydroxy-3,3-disubstituted pentane-2-ones.


© 2015 Elsevier Ltd. All rights reserved.

## 1. Introduction

The desymmetrization or off-mirror plane reaction of $\sigma$-symmetric organic compounds always leads to one or more unsymmetrical products (mainly enantiomers). ${ }^{1}$ This synthetic operation can be considered as a very useful functional group interconversion and should be taken into serious consideration when performing retrosynthetic analyses. It is always more convenient to start with symmetrical intermediates with a $\sigma$-plane and perform the desymmetrization to further the synthetic progression. ${ }^{2}$ Enantioselective enzymatic desymmetrizations are reactions in which a meso/prochiral small organic molecules with a $\sigma$ plane can be enantioselectively desymmetrized with the help of an enzyme (enatiotopos/enantioface differentiating reaction) to yield a single enantiomer in theoretically $100 \%$ yield. ${ }^{3}$ The stereoselective bioreduction of prochiral ketones for the synthesis of chiral secondary alcohols using plant and microbial ketoreductases has been well explored over the last two decades. ${ }^{4} \beta$-Keto esters (simple and $\alpha$-substituted) are usually known as excellent substrates for several ketoreductases (plant, microbial, recombinant) for the asymmetric synthesis of the corresponding $\beta$-hydroxyesters. ${ }^{5}$ Enantiopure $\beta$-hydroxy esters are useful precursors for the synthesis of various small organic molecules and are regarded as well explored chiral pool material by their own merit. Very recently, we reported that the fermenting cells of Klebsiella pneumoniae

[^0]can (NBRC 3319) act as a versatile ketoreductase and selectively reduce several $\alpha$-substituted $\beta$-keto esters through a unique dynamic kinetic resolution pathway to yield the corresponding syn- $\beta$-hydroxy esters with remarkable stereocontrol (de $>99 \%$, ee $>99 \%$ ). We have also explored the synthetic potential of enantiopure $\alpha$-substituted- $\beta$-hydroxy esters for accessing a series of small carbocycles and heterocycles. ${ }^{6}$

Over the course of our studies, we were interested in exploring the substrate scope of Klebsiella pneumoniae (NBRC 3319) and we found that it accepts several $\alpha$-substitutions (alkyl, allyl, benzyl and propargyl) in the parent $\beta$-keto ester moiety as its substrate and that it yields the respective hydroxyl esters in excellent yield. It was also observed that the fermenting cells of Klebsiella pneumoniae (NBRC 3319) accept $\alpha$-substituted acetoacetate (bearing a terminal -Me group) as its main substrate. 3-Substituted (monoand di-)pentane-2,4-dione (substituted acetylacetones) was not accepted by the enzyme as its substrate, hence direct enantioselective enzymatic desymmetrizations of pro-chiral acetylacetones were not possible by the enzyme system (probable enantioselective enzymatic desymmetrization routes are outlined in Scheme 1). We argued that if the 2,2-disubstituted ethylacetoacetate analogue can undergo enantioselective bioreduction with K. pneumoniae, then it is possible to synthetically manipulate the obtained $\beta$-hydroxy keto esters to ( $S$ )-4-hydroxy-3,3-dialkylpentane-2-ones (Scheme 1). Hence an indirect enantioselective enzymatic desymmetrization route can be explored efficiently since a direct enantioselective enzymatic desymmetrization route seems to not work with the given enzyme system. In addition there are very



G1 and G2 (-COMe) are enantiotopic groups due to the presence of the $\sigma$-plane.
Selective bioreduction to individual groups ( Re - or Si -) leads to enantiomers

Scheme 1. Direct and indirect enantioselective enzymatic desymmetrization route to 3,3-disubstituted acetylacetones and limitations to the direct desymmetrization method.
few reports for the enantiopure synthesis of (S)-4-hydroxy-3,3-di-alkylpentane-2-ones in the literature. ${ }^{7}$ This finding also prompted us to investigate an efficient enantioselective synthesis for those compounds, which might act as valuable chiral intermediates in the field of asymmetric synthesis.

## 2. Results and discussion

Initially we wondered if 2,2 -symmetrically di-substituted ethylacetoacetates could undergo enantioselective bioreduction with the fermenting whole cells of Klebsiella pneumoniae (NBRC 3319), then it would be easier for us to explore the indirect enantioselective enzymatic desymmetrization strategy as outlined in Scheme 1. The process seems to be very challenging and interesting as there is no literature precedence for the enantioselective bioreduction of 2,2 -symmetrically di-substituted ethylacetoacetates. This bioreduction system involving 2 -substituted (mono) ethyl acetoacetates follows a unique dynamic kinetic resolution (dynamic kinetic resolution) pathway due to the presence of an epimerizable $\alpha$-hydrogen and excellent enantio- and diastereocontrol was observed in the product $\beta$-hydroxyesters. Conversely, the bioreduction of 2 , 2-symmetrically di-substituted ethylacetoacetates has to follow a normal pathway (due to the lack of an $\alpha$-hydrogen at the 2 -position) and can only lead to two enantiomeric products.

We synthesized several 2,2-symmetrically di-substituted ethylacetoacetates starting from ethyl acetoacetate. The synthesis involves standard base mediated anion generation at the $\alpha$-carbon followed by quenching with 2 equiv of the electrophiles (alkyl halides) as shown in Scheme 2.

The synthesis of compounds $\mathbf{1 - 1 2}$ was straightforward and carried out as depicted in Scheme 2. We also synthesized 2,2symmetrically substituted cyclic ethyl acetoacetates 13-16. For this purpose, compounds $\mathbf{8}$ and $\mathbf{9}$ were used as starting materials. Ring closing metathesis reaction with Grubbs first generation catalyst (G-I) ${ }^{8}$ at room temperature afforded the corresponding

$\mathrm{R}=\mathrm{Me} 1 ; \mathrm{R}=\mathrm{Et} \mathbf{2} ; \mathrm{R}=n \operatorname{Pr} 3 ; \mathrm{R}=n \mathrm{Bu} \mathbf{4} ; \mathrm{R}=i-\mathrm{Bu} 5 ; \mathrm{R}=n$-pent 6; $\mathrm{R}=n$-hex $\mathbf{7}$; $R=$ allyl $8 ; R=$ homo-allyl $9 ; R=B n 10 ; R=P M B 11 ; R=$ propargyl 12


Scheme 2. Synthesis of 2,2-symmetrically di-substituted ethylacetoacetates. Reagents and conditions: (a) NaH, alkyl halides, THF, rt to reflux, 68-92\%; (b) G-I ( $5 \mathrm{~mol} \%$ ), DCM, rt, $80 \%$; (c) $\mathrm{Pd}-\mathrm{C} / \mathrm{H}_{2}, \mathrm{MeOH}, \mathrm{rt}, 95 \%$.
cyclic compounds 13 and 15. Compounds 13 and 15 upon hydrogenation on $\mathrm{Pd} / \mathrm{C}$ furnished compounds 14 and 16 in excellent yield.

### 2.1. Bioreduction of compounds $\mathbf{1 - 1 6}$

The simplest substrate ethyl 2,2-dimethyl-3-oxobutanoate $\mathbf{1}$ ( $100 \mathrm{mg} ; 0.63 \mathrm{mmol}$ ) was directly added to the growing cells of Klebsiella pneumoniae (NBRC 3319). The reactions were monitored periodically by TLC analysis. It usually required 7-10 days for
quantitative conversion, after which the product alcohol was extracted with EtOAc and purified by standard techniques. The reduced alcohol was obtained in $85 \%$ yield with excellent enantioselection (ee $>99 \%$; as determined by chiral HPLC analysis of the corresponding benzoate derivative). The remaining substrates were then subjected to bioreduction with the growing cells of Klebsiella pneumoniae and the results are shown in Table 1.

From Table 1 it is evident that a structurally diverse set of substrates are accepted by the whole cell of $K$. pneumoniae and the corresponding $\beta$-hydroxyesters are obtained with excellent enantioselection. Although the bioreduction usually took a long time ( $7-10$ days) for the complete consumption of the starting material, it is worth mentioning that excellent enantioselection ( $>99 \%$ ) was observed in all the cases.

Table 1
Enantioselective bioreduction of compounds 1-16 with K. pneumoniae

| Entry (compound) | Product ${ }^{\text {a }}$ | Time required (days), conversion ${ }^{\text {b }}$ (\%) | $\mathrm{ee}^{\mathrm{c}}$ (\%) |
| :---: | :---: | :---: | :---: |
| 1 |  <br> 17 | 7,85 | >99 |
| 2 |  | 7,82 | >99 |
| 3 |  | 7,80 | >99 |
| 4 |  | 8,68 | >99 |
| 5 |  | 7,70 | >99 |
| 6 |  $\mathrm{R}=n \mathrm{C}_{5} \mathrm{H}_{11}$ | 9,65 | >99 |
| 7 |  $\mathrm{R}=n \mathrm{C}_{6} \mathrm{H}_{13}$ | 10,65 | >99 |
| 8 |  | 7,88 | >99 |
| 9 |  | 7,85 | >99 |
| 10 |  | 8,68 | >99 |
| 11 |  |  | >99 |
| 12 |  | $8,72$ | >99 |

Table 1 (continued)
Entry (compound)

[^1]
### 2.2. Indirect desymmetrization of biocatalytically derived enantiopure hydroxyesters

After the initial synthesis of the chiral hydroxy esters was achieved through bioreduction with the whole cell of K. pneumoniae, we turned our attention to the indirect desymmetrization method as depicted earlier. For this purpose, the free hydroxyl group was protected as its TBS ether by treatment with TBS-OTf in the presence of 2,6 -lutidine ${ }^{9}$ to afford the corresponding silylated esters 33-36 in good yield. The esters were then converted into the corresponding Weinreb amides by treatment with $\mathrm{N}, \mathrm{O}-$ dimethylhydroxylamine in the presence of $\mathrm{AlMe}_{3}$ with good yield. ${ }^{10}$ The crude Weinreb amides was then subjected to reaction with MeMgI at $0^{\circ} \mathrm{C}$ to afford the corresponding methyl ketones $\mathbf{3 7 - 4 0}$ as shown in Scheme 3. The TBS group was then deprotected by using pyridinium $p$-toluenesulfonate in MeOH to afford compounds 41-44 (the desymmetrized products of the corresponding 3,3-dialkyl-pentane-2,4-diones). Hence, the overall reaction sequence can be regarded as an efficient indirect enantioselective enzymatic desymmetrization of the parent acetylacetones for the synthesis of enantiopure $\beta$-hydroxy ketones in good yield.

### 2.3. Indirect diastereoselective enzymatic desymmetrization of 3,3-unsymmetrically disubstituted acetyl acetones

The situation will become more complex if the parent acetyl acetone becomes unsymmetrically substituted with two different
groups at the 3-position. Such a system is shown in Scheme 4. Here the two -COMe groups (G1 and G2) are not enantiotopic any more as shown in Scheme 1; due to the presence of a pro-chiral assembly (at C3) are diastereotopic under nucleophilic attack conditions at G1 or G2. In principle, two pathways can operate; in one kinetic resolution followed by selective bioreduction to the carbonyl functionality leads to only one stereoisomer (out of the four compounds). In the other pathway, selective bioreduction leads to two diastereomers with absolute enantiocontrol. The parent 3 , 3 -unsymmetric substituted acetyl acetones are not accepted by the whole cells of K. pneumoniae, hence we opted for the indirect desymmetrization route as depicted earlier. Ethyl 2-acetyl-2-methylpent-4-enoate 45 and ethyl 2-acetyl-2-benzylpent-4enoate 46 were chosen as the starting substrates. The bioreduction of $\mathbf{4 5} / \mathbf{4 6}$ with the growing cells of K. pneumoniae went smoothly and after 8 days of incubation, an inseparable mixture of the two diastereoisomers $\mathbf{4 7} / 49$ and $\mathbf{4 8} / 50$ were isolated (as indicated by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR analysis; 1:1 ratio) in $70 \%$ yield. The free secondary hydroxyl group was then protected as a TBS ether, and then subsequent reduction with DIBAL-H at $-30^{\circ} \mathrm{C}$ afforded the corresponding alcohols $51 / 53$ and $52 / 54$, which were then separated by chromatography and spectroscopically well characterized. Functional group manipulation of $\mathbf{5 1 / 5 3}$ and $\mathbf{5 2} / \mathbf{5 4}$ through a four step (oxidation, addition of MeMgI, oxidation and TBS group removal) procedure yielded enantiopure $\beta$-hydroxy acetylacetone derivatives 59/61 and 60/62 (the direct desymmetrized products obtained through a nucleophilic ' H ' transfer to the parent acetyl acetone; Scheme 4).


Scheme 3. Indirect desymmetrization of biocatalytically derived 2,2 -symmetrically substituted $\beta$-hydroxy esters; Reagents and conditions: (a) 2,6-lutidine, TBS-OTf, rt; (b) $\mathrm{MeNH}(\mathrm{OMe}), \mathrm{AlMe}_{3}$, benzene, MeMgI, diethyl ether, $0^{\circ} \mathrm{C}$ to rt; (c) pyridinium $p$-toluenesulfonate, MeOH , rt .

$A-B$ and $C-D$ are enantiomeric pairs $A-C, A-D, B-C, B-D$ are diastereomeric pairs

G1 and G2 (-COMe) are diastereotopic groups, selective bioreduction to individual groups (through Re- or Si-face) leads to diastereomers


$$
\begin{aligned}
& \mathrm{R}=\mathrm{Me} ; 45 \\
& \mathrm{R}=\mathrm{Bn} ; 46
\end{aligned}
$$

inseparable diastereomers (1:1)
a) 2,6-lutidine, TBS-OTf, rt
b) DIBALH, $-30^{\circ} \mathrm{C}$, DCM


 conditions: (c) (i) BAIB, TEMPO, DCM, rt; (ii) MeMgI, $\mathrm{Et}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}$ to rt; (iii) BAIB, TEMPO, DCM, rt; (d) pyridinium p-toluenesulfonate, MeOH, rt.

The absolute configuration of alcohols $\mathbf{5 9}$ and $\mathbf{6 1}$ was confirmed by comparing spectroscopic data with those of known compounds. ${ }^{7 c}$ From the above results it was clear that both enantiomers of racemic $\mathbf{4 5} / \mathbf{4 6}$ react in a similar fashion and the bioreduction occurs from the Re-face of the carbonyl group in the same way as reported in the case of compounds $\mathbf{1 - 1 6}$. It would have been more interesting if a kinetic resolution (fast reacting enantiomer of $\mathbf{4 5} / \mathbf{4 6}$ ) followed by carbonyl reduction by ketoreductase occurred, however both enantiomers of 45/46 were equally accepted by K. pneumoniae and yielded compounds 47/49 and 48/50 in equal amounts with excellent enantioselection.

## 3. Conclusion

In conclusion, ethyl 2,2-disubstituted-3-oxobutanoates were biocatalytically reduced to the corresponding (S)-ethyl 3-hydroxy-2,2-disubstitutedbutanoate with the growing cells of Klebsiella pneumoniae (NBRC 3319) with excellent enantioselection. The reported method serves as an indirect biocatalytic desymmetrization procedure for the synthesis of (S)-4-hydroxy-

3,3-disubstituted pentane-2-ones. The synthesized enantiopure ( $S$ )-4-hydroxy-3,3-disubstituted pentane-2-ones could be used as excellent chiral precursors in asymmetric synthesis. Racemic ethyl 2,2-unsymmetrically disubstituted-3-oxobutanoates were also efficiently reduced to the corresponding enantiopure alcohols with excellent enantioselection. This type of enantioselective biocatalytic reduction with the growing cells of Klebsiella pneumoniae (NBRC 3319) is unique in the sense that there are few reports for the synthesis of such chiral $\beta$-hydroxyl-esters.

## 4. Experimental

### 4.1. General

Unless otherwise stated, materials were obtained from commercial suppliers and used without further purification. THF and diethylether were distilled from sodiumbenzophenone ketyl. Dimethylformamide (DMF) and dimethylsulfoxide (DMSO) were distilled from $\mathrm{CaH}_{2}$. Microbial ketoreductases strain form Klebsiella pneumoniae (NBRC 3319) was obtained from NBRC, Japan and
maintained in a Petri dish as well as in glycerol slants periodically. Bioreductions were performed in an incubator shaker at $35^{\circ} \mathrm{C}$. Reactions were monitored by thin-layer chromatography (TLC) carried out on 0.25 mm silica gel plates (Merck) with UV light, ethanolic anisaldehyde and phosphomolybdic acid/heat as developing agents. Silica gel 100-200 mesh was used for column chromatography. Yields refer to chromatographically and spectroscopically homogeneous materials unless otherwise stated. Proton nuclear magnetic resonance ( ${ }^{1} \mathrm{H}$ NMR) and carbon nuclear magnetic resonance ( ${ }^{13} \mathrm{C}$ NMR) spectra were acquired in $\mathrm{CDCl}_{3}$ unless otherwise mentioned. Chemical shifts are reported in parts per million (ppm, $\delta$ ), downfield from tetramethylsilane (TMS, $\delta=0.00 \mathrm{ppm})$, and are referenced to residual solvent $\left(\mathrm{CDCl}_{3}\right.$, $\delta=7.26 \mathrm{ppm}\left({ }^{1} \mathrm{H}\right)$ and $77.23 \mathrm{ppm}\left({ }^{13} \mathrm{C}\right)$. Coupling constants $(J)$ are reported in Hertz $(\mathrm{Hz})$ and the resonance multiplicity abbreviations used are: s, singlet; d, doublet; t, triplet; q, quartet; dt, doublet of triplets; dd, doublet of doublets; ddd, doublet of doublet of doublets; $m$, multiplet; comp, overlapping multiplets of magnetically non-equivalent protons. Optical rotations were measured on a JASCO P1020 digital polarimeter. Mass spectrometric analysis was performed in the CRF, IIT-Kharagpur (TOF analyser).

### 4.2. Synthesis of $\alpha, \alpha$-alkylacetoacetates 1-12: general procedure

At first, $\mathrm{K}_{2} \mathrm{CO}_{3}(2.712 \mathrm{~g}, 19.625 \mathrm{mmol})$ was added to a solution of ethylacetoacetate ( $1 \mathrm{~mL}, 7.85 \mathrm{mmol}$ ) in dry DMF ( 25 mL ) at room temperature under an argon atmosphere, after which the corresponding alkyl halide (3 equiv) and $(n \mathrm{Bu})_{4} \mathrm{NI}(319 \mathrm{mg}$, 0.8635 mmol ) were added to the mixture and stirred at reflux. After 12 h the reaction mixture was cooled to room temperature and then water was added to quench the reaction and extracted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL} \times 3)$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 30 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residual oil was purified by flash chromatography ( $\mathrm{SiO}_{2}, \mathrm{EtOAc} /$ hexane).

### 4.2.1. Ethyl 2,2-dimethyl-3-oxobutanoate 1

$R_{f}=0.5$ (EtOAc/hexane, $\left.1: 20\right) .{ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$ : $\delta=4.08$ ( $\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$ ), 2.05 ( $\mathrm{s}, 3 \mathrm{H}), 1.25$ ( $\mathrm{s}, 6 \mathrm{H}), 1.15(\mathrm{t}$, $J=7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta=205.8,173.5,61.3$, 55.7, 25.7, 21.8, 14.0. HRMS (ESI) for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{H}]^{+}$calculated: 181.0841, found: 181.0848.

### 4.2.2. Ethyl 2,2-diethyl-3-oxobutanoate 2

$R_{f}=0.6$ (EtOAc/hexane, 1:10). ${ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$ : $\delta=4.23-4.05(\mathrm{~m}, 2 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 1.98-1.77(\mathrm{~m}, 4 \mathrm{H}), 1.27-1.20$ (m, 3H), $0.74(\mathrm{t}, J=7.6 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$ $\delta=205.5,172.7,64.3,61.1,26.8,23.6,14.2,8.2$. HRMS (ESI) for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{H}]^{+}$calculated: 209.1154, found: 209.1159.

### 4.2.3. Ethyl 2-acetyl-2-propylpentanoate 3

$R_{f}=0.7$ (EtOAc/hexane, 1:10). ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}, 200 \mathrm{MHz}$ ): $\delta=4.19-4.00(\mathrm{~m}, 2 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 1.82-1.63(\mathrm{~m}, 4 \mathrm{H}), 1.25$ ( $\mathrm{t}, J=1.6 \mathrm{~Hz}, 3 \mathrm{H}$ ), $1.21-1.11(\mathrm{~m}, 10 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$ $\delta=205.4,172.7,63.5,61.0,33.5,26.6,17.2,14.5,14.1$. HRMS (ESI) for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{H}]^{+}$calculated: 237.1467, found: 237.1474.

### 4.2.4. Ethyl 2-acetyl-2-butylhexanoate 4

$R_{f}=0.7$ (EtOAc/hexane, 1:10). ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}, 200 \mathrm{MHz}$ ): $\delta=4.17(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 1.87-1.77(\mathrm{~m}, 4 \mathrm{H})$, $1.36-1.20(\mathrm{~m}, 7 \mathrm{H}), 1.10-1.02(\mathrm{~m}, 4 \mathrm{H}), 1.00-0.84(\mathrm{~m}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta=205.8,172.9,63.6,61.2,31.0$, 26.8, 26.1, 23.2, 14.3, 14.0. HRMS (ESI) for $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{H}]^{+}$ calculated: 265.1780, found: 265.1789 .

### 4.2.5. Ethyl 2-acetyl-2-isobutyl-4-methylpentanoate 5

$R_{f}=0.4$ (EtOAc/hexane, $\left.1: 20\right) .{ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$ : $\delta=4.13(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 1.92-1.76(\mathrm{~m}, 4 \mathrm{H})$, 1.58-1.45 (m, 2H), 1.23 (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.89-0.81$ (m, 12H). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta=206.2,173.4,62.7,61.1,40.3$, 26.8, 24.2, 23.9, 23.7, 13.9. HRMS (ESI) for $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{H}]^{+}$ calculated: 265.1780, found: 265.1788 .

### 4.2.6. Ethyl 2-acetyl-2-pentylheptanoate 6

$R_{f}=0.4$ (EtOAc/hexane, 1:20). ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}, 200 \mathrm{MHz}$ ): $\delta=4.13(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 1.83-1.65(\mathrm{~m}, 4 \mathrm{H})$, $1.23-1.16(\mathrm{~m}, 11 \mathrm{H}), 1.03-1.00(\mathrm{~m}, 4 \mathrm{H}), 0.84-0.78(\mathrm{~m}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta=205.6,172.9,63.6,61.1,32.3,31.2$, 26.7, 23.6, 22.5, 14.2, 14.1. HRMS (ESI) for $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{H}]^{+}$ calculated: 293.2093, found: 293.2099.

### 4.2.7. Ethyl 2-acetyl-2-hexyloctanoate 7

$R_{f}=0.4$ (EtOAc/hexane, $\left.1: 20\right) .{ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$ : $\delta=4.16(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 1.86-1.75(\mathrm{~m}, 4 \mathrm{H})$, 1.30-1.19 (m, 15H), 1.08-1.03 (m, 4H), 0.92-0.82 (m, 6H). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta=205.7,172.9,64.0,61.2,31.9,31.8$, 31.7, 31.3, 29.8, 29.6, 27.6, 26.8, 23.9, 22.7, 14.3, 14.2. HRMS (ESI) for $\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{H}]^{+}$calculated: 321.2406, found: 321.2413 .

### 4.2.8. Ethyl 2-acetyl-2-allylpent-4-enoate 8

$R_{f}=0.5$ (EtOAc/hexane, 1:20). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta=5.67-$ $5.46(\mathrm{~m}, 2 \mathrm{H}), 5.10-5.02(\mathrm{~m}, 4 \mathrm{H}), 4.16(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.60-2.55(\mathrm{~m}$, $4 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$ $\delta=204.2,171.6,132.3,119.3,63.4,61.5,36.1,27.1,14.2$. HRMS (ESI) for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{H}]^{+}$calculated: 233.1154, found: 233.1158.

### 4.2.9. Ethyl 2-acetyl-2-(but-3-enyl)hex-5-enoate 9

$R_{f}=0.7$ (EtOAc/hexane, 1:10). ${ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$ : $\delta=5.85-5.66(\mathrm{~m}, 2 \mathrm{H}), 5.04-4.19(\mathrm{~m}, 4 \mathrm{H}), 4.18(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H})$, $2.10(\mathrm{~s}, 3 \mathrm{H}), 2.06-1.70(\mathrm{~m}, 8 \mathrm{H}), 1.27-1.20(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (CDCl ${ }_{3}$, $50 \mathrm{MHz}) \delta=205.1,172.4,137.7,115.3,63.1,61.4,30.6,28.3,26.9$, 14.2. HRMS (ESI) for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{H}]^{+}$calculated: 261.1467, found: 261.1469.

### 4.2.10. Ethyl 2,2-dibenzyl-3-oxobutanoate 10

$R_{f}=0.6$ (EtOAc/hexane, $\left.1: 10\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta=7.31-$ $7.14(\mathrm{~m}, 10 \mathrm{H}), 4.15(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.26(\mathrm{~s}, 4 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta=205.8,171.9,136.5$, 130.2, 128.5, 127.1, 66.3, 61.5, 40.0, 29.2, 14.0. HRMS (ESI) for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{H}]^{+}$calculated: 333.1467 , found: 333.1461 .

### 4.2.11. Ethyl 2,2-bis(4-methoxybenzyl)-3-oxobutanoate 11

$R_{f}=0.6$ (EtOAc/hexane, 1:10). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$ : $\delta=7.11-6.77(\mathrm{~m}, 8 \mathrm{H}), 2.12(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 6 \mathrm{H}), 3.14$ (s, 4H), $1.95(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $\mathrm{CDCl}_{3}$, $50 \mathrm{MHz}) \delta=206.5,172.1,158.6,131.2,128.4,113.8,66.5,66.4$, 61.4, 55.3, 39.1, 29.4, 14.1. HRMS (ESI) for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{H}]^{+}$ calculated: 393.1678, found: 393.1671.

### 4.2.12. Ethyl 2-acetyl-2-(prop-2-ynyl)pent-4-ynoate 12

$R_{f}=0.5$ (EtOAc/hexane, $1: 20$ ). ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}, 200 \mathrm{MHz}$ ): $\delta=4.21(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.02-2.82(\mathrm{~m}, 4 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 2.02-$ $1.99(\mathrm{~m}, 2 \mathrm{H}), 1.26(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$ $\delta=201.0,169.3,78.7,72.1,62.4,26.2,21.9,14.1$. HRMS (ESI) for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{H}]^{+}$calculated: 229.0841, found: 229.0847.

### 4.2.13. Ethyl 1-acetylcyclopent-3-enecarboxylate 13

Compound $\mathbf{8}$ ( $300 \mathrm{mg}, 1.43 \mathrm{mmol}$ ) was dissolved in anhydrous degassed $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 250 mL ), after which Grubbs first generation catalyst (Grubbs-I; $0.071 \mathrm{~mol}, 58.8 \mathrm{mg}$ ) was added. The solution was then stirred at room temperature under an argon atmosphere
for 12 h , after which air was bubbled into the reaction mixture to quench the catalyst, and the solvent was evaporated. The residue was purified by flash chromatography (EtOAc/hexane, 1:30) to give ring closing metathesis product 13 ( $230 \mathrm{mg}, 88 \%$ ) as a colourless liquid. $R_{f}=0.5$ (EtOAc/hexane, 1:20). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta=5.59-5.53(\mathrm{~m}, 2 \mathrm{H}), 4.19(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $2.90(\mathrm{~s}, 4 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $50 \mathrm{MHz}) \delta=202.8,173.0,127.8,65.5,61.7,39.3,26.0,22.9,22.7$, 14.1. HRMS (ESI) for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{H}]^{+}$calculated: 205.0841, found: 205.0845.

### 4.2.14. Ethyl 1-acetylcyclopentanecarboxylate 14

To a solution of olefin 13 ( $240 \mathrm{mg}, 1.32 \mathrm{mmol}$ ) in anhydrous methanol ( 6 mL ) was added a catalytic amount of Pd/C ( 25 mg ) under an argon atmosphere. The mixture was then put into a Parr apparatus under a hydrogen atmosphere for 5 h . The completion of the reaction was determined by TLC analysis. The solid catalyst was filtered off and the solvent was removed under reduced pressure. The crude residue was directly loaded in the column and purified via flash column chromatography. $R_{f}=0.6$ (EtOAc/ hexane, 1:10). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta=4.15(\mathrm{q}, J=7.2 \mathrm{~Hz}$, 2 H ), 2.21-2.03 (m, 7H), 1.64-1.57 (m, 4H), 1.22 (t, J=7.2 Hz, 3H). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta=204.2,173.7,67.1,61.5,33.2,26.6$, 25.8, 14.2. HRMS (ESI) for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{H}]^{+}$calculated: 207.0997, found: 207.0992.

### 4.2.15. (Z)-Ethyl 1-acetylcyclohept-4-enecarboxylate 15

Prepared in $84 \%$ yield as a colourless oil analogous to the route described for 13 from the ring closing metathesis precursor compound 9 ( $320 \mathrm{mg}, 1.34 \mathrm{mmol}$ ). $R_{f}=0.6$ (EtOAc/hexane, 1:10). ${ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta=5.67-5.62(\mathrm{~m}, 2 \mathrm{H}), 4.18(\mathrm{q}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 2.21-2.03(\mathrm{~m}, 11 \mathrm{H}), 1.24(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $50 \mathrm{MHz}) \delta=205.0,173.0,130.9,64.1,61.5,31.0,26.2,24.6,14.2$. HRMS (ESI) for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{H}]^{+}$calculated: 233.1154, found: 233.1161.

### 4.2.16. Ethyl 1-acetylcycloheptanecarboxylate 16

Prepared in $88 \%$ yield as a colourless oil analogous from olefin 15 ( $230 \mathrm{mg}, 1.095 \mathrm{mmol}$ ) as described above for the synthesis of compound 14. $R_{f}=0.6$ (EtOAc/hexane, 1:10). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $200 \mathrm{MHz}): \delta=4.17(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.20-1.93(\mathrm{~m}, 7 \mathrm{H}), 1.60-$ $1.51(\mathrm{~m}, 8 \mathrm{H}), 1.23(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$ $\delta=205.3,173.7,63.8,61.3,32.5,30.1,26.1,23.9,14.1$. HRMS (ESI) for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{H}]^{+}$calculated: 235.1310, found: 235.1318.

### 4.3. Synthesis of enantiopure 'alcohols 17-32' by whole cell mediate bioreduction (general procedure)

The dried cells obtained from the culture collection were moistened with a rehydration fluid (peptone 10 g , yeast extract 2 g , $\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O} 1 \mathrm{~g}$, distilled water $1 \mathrm{~L}, \mathrm{pH} 7.0$ ). It was then streaked into several Petri dishes (containing the same components with agar $15.0 \mathrm{~g} / \mathrm{L}$ is added) and then incubated at $25^{\circ} \mathrm{C}$ in an incubator for 24 h . For the biotransformation with NBRC 3319, a liquid medium (glucose 40.0 g , meat extract $5.0 \mathrm{~g}, \mathrm{NaCl} 5.0 \mathrm{~g}$, peptone $10.0 \mathrm{~g}, \mathrm{CaCO}_{3} 40.0 \mathrm{~g}$ in 1 L of distilled water) was prepared without agar, and then the grown cells of K. pneumoniae were transferred to this medium through an inoculating loop. The content was incubated in an incubator shaker for 48 h , after which the parent di-substituted $\beta$-ketoesters $\mathbf{1 - 1 6}$ were directly added to the growing culture medium. The reaction was monitored occasionally by TLC analysis. After completion of the reaction, the product was isolated by extraction with EtOAc several times. It was then purified through silica gel chromatography to afford the product alcohols 17-32.

### 4.3.1. (S)-Ethyl 3-hydroxy-2,2-dimethylbutanoate 17

$R_{f}=0.4(\mathrm{EtOAc} /$ hexane, $1: 10) \cdot[\alpha]_{D}^{28}=+9.8\left(c 1.2, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta=4.11(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{q}, J=6.6 \mathrm{~Hz}$, 1 H ), 2.65 ( $\mathrm{br}, 1 \mathrm{H}, \mathrm{OH}$ ), 1.22 ( $\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.12-1.08$ (m, 9H). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta=178.0,72.5,60.8,47.1,25.8,22.3$, 19.9, 17.8, 14.2. HRMS (ESI) for $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{H}]^{+}$calculated: 183.0997, found: 183.0989 .

### 4.3.2. (S)-Ethyl 2,2-diethyl-3-hydroxybutanoate 18

$R_{f}=0.4$ (EtOAc/hexane, 1:10). $[\alpha]_{\mathrm{D}}^{28}=+11.2$ (c 1.0, $\left.\mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta=4.18(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.91$ ( q , $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{~s}, 1 \mathrm{H}), 1.86-1.65(\mathrm{~m}, 3 \mathrm{H}), 1.55-1.44(\mathrm{~m}, 1 \mathrm{H})$, $1.24(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.13$ ( $\mathrm{d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}$ ), 0.90-0.85 (m, 6H). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta=177.3,70.0,60.7,53.9,25.8,23.9$, 18.1, 14.5, 8.9. HRMS (ESI) for $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{H}]^{+}$calculated: 211.1310, found: 211.1319.

### 4.3.3. (S)-Ethyl 2-(1-hydroxyethyl)-2-propylpentanoate 19

$R_{f}=0.4$ (EtOAc/hexane, 1:10). $[\alpha]_{\mathrm{D}}^{28}=+4.5\left(c 0.8, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta=4.14(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 3.88(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H})$, 2.93 (br, 1H, OH), 1.71-1.50 (m, 5H), 1.46-0.99 (m, 9H), 0.93-0.81 $(\mathrm{m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta=177.3,70.3,60.6,53.5,36.1$, $34.2,17.9,17.7,15.1,14.8,14.3$. HRMS (ESI) for $\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{H}]^{+}$ calculated: 239.1623, found: 239.1628.

### 4.3.4. (S)-Ethyl 2-butyl-2-(1-hydroxyethyl)hexanoate 20

$R_{f}=0.3$ (EtOAc/hexane, $1: 10$ ). $[\alpha]_{D}^{28}=+12.2$ (c 1.0, $\mathrm{CHCl}_{3}$ ). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta=4.18(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.93(\mathrm{q}$, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{~s}, 1 \mathrm{H}), 1.79-1.64(\mathrm{~m}, 3 \mathrm{H}), 1.62-1.12$ (m, $14 \mathrm{H}), 0.92-0.85(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta=177.4$, 70.3, 60.6, 53.4, 33.5, 31.6, 26.6, 23.6, 23.4, 17.9, 14.4, 14.1, 14.0. HRMS (ESI) for $\mathrm{C}_{14} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{H}]^{+}$calculated: 267.1936, found: 267.1939.

### 4.3.5. (S)-Ethyl 2-(1-hydroxyethyl)-2-isobutyl-4methylpentanoate 21

$R_{f}=0.4$ (EtOAc/hexane, 1:10). $[\alpha]_{D}^{28}=+10.8$ (c 1.0, $\mathrm{CHCl}_{3}$ ). ${ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta=4.19-4.08(\mathrm{~m}, 3 \mathrm{H}), 3.67-3.60(\mathrm{~m}, 1 \mathrm{H})$, 2.04-1.91 (m, 1H), 1.71-1.59 (m, 3H), 1.49-1.42 (m, 2H), $1.29(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.13(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.88-0.81(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta=178.9,69.6,60.7,52.3,45.4,42.8,25.2$, 24.6, 24.5, 23.9, 23.5, 16.9, 14.1. HRMS (ESI) for $\mathrm{C}_{14} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{Na}$ [M $+\mathrm{H}]^{+}$calculated: 267.1936, found: 267.1939.

### 4.3.6. (S)-Ethyl 2-(1-hydroxyethyl)-2-pentylheptanoate 22

$R_{f}=0.3$ (EtOAc/hexane, 1:10). $[\alpha]_{D}^{28}=+16.4\left(c 1.2, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta=4.15(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{q}$, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.89-2.86(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.58(\mathrm{~m}, 3 \mathrm{H}), 1.33-1.21$ $(\mathrm{m}, 14 \mathrm{H}), 1.12-1.09(\mathrm{~m}, 5 \mathrm{H}), 0.87-0.81(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $\mathrm{CDCl}_{3}$, $50 \mathrm{MHz}) \delta=177.5,70.3,60.6,53.5,33.8,32.9,32.6,31.9,24.1$, 22.6, 18.0, 14.4, 14.2. HRMS (ESI) for $\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{H}]^{+}$calculated: 295.2249, found: 295.2241.

### 4.3.7. (S)-Ethyl 2-hexyl-2-(1-hydroxyethyl)octanoate 23

$R_{f}=0.3$ (EtOAc/hexane, 1:10). $[\alpha]_{D}^{28}=+15.8$ (c 0.7, $\mathrm{CHCl}_{3}$ ). ${ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta=4.16(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.92-3.85(\mathrm{~m}$, 1 H ), 2.67 ( $\mathrm{s}, 1 \mathrm{H}$ ), 1.64-1.59 (m, 3H), 1.29-1.22 (m, 16H), 1.13$1.10(\mathrm{~m}, 7 \mathrm{H}), 0.85(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta=177.5$, $70.3,60.7,53.6,33.8,31.9,31.8,31.8,30.3,30.1,24.4,22.8,18.0$, 14.4, 14.2. HRMS (ESI) for $\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{H}]^{+}$calculated: 323.2562, found: 323.2567 .

### 4.3.8. (S)-Ethyl 2-allyl-2-(1-hydroxyethyl)pent-4-enoate 24

$R_{f}=0.4$ (EtOAc/hexane, 1:10). $[\alpha]_{\mathrm{D}}^{28}=+23.3$ (c $\left.0.8, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta=5.94-5.62(\mathrm{~m}, 2 \mathrm{H}), 5.11-5.03(\mathrm{~m}, 4 \mathrm{H})$, $4.16(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.89(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.55-2.05(\mathrm{~m}, 4 \mathrm{H})$,
1.29-1.15 (m, 6H). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta=175.7,134.3$, 133.9, 118.5, 118.2, 70.7, 60.9, 54.0, 37.7, 36.4, 18.2, 14.4. HRMS (ESI) for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{H}]^{+}$calculated: 235.1310, found: 235.1318.

### 4.3.9. (S)-Ethyl 2-(but-3-enyl)-2-(1-hydroxyethyl)hex-5-enoate

 25$R_{f}=0.4$ (EtOAc/hexane, 1:10). $[\alpha]_{D}^{28}=+19.2$ (c 0.6, $\mathrm{CHCl}_{3}$ ). ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}, 200 \mathrm{MHz}$ ): $\delta=5.85-5.68(\mathrm{~m}, 2 \mathrm{H}), 5.05-4.91(\mathrm{~m}, 4 \mathrm{H})$, 4.18 (q, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.00-3.93(\mathrm{~m}, 1 \mathrm{H}), 3.06(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H})$, 2.14-1.48 (m, 8H), $1.28(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.16(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta=176.8,138.7,138.3,114.9,114.7$, 70.2, 60.9, 53.2, 33.1, 31.3, 29.0, 28.8, 17.9, 14.4. HRMS (ESI) for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{H}]^{+}$calculated: 263.1623, found: 263.1629.

### 4.3.10. (S)-Ethyl 2,2-dibenzyl-3-hydroxybutanoate 26

$R_{f}=0.4$ (EtOAc/hexane, 1:10). $[\alpha]_{D}^{28}=+33.2$ (c $\left.0.5, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta=7.26-7.15(\mathrm{~m}, 10 \mathrm{H}), 4.11-3.98(\mathrm{~m}$, $3 \mathrm{H}), 3.32-2.86(\mathrm{~m}, 4 \mathrm{H}), 1.31$ (d, $J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.14(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta=176.4,137.9,137.6,130.7$, 130.2, 128.4, 128.2, 126.8, 126.7, 69.2, 61.0, 55.8, 39.7, 38.6, 18.1, 14.0. HRMS (ESI) for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{H}]^{+}$calculated: 335.1623, found: 335.1627.

### 4.3.11. (S)-Ethyl 3-hydroxy-2,2-bis(4-methoxybenzyl)butanoate

 27$R_{f}=0.3$ (EtOAc/hexane, 1:10). $[\alpha]_{D}^{28}=+28.6$ (c 1.0, $\mathrm{CHCl}_{3}$ ). ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}, 200 \mathrm{MHz}$ ): $\delta=7.15-7.06(\mathrm{~m}, 4 \mathrm{H}), 6.84-6.78(\mathrm{~m}, 4 \mathrm{H})$, 4.17-3.95 (m, 3H), 3.81-3.13 (m, 6H), 3.21-2.73 (m, 4H), 1.31$1.12(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta=176.4,158.4,131.6$, 131.2, 129.8, 129.4, 113.8, 113.6, 69.3, 60.9, 55.9, 55.4, 38.8, 37.7, 18.2, 14.1. HRMS (ESI) for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{H}]^{+}$calculated: 395.1834, found: 395.1839 .
4.3.12. (S)-Ethyl 2-(1-hydroxyethyl)-2-(prop-2-ynyl)pent-4-ynoate 28
$R_{f}=0.4$ (EtOAc/hexane, 1:10). $[\alpha]_{D}^{28}=+15.6$ (c 0.4, $\mathrm{CHCl}_{3}$ ). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta=4.21(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 4.03(\mathrm{q}$, $J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.92-2.55(\mathrm{~m}, 5 \mathrm{H}), 2.02-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.30-1.18$ $(\mathrm{m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta=173.2,80.3,79.8,71.6$, 71.5, 70.5, 61.6, 53.2, 22.4, 22.1, 19.0, 14.3. HRMS (ESI) for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{H}]^{+}$calculated: 231.0997, found: 231.0992.

### 4.3.13. (S)-Ethyl 1-(1-hydroxyethyl)cyclopent-3-enecarboxylate

 29$R_{f}=0.4$ (EtOAc/hexane, 1:10). $[\alpha]_{D}^{28}=+38.2$ (c 0.5, $\mathrm{CHCl}_{3}$ ). ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}, 200 \mathrm{MHz}$ ): $\delta=5.64-5.52(\mathrm{~m}, 2 \mathrm{H}), 4.17(\mathrm{q}, J=7 \mathrm{~Hz}$, 2 H ), 3.92 ( $\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.86-2.66 (m, 4H), 2.56-2.40 (m, $1 \mathrm{H}), 1.25(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.08(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $50 \mathrm{MHz}) \delta=177.5,129.3,128.2,71.6,61.1,57.1,40.5,38.5,18.2$, 14.3. HRMS (ESI) for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{H}]^{+}$calculated: 207.0997, found: 207.0991.
4.3.14. (S)-Ethyl 1-(1-hydroxyethyl)cyclopentanecarboxylate $\mathbf{3 0}$
$R_{f}=0.4$ (EtOAc/hexane, 1:10). $[\alpha]_{D}^{28}=+32.6$ (c 1.0, $\mathrm{CHCl}_{3}$ ). ${ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=4.16(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.73-3.70(\mathrm{~m}$, $1 \mathrm{H}), 2.89-2.87(\mathrm{~m}, 1 \mathrm{H}), 2.16-2.07(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.94(\mathrm{~m}, 1 \mathrm{H})$, $1.87-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.57(\mathrm{~m}, 4 \mathrm{H}), 1.49-1.42(\mathrm{~m}, 1 \mathrm{H}), 1.25(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.14(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ $\delta=177.7,72.8,60.9,59.1,34.4,33.0,26.2,25.8,19.7,14.4$. HRMS (ESI) for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{H}]^{+}$calculated: 209.1154, found: 209.1158.

### 4.3.15. (S,Z)-Ethyl 1-(1-hydroxyethyl)cyclohept-4-enecarboxylate

 31$R_{f}=0.4$ (EtOAc/hexane, 1:10). $[\alpha]_{D}^{28}=+22.7\left(c 0.8, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta=5.72-5.64(\mathrm{~m}, 2 \mathrm{H}), 4.18(\mathrm{q}$, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.79-3.73(\mathrm{~m}, 1 \mathrm{H}), 2.63-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.63-1.81$ ( $\mathrm{m}, 8 \mathrm{H}$ ), $1.27(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.15(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta=176.7,131.1,131.0,72.1,60.8$, $54.8,31.5,31.3,24.8,24.5,19.1,14.5$. HRMS (ESI) for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{Na}$ $[\mathrm{M}+\mathrm{H}]^{+}$calculated: 235.1310, found: 235.1318.
4.3.16. (S)-Ethyl 1-(1-hydroxyethyl)cycloheptanecarboxylate $\mathbf{3 2}$
$R_{f}=0.4$ (EtOAc/hexane, 1:10). [ $\left.\alpha\right]_{\mathrm{D}}^{28}=+29.2$ (c $1.0, \mathrm{CHCl}_{3}$ ). ${ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta=4.17(\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.74-3.64(\mathrm{~m}$, $1 \mathrm{H}), 2.58-2.54(\mathrm{~m}, 1 \mathrm{H}), 2.17-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.88(\mathrm{~m}, 2 \mathrm{H})$, $1.53-1.42(\mathrm{~m}, 9 \mathrm{H}), 1.27(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.13(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta=177.4,73.0,60.7,54.7,32.7,32.5$, 30.4, 30.1, 24.3, 23.7, 18.9, 14.3. HRMS (ESI) for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{Na}$ [M $+\mathrm{H}]^{+}$calculated: 237.2910, found: 237.2917.

### 4.3.17. (S)-Ethyl 3-(tert-butyldimethylsilyloxy)-2,2-diethylbutanoate 33

To a solution of alcohol $\mathbf{1 8}(600 \mathrm{mg}, 3.2 \mathrm{mmol})$ in 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, under argon at $0^{\circ} \mathrm{C}$, were successively added dry 2,6 lutidine ( $0.63 \mathrm{~mL}, 5.44 \mathrm{mmol}$ ) and $t-\mathrm{BuMe}_{2} \operatorname{SiOTf}(1.1 \mathrm{~mL}, 4.8 \mathrm{mmol})$. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ to room temperature for 4 h and then quenched by adding water. The aqueous phase was reextracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Flash chromatography (EtOAc/hexane, 1:40) of the oily residue afforded 900 mg (93\%) of the silyloxy derivative 33 as a light yellow oil. $R_{f}=0.4$ (EtOAc/hexane, 1:40). $[\alpha]_{D}^{28}=+30.2$ (c 1.1, $\mathrm{CHCl}_{3}$ ). ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}, 200 \mathrm{MHz}$ ): $\delta=4.19-3.97(\mathrm{~m}, 3 \mathrm{H}), 1.75-1.58(\mathrm{~m}, 4 \mathrm{H}), 1.27-1.17(\mathrm{~m}, 6 \mathrm{H})$, $0.99-0.80(\mathrm{~m}, 15 \mathrm{H}), 0.03(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$ $\delta=175.6,72.5,60.0,54.9,25.9,24.4,24.3,19.4,18.1,14.4,9.5,9.1$, $-3.8,-5.0$. HRMS (ESI) for $\mathrm{C}_{16} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{SiNa}[\mathrm{M}+\mathrm{H}]^{+}$calculated: 325.2175 , found: 325.2179 .

### 4.3.18. (S)-Ethyl 2-allyl-2-(1-(tert-butyldimethylsilyloxy)ethyl)

 pent-4-enoate 34Prepared in $87 \%$ yield as light yellow oil analogous to the route described for 33 from the enantiopure alcohol 24. $R_{f}=0.4$ (EtOAc/ hexane, $1: 40$ ). $[\alpha]_{D}^{28}=+18.9$ (c 0.6, $\mathrm{CHCl}_{3}$ ). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $200 \mathrm{MHz}): \delta=5.96-5.67(\mathrm{~m}, 2 \mathrm{H}), 5.07-4.98(\mathrm{~m}, 4 \mathrm{H}), 4.14-4.01$ (m, 3H), 2.41-2.38 (m, 4H), 1.28-1.10 (m, 6H), 0.86 (s, 9H), 0.03 ( $\mathrm{s}, 6 \mathrm{H}$ ). ${ }^{13} \mathrm{C}$ NMR ( $\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta=174.7,135.2,117.5,72.6$, 60.5, 54.9, 37.2, 36.6, 26.0, 19.5, 18.2, 14.5, -3.7, -4.8. HRMS (ESI) for $\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{SiNa}[\mathrm{M}+\mathrm{H}]^{+}$calculated: 349.2175, found: 349.2171.

### 4.3.19. (S)-Ethyl 3-(tert-butyldimethylsilyloxy)-2,2-bis(4-methoxybenzyl)butanoate 35

Prepared in $80 \%$ yield as light yellow oil analogous to the route described for 33 from the enantiopure alcohol 27. $R_{f}=0.6$ (EtOAc/ hexane, 1:20). $[\alpha]_{D}^{28}=+44.2$ (c 1.0, $\left.\mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, 200 MHz ): $\delta=7.26-7.01(\mathrm{~m}, 4 \mathrm{H}), 6.78-6.73(\mathrm{~m}, 4 \mathrm{H}), 4.23-4.03$ $(\mathrm{m}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 6 \mathrm{H}), 3.04-2.84(\mathrm{~m}, 4 \mathrm{H}), 1.19(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, $1.03-0.91(\mathrm{~m}, 12 \mathrm{H}), 0.09(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$ $\delta=174.8,158.2,158.1,132.1,131.4,130.9,130.2,113.4,113.2$, $72.3,60.3,57.2,55.2,40.2,36.8,26.1,20.0,18.3,14.1,-3.3,-4.8$. HRMS (ESI) for $\mathrm{C}_{28} \mathrm{H}_{42} \mathrm{O}_{5} \mathrm{SiNa}[\mathrm{M}+\mathrm{H}]^{+}$calculated: 509.2699, found: 509.2692.

### 4.3.20. (S)-Ethyl 1-(1-(tert-butyldimethylsilyloxy)ethyl)cyclopent-3-enecarboxylate 36

Prepared in $86 \%$ yield as light yellow oil analogous to the route described for 33 from the enantiopure alcohol 29. $R_{f}=0.6$ (EtOAc/ hexane, 1:20). $[\alpha]_{D}^{28}=+23.4$ (c 0.8, $\left.\mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}$, $200 \mathrm{MHz}): \delta=5.63-5.50(\mathrm{~m}, 2 \mathrm{H}), 4.21-4.08(\mathrm{~m}, 3 \mathrm{H}), 2.87-2.35$ $(\mathrm{m}, 4 \mathrm{H}), 1.25(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.83$
(s, 9H), $0.03(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta=176.7,129.4$, 128.3, 72.1, 60.7, 58.8, 38.4, 38.2, 26.1, 25.9, 19.2, 18.1, 14.3, $-3.7,-4.9$. HRMS (ESI) for $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{SiNa}[\mathrm{M}+\mathrm{H}]^{+}$calculated: 321.1862, found: 321.1867.

### 4.3.21. (S)-4-(tert-Butyldimethylsilyloxy)-3,3-diethylpentan-2-one

 37To a stirred suspension of N,O-dimethylhydroxylamine hydrochloride ( $484 \mathrm{mg}, 4.967 \mathrm{mmol}$ ) in dry benzene ( 9 mL ) at $0^{\circ} \mathrm{C}$ under nitrogen was added dropwise trimethylaluminum ( 2.0 M in toluene, $1 \mathrm{~mL}, 4.967 \mathrm{mmol}$ ). The reaction mixture was stirred for 1 h and then treated with a solution of (S)-ethyl 3-(tert-butyldimethylsilyloxy)-2,2-diethylbutanoate 33 ( 600 mg , 1.987 mmol ) in dry benzene ( 3 mL ). The mixture was stirred at room temperature overnight and poured into a saturated aqueous ammonium chloride ( 20 mL ). The resulting precipitate was filtered through a pad of Celite, after which the filtrate was extracted with dichloromethane $(3 \times 75 \mathrm{~mL})$ and the combined extracts washed with water $(10 \mathrm{~mL})$, brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. The crude Weinreb amide was dissolved in dry diethyl ether, and then a freshly prepared MeMgI solution ( 3 mmol in $\mathrm{Et}_{2} \mathrm{O}$ ) was added at $0^{\circ} \mathrm{C}$. The reaction mixture was then allowed to reach room temperature. After 6 h , the reaction was quenched by the addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and then the mixture was extracted with diethyl ether. The combined organic extract was then dried over anhydrous $\mathrm{NaSO}_{4}$, and evaporated in vacuo. The residue was purified by flash chromatography (EtOAc/hexane, $1: 30$ ) to give compound 37 in $80 \%$ yield as a colourless liquid. $R_{f}=0.6$ (EtOAc/hexane, 1:20). [ $\left.\alpha\right]_{\mathrm{D}}^{28}=+11.4\left(c 0.3, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \quad 200 \mathrm{MHz}\right): \delta=3.87(\mathrm{q}, \quad J=6.4 \mathrm{~Hz}, \quad 1 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H})$, $1.89-1.58(\mathrm{~m}, 3 \mathrm{H}), 1.52-1.38(\mathrm{~m}, 1 \mathrm{H}), 1.03(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, $0.88(\mathrm{~s}, 9 \mathrm{H}), 0.82-0.71(\mathrm{~m}, 6 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $\mathrm{CDCl}_{3}$, $50 \mathrm{MHz}) \delta=213.4,71.4,59.4,28.9,26.0,23.4,22.5,19.4,18.2$, 8.7, 8.6, $-3.9,-4.9$. HRMS (ESI) for $\mathrm{C}_{15} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{SiNa}[\mathrm{M}+\mathrm{H}]^{+}$calculated: 295.2069, found: 295.2075.

### 4.3.22. (S)-3-Allyl-3-(1-(tert-butyldimethylsilyloxy)ethyl)hex-5-en-2-one 38

Prepared in $80 \%$ yield as colourless oil analogous to the route described for $\mathbf{3 7}$ from the TBS protected ester compound 34. $R_{f}=0.6$ (EtOAc/hexane, 1:20). $[\alpha]_{\mathrm{D}}^{28}=+5.8\left(c 0.4, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta=5.81-5.62(\mathrm{~m}, 2 \mathrm{H}), 5.13-5.03(\mathrm{~m}, 4 \mathrm{H}), 3.90$ $(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.40-2.25(\mathrm{~m}, 4 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 1.06(\mathrm{~d}$, $J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $\mathrm{CDCl}_{3}$, $50 \mathrm{MHz}) \delta=211.9,134.4,134.2,118.2,71.8,59.4,36.3,35.4,29.1$, 26.1, 19.3, 18.2, $-3.8,-4.8$. HRMS (ESI) for $\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{SiNa}[\mathrm{M}+\mathrm{H}]^{+}$ calculated: 319.2069, found: 319.2062.

### 4.3.23. (S)-4-(tert-Butyldimethylsilyloxy)-3,3-bis(4-methoxy-benzyl)pentan-2-one 39

Prepared in $79 \%$ yield as colourless oil analogous to the route described for $\mathbf{3 7}$ from the TBS protected ester compound 35. $R_{f}=0.6$ (EtOAc/hexane, $\left.1: 20\right) .[\alpha]_{D}^{28}=+22.6\left(c 0.8, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta=7.05-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.91-6.73(\mathrm{~m}, 6 \mathrm{H})$, $4.00-3.78(\mathrm{~m}, 7 \mathrm{H}), 3.41(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{~s}, 2 \mathrm{H}), 2.74(\mathrm{~d}$, $J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H})$, $0.01(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta=212.4,157.3,130.7$, 129.9, 129.5, 129.2, 113.1, 112.7, 70.6, 59.6, 54.5, 35.8, 34.6, 29.1, 25.3, 18.8, 17.4, -4.6, -5.7. HRMS (ESI) for $\mathrm{C}_{27} \mathrm{H}_{40} \mathrm{O}_{4} \mathrm{SiNa}[\mathrm{M}+\mathrm{H}]^{+}$ calculated: 479.2594, found: 479.2598.

### 4.3.24. (S)-1-(1-(1-(tert-Butyldimethylsilyloxy)ethyl)cyclopent-3-enyl)ethanone 40

Prepared in $82 \%$ yield as a colourless oil analogous to the route described for $\mathbf{3 7}$ from the TBS protected ester compound $\mathbf{3 6}$. $R_{f}=0.6$ (EtOAc/hexane, $1: 20$ ). $[\alpha]_{D}^{28}=+39.2\left(c 0.6, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}$
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta=5.62-5.51(\mathrm{~m}, 2 \mathrm{H}), 4.06(\mathrm{q}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H})$, 2.78-2.37 (m, 2H), $2.19(\mathrm{~s}, 3 \mathrm{H}), 1.32-1.23(\mathrm{~m}, 2 \mathrm{H}), 1.04(\mathrm{~d}$, $J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $\mathrm{CDCl}_{3}$, $50 \mathrm{MHz}) \delta=211.5,129.9,128.0,72.3,64.7,38.2,37.2,27.9,26.0$, 19.6, 18.2, $-3.7,-4.8$. HRMS (ESI) for $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{SiNa}[\mathrm{M}+\mathrm{H}]^{+}$calculated: 291.1756, found: 291.1759.

### 4.4. TBS deprotection of compounds 41-44 (general procedure)

A solution of TBS protected methyl ketone compounds were taken in dry MeOH . Next, pyridinium $p$-toluenesulfonate ( 1 equiv) was added to the reaction mixture at room temperature for 6 h . After completion of the reaction as indicated by TLC analysis, MeOH was evaporated. The residue was purified by flash chromatography (EtOAc/hexane, 1:5) to afford as a viscous liquid.

### 4.4.1. (S)-3,3-Diethyl-4-hydroxypentan-2-one 41

$R_{f}=0.2$ (EtOAc/hexane, $1: 10$ ). $[\alpha]_{\mathrm{D}}^{28}=+37.0$ (c 1.0, $\mathrm{CHCl}_{3}$ ). ${ }^{1} \mathrm{H}$ $\operatorname{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta=3.87(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H})$, 1.89-1.58 (m, 4H), 1.52-1.38 (m, 1H), $1.03(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$, $0.82-0.71(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta=213.4,71.4,59.4$, 28.9, 23.4, 22.5, 19.4, 8.7, 8.6. HRMS (ESI) for $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{H}]^{+}$ calculated: 181.1204, found: 181.1208.

### 4.4.2. (S)-3-Allyl-3-(1-hydroxyethyl)hex-5-en-2-one 42

$R_{f}=0.2($ EtOAc/hexane, $1: 10) .[\alpha]_{\mathrm{D}}^{28}=+28.2\left(c \quad 0.5, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta=5.81-5.62(\mathrm{~m}, 2 \mathrm{H}), 5.13-5.03(\mathrm{~m}, 4 \mathrm{H})$, $3.90(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.72-2.61(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.25(\mathrm{~m}, 4 \mathrm{H})$, $2.19(\mathrm{~s}, 3 \mathrm{H}), 1.06(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$ $\delta=211.9,134.4,134.2,118.2,71.8,59.3,36.3,35.4,29.1,19.3$. HRMS (ESI) for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{H}]^{+}$calculated: 205.1204, found: 205.1208.
4.4.3. (S)-4-Hydroxy-3,3-bis(4-methoxybenzyl)pentan-2-one 43 $R_{f}=0.2$ (EtOAc/hexane, $1: 10$ ). $[\alpha]_{\mathrm{D}}^{28}=+44.5$ (c 1.1, $\mathrm{CHCl}_{3}$ ). ${ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta=7.05-6.73(\mathrm{~m}, 8 \mathrm{H}), 4.00-3.79(\mathrm{~m}, 1 \mathrm{H})$, $3.78(\mathrm{~s}, 6 \mathrm{H}), 3.41(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{~s}, 2 \mathrm{H}), 2.74(\mathrm{~d}$, $J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$, $50 \mathrm{MHz}) \delta=212.3,157.3,130.7,129.9,129.4,129.2,113.0,112.7$, $70.5,59.6,54.5,35.8,34.6,29.1,18.8$. HRMS (ESI) for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{Na}$ $[\mathrm{M}+\mathrm{H}]^{+}$calculated: 365.1729, found: 365.1736.

### 4.4.4. (S)-1-(1-(1-Hydroxyethyl)cyclopent-3-enyl)ethanone $\mathbf{4 4}$

$R_{f}=0.2$ (EtOAc/hexane, $\left.1: 10\right) .[\alpha]_{\mathrm{D}}^{28}=+29.2$ (c $\left.0.7, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta=5.62-5.51(\mathrm{~m}, 2 \mathrm{H}), 4.06(\mathrm{q}, J=6.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.86-2.84(\mathrm{~m}, 1 \mathrm{H}), 2.78-2.37(\mathrm{~m}, 2 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 1.32-$ $1.23(\mathrm{~m}, 2 \mathrm{H}), 1.04(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$ $\delta=211.5,129.9,128.0,72.3,64.7,38.2,37.2,27.9,19.6$. HRMS (ESI) for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{H}]^{+}$calculated: 177.0891, found: 177.0896.

### 4.5. Ethyl 2-acetyl-2-methylpent-4-enoate 45

At first, $\mathrm{KO}^{t} \mathrm{Bu}(1.76 \mathrm{~g}, 15.7 \mathrm{mmol})$ and ${ }^{t} \mathrm{BuOH}(0.13 \mathrm{~mL}$, 1.413 mmol ) were added to a solution of ethylacetoacetate ( 2 mL , 15.7 mmol ) in dry THF at $0^{\circ} \mathrm{C}$ under a nitrogen atmosphere. The reaction mixture was then stirred at $0^{\circ} \mathrm{C}$ for 30 min , and then freshly distilled allyl bromide ( $1.3 \mathrm{~mL}, 15.7 \mathrm{mmol}$ ) was added dropwise. The reaction mixture was then stirred at reflux. After 12 h , the mixture was cooled to room temperature, and then ice-cooled water was added to quench the reaction. The THF was evaporated under vacuum, and diethyl ether was added. The product was extracted with diethyl ether, and the combined organic extracts were dried over $\mathrm{MgSO}_{4}$, and concentrated. The crude organic compound was dissolved in dry THF and then NaH ( $60 \%$ ) ( $471 \mathrm{mg}, 11.764 \mathrm{mmol}$ ) was added to the mixture portion wise at $0^{\circ} \mathrm{C}$ under a nitrogen atmosphere. The mixture was stirred
at $0^{\circ} \mathrm{C}$ for 30 min and then $\mathrm{CH}_{3} \mathrm{I}(0.88 \mathrm{~mL}, 14.117 \mathrm{mmol})$ was added dropwise. The reaction mixture was stirred at reflux. After 12 h , the mixture was cooled to room temperature, and then icecooled water was added to quench the reaction. The THF was evaporated under vacuum, and diethyl ether was added. The product was extracted with diethyl ether, and the combined organic extracts were dried over $\mathrm{MgSO}_{4}$, and concentrated residue was purified by flash chromatography (EtOAc/hexane, 1:30) to give pure compound 45 ( $1.8 \mathrm{~g}, 82 \%$ ) as a colourless liquid. $R_{f}=0.3$ (EtOAc/hexane, 1:30). ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}, 600 \mathrm{MHz}$ ): $\delta=5.74-5.53$ $(\mathrm{m}, 1 \mathrm{H}), 5.11-5.04(\mathrm{~m}, 2 \mathrm{H}), 5.18(\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.68-2.41(\mathrm{~m}$, 2 H ), 2.13 ( $\mathrm{s}, 3 \mathrm{H}$ ), $1.13-1.05$ (m, 6H). ${ }^{13} \mathrm{C}$ NMR ( $\mathrm{CDCl}_{3}, 50 \mathrm{MHz}$ ) $\delta=205.1,172.6,132.8,119.1,61.4,59.5,39.5,26.3,19.0,14.2$. HRMS (ESI) for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{H}]^{+}$calculated: 207.0997, found: 207.0991.

### 4.5.1. Bioreduction of compound 45

Bioreduction of compound $\mathbf{4 5}$ with K. pneumoniae (NBRC 3319) was carried out as described above for the synthesis of compounds 17-32, to give an inseparable mixture of compounds $47 / 49$ (70\%) as a colourless liquid.
4.6. (R)-Ethyl 2-((S)-1-hydroxyethyl)-2-methylpent-4-enoate 47/49
$R_{f}=0.3$ (EtOAc/hexane, 1:10). ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}, 200 \mathrm{MHz}$ ): $\delta=5.88-5.59(\mathrm{~m}, 1 \mathrm{H}), 5.10-5.02(\mathrm{~m}, 2 \mathrm{H}), 4.22-4.12(\mathrm{~m}, 2 \mathrm{H})$, 3.93-3.83 (m, 1H), $2.74(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.57-2.18(\mathrm{~m}, 2 \mathrm{H})$, $1.30-1.11$ (m, 9H). ${ }^{13} \mathrm{C}$ NMR ( $\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta=176.8,176.3$, 134.3, 133.5, 118.4, 118.1, 72.0, 71.4, 60.8, 60.7, 51.1, 50.9, 41.1, 40.0, 18.4, 17.8, 17.1, 14.4. HRMS (ESI) for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{H}]^{+}$calculated: 209.1154, found: 209.1158.

### 4.7. Ethyl 2-((S)-1-(tert-butyldimethylsilyloxy)ethyl)-2-methylpent-4-enoate (TBS protected)

Prepared in $85 \%$ yield as a colourless oil analogous to the route described for $\mathbf{3 3}$ from the enantiopure secondary alcohol 47/49 as inseparable mixture. $R_{f}=0.6$ (EtOAc/hexane, 1:20). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $200 \mathrm{MHz}): \delta=5.82-5.59(\mathrm{~m}, 1 \mathrm{H}), 5.05-4.98(\mathrm{~m}, 2 \mathrm{H}), 4.21-3.95(\mathrm{~m}$, $3 \mathrm{H}), 2.47-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.20(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.09-0.84(\mathrm{~m}, 15 \mathrm{H})$, 0.05 (s, 6H). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta=175.8,175.6,134.8$, 134.4, 117.8, 117.7, 73.0, 72.8, 60.4, 52.4, 52.3, 41.7, 40.5, 26.0, $25.9,19.5,18.3,18.2,18.1,15.5,14.8,14.4,14.4,-3.8,-3.8$, $-4.8,-5.1$. HRMS (ESI) for $\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{SiNa}[\mathrm{M}+\mathrm{H}]^{+}$calculated: 323.2018, found: 323.2012.

### 4.8. 2-((S)-1-(tert-Butyldimethylsilyloxy)ethyl)-2-methylpent-4-en-1-ol 51/53

At first, TBS protected enantiopure secondary alcohol compounds $\mathbf{4 7} / 49$ ( $550 \mathrm{mg}, 1.83 \mathrm{mmol}$ ) was dissolved in dry DCM $(8 \mathrm{~mL})$, and the solution was cooled to $-30^{\circ} \mathrm{C}$. A solution of DIBAL-H ( 1 M in cyclohexane; $4.5 \mathrm{~mL}, 4.5 \mathrm{mmol}$ ) was then added over 15 min . The reaction mixture was stirred for 4 h at the same temperature, after which the reaction mixture was quenched with a saturated solution of sodium potassium tartrate and stirred for a further 1.5 h . The mixture was filtered through a pad of Celite to remove the solid residues and extracted several times with DCM. The combined DCM extracts were then evaporated under vacuum and the residue was purified by flash chromatography (EtOAc/hexane, $1: 10$ ) to give compounds $\mathbf{5 1 / 5 3}$ ( 190 mg faster moving compound and 210 mg slower moving compound) as a colourless liquid. The faster moving compound was later assigned as compound 51 and its absolute configuration was confirmed as reported earlier. ${ }^{7 c}$

### 4.8.1. (S)-2-((S)-1-(tert-Butyldimethylsilyloxy)ethyl)-2-methylpent-

 4-en-1-ol 51$R_{f}=0.4(E t O A c /$ hexane, $1: 20) \cdot[\alpha]_{\mathrm{D}}^{28}=+6.8\left(c 1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta=5.96-5.75(\mathrm{~m}, 1 \mathrm{H}), 5.13-5.05(\mathrm{~m}, 2 \mathrm{H}), 3.80-$ $3.71(\mathrm{~m}, 2 \mathrm{H}), 3.35-3.20(\mathrm{~m}, 2 \mathrm{H}), 2.46-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.14-2.03$ (m, 1H), 1.19 (d, J=6.4 Hz, 3H), 0.89 (s, 9H), 0.66 (s, 3H), 0.09 (s, $6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta=135.0,117.9,76.0,67.3,41.7$, 39.6, 26.0, 18.4, 18.1, $-3.9,-4.9$. HRMS (ESI) for $\mathrm{C}_{14} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{SiNa}$ ${ }^{[\mathrm{M}+\mathrm{H}]^{+} \text {calculated: 281.2913, found: 281.2918. }}$

### 4.8.2. (R)-2-((S)-1-(tert-Butyldimethylsilyloxy)ethyl)-2-methylpent-4-en-1-ol 53

$R_{f}=0.4$ (EtOAc/hexane, 1:20). $[\alpha]_{D}^{28}=+11.2$ (c 1.0, $\mathrm{CHCl}_{3}$ ). ${ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta=5.69-5.69(\mathrm{~m}, 1 \mathrm{H}), 5.07-4.99(\mathrm{~m}, 2 \mathrm{H})$, 3.75-3.69 (m, 2H), 3.34-3.13 (m, 2H), 2.05-1.79 (m, 2H), 1.18 (d, $J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta=134.5,117.7,76.0,68.7,41.7,39.0,26.0,19.7$, 18.3, 18.1, $-4.0,-4.9$. HRMS (ESI) for $\mathrm{C}_{14} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{SiNa}[\mathrm{M}+\mathrm{H}]^{+}$calculated: 281.2913, found: 281.2918.

### 4.9. 3-((S)-1-(tert-Butyldimethylsilyloxy)ethyl)-3-methylhex-5-en-2-one 55/57

To a solution of $\mathbf{5 1} / \mathbf{5 3}$ (faster moving compound) ( 160 mg , 0.62 mmol ) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 4 mL ) were added TEMPO ( 19 mg , 0.124 mmol ) and BAIB ( $399 \mathrm{mg}, 1.24 \mathrm{mmol}$ ). After stirring at room temperature for 6 h , the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 5 mL ) and then washed with satd aq $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(4 \mathrm{~mL})$. The organic layer was then dried over $\mathrm{MgSO}_{4}$, filtered, and the filtrate was concentrated under reduced pressure to give a crude aldehyde, which was dissolved in dry diethyl ether, after which a freshly prepared MeMgI solution ( 3 mmol in $\mathrm{Et}_{2} \mathrm{O}$ ) was added at $0^{\circ} \mathrm{C}$. The reaction mixture was then allowed to reach room temperature. After 6 h , the reaction was quenched by the addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and then the mixture was extracted with diethyl ether. The combined organic extract was dried over anhydrous $\mathrm{NaSO}_{4}$, and evaporated in vacuo. The crude product was further oxidized by BAIB/TEMPO according to the procedure described above. The crude methyl ketone compound was purified by flash chromatography (EtOAc/hexane, 1:30) to give the pure methyl ketone compounds 55/57 in $87 \%$ yield.
4.9.1. (R)-3-((S)-1-(tert-Butyldimethylsilyloxy)ethyl)-3-methyl-hex-5-en-2-one 55
$R_{f}=0.6$ (EtOAc/hexane, 1:20). $[\alpha]_{\mathrm{D}}^{28}=+28.5\left(c 0.5, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta=5.71-5.50(\mathrm{~m}, 1 \mathrm{H}), 5.06-4.99(\mathrm{~m}, 2 \mathrm{H})$, $3.96(\mathrm{q}, \mathrm{J}=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.54-2.44(\mathrm{~m}, 1 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 2.04-1.93$ (m, 1H), 1.05 (d, J=6.2 Hz, 6H), 0.86 (s, 9H), $0.04(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta=213.0,134.0,118.1,73.8,56.6,40.6$, $28.7,26.0,18.7,18.1,16.1,-3.8,-4.9$. HRMS (ESI) for $\mathrm{C}_{15} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{SiNa}$ $[\mathrm{M}+\mathrm{H}]^{+}$calculated: 293.1913, found: 293.1921.

### 4.9.2. (S)-3-((S)-1-(tert-Butyldimethylsilyloxy)ethyl)-3-methylhex-

 5-en-2-one 57$R_{f}=0.57$ (EtOAc/hexane, 1:20). $[\alpha]_{D}^{28}=+8.6\left(c \quad 0.8, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta=5.74-5.52(\mathrm{~m}, 1 \mathrm{H}), 5.09-4.95(\mathrm{~m}, 2 \mathrm{H})$, 3.92 ( $\mathrm{q}, \mathrm{J}=6.4 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.54-2.40 (m, 1H), 2.15 (s, 3H), 2.02-1.94 $(\mathrm{m}, 1 \mathrm{H}), 1.06(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 6 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta=213.2,134.3,118.2,73.3,56.5,40.7$, 28.2, 26.2, 18.5, 18.2, 16.0, -3.7, -4.8. HRMS (ESI) for $\mathrm{C}_{15} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{SiNa}$ $[\mathrm{M}+\mathrm{H}]^{+}$calculated: 293.1913, found: 293.1919.

### 4.10. 3-((S)-1-Hydroxyethyl)-3-methylhex-5-en-2-one 59/61

The deprotection of the TBS group was carried out as described above for the general procedure for the TBS deprotection of compounds 41-44.
4.10.1. ( $R$ )-3-(( $(S)$-1-Hydroxyethyl)-3-methylhex-5-en-2-one 59 $R_{f}=0.3$ (EtOAc/hexane, 1:20). $[\alpha]_{\mathrm{D}}^{28}=+24.6$ (c 1.0, $\mathrm{CHCl}_{3}$ ). ${ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta=5.73-5.53(\mathrm{~m}, 1 \mathrm{H}), 5.11-5.03(\mathrm{~m}, 2 \mathrm{H})$, 3.97 (q, J=6.4 Hz, 1H), 2.42-2.27 (m, 2H), 2.16 (s, 3H), 1.14 (d, $J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta=215.4$, 133.1, 118.7, 71.2, 55.7, 41.0, 27.6, 17.8, 16.5. HRMS (ESI) for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{H}]^{+}$calculated: 179.1048, found: 179.1041.
4.10.2. (S)-3-((S)-1-Hydroxyethyl)-3-methylhex-5-en-2-one 61
$R_{f}=0.28$ (EtOAc/hexane, 1:20). $[\alpha]_{\mathrm{D}}^{28}=+16.7\left(c 0.8, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta=5.73-5.58(\mathrm{~m}, 1 \mathrm{H}), 5.14-5.05(\mathrm{~m}, 2 \mathrm{H})$, $3.94(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.40-2.29(\mathrm{~m}, 2 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{~d}$, $J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta=215.2$, 133.0, 118.5, 71.4, 55.6, 41.1, 27.8, 17.5, 16.2. HRMS (ESI) for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{H}]^{+}$calculated: 179.1048, found: 179.1041.

### 4.11. Ethyl 2-acetyl-2-benzylpent-4-enoate 46

Prepared in $70 \%$ yield as colourless oil analogous to the route described above for the synthesis of 45. $R_{f}=0.3$ (EtOAc/hexane, 1:30). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta=7.28-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.11-$ $7.10(\mathrm{~m}, 2 \mathrm{H}), 5.75-5.68(\mathrm{~m}, 1 \mathrm{H}), 5.17-5.15(\mathrm{~m}, 2 \mathrm{H}), 4.24-4.14$ (m, 2H), 3.25 (d, $J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{~d}$, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta=204.3,171.5,136.3,132.4,130.0$, 128.3, 126.9, 119.3, 64.7, 61.4, 37.6, 36.1, 27.5, 14.0. HRMS (ESI) for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{H}]^{+}$calculated: 283.1310, found: 283.1318.

### 4.11.1. Bioreduction of compound 46

Bioreduction of compound $\mathbf{5 4}$ with K. pneumoniae (NBRC 3319) was carried out as described above for the synthesis of compounds 17-32, to give inseparable mixture of compounds $\mathbf{4 8} / \mathbf{5 0}$ (70\%) as a colourless liquid.

### 4.12. Ethyl 2-benzyl-2-((S)-1-hydroxyethyl)pent-4-enoate 48/50

$R_{f}=0.3$ (EtOAc/hexane, 1:10). ${ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$ : $\delta=7.26-7.12(\mathrm{~m}, 5 \mathrm{H}), 6.02-5.76(\mathrm{~m}, 1 \mathrm{H}), 5.17-5.08(\mathrm{~m}, 2 \mathrm{H})$, 4.19-3.86 (m, 3H), 3.29-3.05 (m, 2H), 2.94-2.74 (m, 1H), 2.62$2.54(\mathrm{~m}, 1 \mathrm{H}), 2.42-2.32(\mathrm{~m}, 1 \mathrm{H}), 1.28-1.08(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta=176.1,175.7,137.4,137.3,134.5,134.3$, $130.4,130.1,128.2,128.1,126.7,126.6,118.3,70.7,69.8,60.9$, $60.8,55.3,54.8,39.6,37.9,36.9,35.8,18.5,17.8,14.2,14.0$. HRMS (ESI) for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{H}]^{+}$calculated: 285.1467, found: 285.1461.

### 4.13. Ethyl 2-benzyl-2-((S)-1-(tert-butyldimethylsilyloxy)ethyl) pent-4-enoate (TBS protected)

Prepared in $84 \%$ yield as colourless oil analogous to the route described for $\mathbf{3 3}$ from the enantiopure secondary alcohol 48/50. $R_{f}=0.6$ (EtOAc/hexane, 1:20). ${ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, \quad 200 \mathrm{MHz}\right)$ : $\delta=7.25-7.17(\mathrm{~m}, 5 \mathrm{H}), 6.09-5.75(\mathrm{~m}, 1 \mathrm{H}), 5.08-4.92(\mathrm{~m}, 2 \mathrm{H})$, 4.21-4.05 (m, 3H), 3.15-2.71 (m, 2H), 2.53-2.31 (m, 2H), 1.23$0.88(\mathrm{~m}, 15 \mathrm{H}), 0.07(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta=174.7,174.5,138.2,136.0,135.4$, 130.7, 130.5, 128.0, 126.4, 117.1, 116.4, 73.1, 72.9, 60.4, 60.3, $56.4,56.1,39.4,39.3,36.8,34.7,26.0,25.9,19.9,19.1,18.2,18.1$, 14.2, $-3.6,-4.8,-4.8$. HRMS (ESI) for $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{O}_{3} \mathrm{SiNa}[\mathrm{M}+\mathrm{H}]^{+}$ calculated: 399.2331, found: 399.2337.
4.14. 2-Benzyl-2-((S)-1-(tert-butyldimethylsilyloxy)ethyl)pent-4-en-1-ol 52/54

The reduction of the TBS protected ester compounds $\mathbf{4 8} / \mathbf{5 0}$ was carried out as described above for the synthesis of compounds

51/53. In this step the two diastereomers are separated by column chromatography.
4.14.1. (2S,3S)-3-(tert-Butyldimethylsilyloxy)-2-methyl-2-phenethyl-butan-1-ol 52
$R_{f}=0.3$ (EtOAc/hexane, 1:20). $[\alpha]_{D}^{28}=+22.2$ (c 1.0, $\mathrm{CHCl}_{3}$ ). ${ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta=7.38-7.20(\mathrm{~m}, 5 \mathrm{H}), 6.03-5.82(\mathrm{~m}, 1 \mathrm{H})$, 5.16-5.02 (m, 2H), $3.89(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.75-3.64(\mathrm{~m}, 2 \mathrm{H})$, $3.38(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.22-3.12(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{~d}, J=13.4 \mathrm{~Hz}$, $1 \mathrm{H}), 1.88-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{~d}, J=6.2 \mathrm{~Hz}$, $3 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 0.12(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta=138.3$, 133.5, 131.1, 128.1, 126.2, 118.3, 75.9, 64.8, 45.0, 37.3, 35.2, 26.0, 18.2, 18.1, $-3.9,-4.9$. HRMS (ESI) for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{SiNa}[\mathrm{M}+\mathrm{H}]^{+}$calculated: 357.2226, found: 357.2221.

### 4.14.2. (2R,3S)-3-(tert-Butyldimethylsilyloxy)-2-methyl-2-phenethyl-butan-1-ol 54

$R_{f}=0.27$ (EtOAc/hexane, 1:20). $[\alpha]_{\mathrm{D}}^{28}=+4.8$ (c 1.2, $\left.\mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta=7.26-7.25(\mathrm{~m}, 5 \mathrm{H}), 5.97-5.76(\mathrm{~m}, 1 \mathrm{H})$, 5.13-5.07 (m, 2H), $3.94(\mathrm{q}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.68-3.46(\mathrm{~m}, 2 \mathrm{H})$, $2.92(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.41$ (d, $J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.31-2.07(\mathrm{~m}, 2 \mathrm{H}), 1.29(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.91$ ( $\mathrm{s}, 9 \mathrm{H}$ ), 0.08 ( $\mathrm{s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta=138.1,134.9$, $130.9,128.2,126.4,118.1,74.3,66.9,45.5,36.7,36.5,26.1,18.6$, 18.2, $-3.6,-4.8$. HRMS (ESI) for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{SiNa}[\mathrm{M}+\mathrm{H}]^{+}$calculated: 357.2226, found: 357.2221.

### 4.15. 3-Benzyl-3-((S)-1-(tert-butyldimethylsilyloxy)ethyl)hex-5-en-2-one 56/58

Prepared in $90 \%$ yield as colourless oil analogous to the route described above for the synthesis of 55/57.
4.15.1. (3R,4S)-4-(tert-Butyldimethylsilyloxy)-3-methyl-3-phenethyl-pentan-2-one 56
$R_{f}=0.6$ (EtOAc/hexane, 1:20). $[\alpha]_{\mathrm{D}}^{28}=+44.2$ (c 1.0, $\left.\mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta=7.26-7.07(\mathrm{~m}, 5 \mathrm{H}), 5.89-5.69(\mathrm{~m}, 1 \mathrm{H})$, 5.05-4.95 (m, 2H), 4.06 (q, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~d}, J=14.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.73(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.42-2.26(\mathrm{~m}, 5 \mathrm{H}), 1.12$ (d, $J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.11(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $\mathrm{CDCl}_{3}$, $50 \mathrm{MHz}) \delta=212.2,137.8,135.0,130.1,128.4,126.6,117.7,72.7$, 60.4, 39.0, 35.2, 29.8, 26.1, 19.2, 18.2, -3.7, -4.8. HRMS (ESI) for $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{SiNa}[\mathrm{M}+\mathrm{H}]^{+}$calculated: 369.2226, found: 369.2219.

### 4.15.2. (3S,4S)-4-(tert-Butyldimethylsilyloxy)-3-methyl-3-phenethyl-pentan-2-one 58

$R_{f}=0.56$ (EtOAc/hexane, 1:20). $[\alpha]_{\mathrm{D}}^{28}=+22.6\left(c \quad 1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta=7.22-7.10(\mathrm{~m}, 5 \mathrm{H}), 5.92-5.79(\mathrm{~m}, 1 \mathrm{H})$, $5.06-4.98(\mathrm{~m}, 2 \mathrm{H}), 4.03(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{~d}, J=14.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.75(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.40-2.28(\mathrm{~m}, 5 \mathrm{H}), 1.15(\mathrm{~d}$, $J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.11(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $\mathrm{CDCl}_{3}$, $50 \mathrm{MHz}) \delta=212.2,137.8,135.0,130.1,128.4,126.6,117.7,72.7$, 60.4, 39.0, 35.2, 29.8, 26.1, 19.2, 18.2, -3.7, -4.8. HRMS (ESI) for $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{SiNa}[\mathrm{M}+\mathrm{H}]^{+}$calculated: 369.2226, found: 369.2222.

### 4.16. 3-Benzyl-3-((S)-1-hydroxyethyl)hex-5-en-2-one 60/62

The deprotection of TBS group was carried out as described above for the general procedure of TBS deprotection of compounds 41-44.

### 4.16.1. (3R,4S)-4-Hydroxy-3-methyl-3-phenethylpentan-2-one

 60$R_{f}=0.3$ (EtOAc/hexane, 1:20). $[\alpha]_{D}^{28}=+12.6\left(c 0.6, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta=7.26-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.11-7.07(\mathrm{~m}$, $2 \mathrm{H}), 5.89-5.69(\mathrm{~m}, 1 \mathrm{H}), 5.05-4.95(\mathrm{~m}, 2 \mathrm{H}), 4.06(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H})$,
3.37 (d, J = 14.4 Hz, 1H), 2.73 (d, J = 14.4 Hz, 1H), 2.42-2.26 (m, 5H), $1.12(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta=212.2,137.8$, 135.0, 130.1, 128.4, 126.6, 117.7, 72.7, 60.4, 39.0, 35.2, 29.8, 19.1. HRMS (ESI) for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{H}]^{+}$calculated: 255.1361, found: 255.1364.
4.16.2. (3S,4S)-4-Hydroxy-3-methyl-3-phenethylpentan-2-one 62
$R_{f}=0.27$ (EtOAc/hexane, 1:20). $[\alpha]_{\mathrm{D}}^{28}=+5.8\left(c \quad 0.4, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta=7.26-7.18(\mathrm{~m}, 3 \mathrm{H}), 7.10-7.05(\mathrm{~m}, 2 \mathrm{H})$, $5.88-5.64(\mathrm{~m}, 1 \mathrm{H}), 5.05-4.97(\mathrm{~m}, 2 \mathrm{H}), 4.04(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.38(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.40-2.28(\mathrm{~m}$, $5 \mathrm{H}), 1.15(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta=212.4$, 137.6, 135.2, 130.0, 128.7, 126.5, 117.2, 72.8, 60.6, 39.2, 35.1, 29.6, 19.0. HRMS (ESI) for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{H}]^{+}$calculated: 255.1361, found: 255.1366.

## Acknowledgements

Financial support from BRNS, India (Grant no: 37 (2)/14/09/2014-BRNS) is gratefully acknowledged. We are thankful to DST-India (IRPHA) for NMR instrument. The authors J.H. and D. D. are thankful to UGC-India for providing a research fellowship.

## References

1. Ho, T. Symmetry: A Basis for Synthesis Design; John Wiley \& Sons: NY, 1995. ISBN: 0-471-57376-0.
2. Corey, E. J.; Cheng, X. M. The Logic of Chemical Synthesis; John Wiley \& Sons: NY, 1995.
3. (a) Garcia-Urdiales, E.; Alfonso, I.; Gotor, V. Chem. Rev. 2005, 105, 313-354; (b) Garcia-Urdiales, E.; Alfonso, I.; Gotor, V. Chem. Rev. 2011, 111, 110-180.
4. (a) Musa, Musa M.; Phillips, Robert S. Catal. Sci. Technol. 2011, 1, 1311-1323; (b) Hollman, F.; Arends, Isabel W. C. E.; Holtman, D. Green Chem. 2011, 13, 2285-2313; (c) Chen, Y.; Chen, C.; Wu, X. Chem. Soc. Rev. 2012, 41, 1742-1753; (d) Magano, J.; Dunetz, Joshua R. Org. Process Res. Dev. 2012, 16, 1156-1184.
5. (a) Nakamura, K.; Miyoshi, K.; Sugiyama, T.; Hamada, H. Phytochemistry 1995, 40, 1419-1420; (b) Miya, H.; Kawada, M.; Sugiyama, Y. Biosci., Biotech., Biochem. 1996, 60, 95-98; (c) Nakamura, K.; Kawai, Y.; Ohno, A. Tetrahedron Lett. 1991, 32, 2927-2928; (d) Danchet, S.; Bigot, C.; Buisson, D.; Azerad, R. Tetrahedron: Asymmetry 1997, 8, 1735-1739; (e) Nakamura, K.; Miyai, T.; Nozaki, K.; Ushio, K.; Oka, S.; Ohno, A. Tetrahedron Lett. 1986, 27, 3155-3156; (f) Nakamura, K.; Miyai, T.; Nagar, A.; Oka, S.; Ohno, A. Bull. Chem. Soc. Jpn. 1989, 62, 1179-1187; (g) Nakamura, K.; Kawai, Y.; Nakajima, N.; Miyai, T.; Honda, S.; Ohno, A. Bull. Chem. Soc. Jpn. 1991, 64, 1467-1470; (h) Abalain, C.; Buisson, D.; Azerad, R. Tetrahedron: Asymmetry 1996, 7, 2983-2996; (i) Fantin, G.; Fogagnolo, M.; Giovannini, P.; Medici, A.; Pagnotta, E.; Pedrini, P.; Trincone, A. Tetrahedron: Asymmetry 1994, 5, 1631-1634; (j) Kuramoto, T.; Iwamoto, K.; Izumi, M.; Kirihata, M.; Yoshizako, F. Biosci., Biotech., Biochem. 1999, 63, 598-601; (k) Nakamura, K.; Miyai, T.; Kawai, Y.; Nakajima, N.; Ohno, A. Tetrahedron Lett. 1990, 31, 1159-1160; (1) Nakamura, K.; Kawai, Y.; Miyai, T.; Ohno, A. Tetrahedron Lett. 1990, 31, 3631-3632; (m) Anson, C. E.; Bibb, M. J.; Booker-Milburn, K. I.; Clissold, C.; Haley, P. J.; Hopwood, D. A.; Ichinose, K.; Revill, W. P.; Stephenson, G. R.; Surti, C. M. Angew. Chem., Int. Ed. 2000, 39, 224-228; (n) Zhu, D.; Mukherjee, C.; Rozzell, J. D.; Kambourakis, S.; Hua, L. Tetrahedron 2006, 62, 901-905.
6. (a) Das, D.; Halder, J.; Bhuniya, R.; Nanda, S. Eur. J. Org. Chem. 2014, 5229-5246; (b) Bhuniya, R.; Mahapatra, T.; Nanda, S. Eur. J. Org. Chem. 2012, 1597-1602.
7. (a) Kalaitzakis, D.; Rozzell, J. D.; Kambourakis, S.; Smonou, I. Org. Lett. 2005, 7, 4799-4801; (b) Kalaitzakis, D.; Rozzell, J. D.; Kambourakis, S.; Smonou, I. Eur. J. Org. Chem. 2006, 2309-2313; (c) Kalaitzakis, D.; Rozzell, J. D.; Smonou, I.; Kambourakis, S. Adv. Synth. Catal. 2006, 348, 1958-1969.
8. Nguyen, S. T.; Johnson, L. K.; Grubbs, R. H.; Ziller, J. W. J. Am. Chem. Soc. 1992, 114, 3974-3975.
9. Corey, E. J.; Cho, H.; Rücker, C.; Hua, D. H. Tetrahedron Lett. 1981, 22, 3455-3458.
10. (a) Mentzel, M.; Hoffmann, H. M. R. J. Prakt. Chem. 1997, 339, 517-524; (b) Nahm, S.; Weinreb, S. M. Tetrahedron Lett. 1981, 22, 3815-3818.

[^0]:    * Corresponding author. Tel.: +91 3222 283328; fax: +91 3222282252.

    E-mail address: snanda@chem.iitkgp.ernet.in (S. Nanda).

[^1]:    ${ }^{\text {a }}$ The synthesized alcohols have an ( $S$ )-configuration.
    ${ }^{\mathrm{b}}$ The \% of conversion was measured after isolation and purification of the product.
    ${ }^{\text {c }}$ Measured by chiral HPLC (Chiralpak IC) of the corresponding benzoate derivative.

