This article was downloaded by: [Ohio State University Libraries]
On: 15 May 2012, At: 06:53
Publisher: Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3J H, UK

Organic Preparations and Procedures International: The New J ournal for Organic Synthesis

Publication details, including instructions for authors and subscription information:
http:// www.tandfonline.com/ loi/ uopp20

EFFICIENT IN SITU ESTERIFICATION OF CARBOXYLIC ACIDS USING CESIUM CARBONATE

Jong Chan Lee ${ }^{\text {a }}$, Yoon Seok Oh ${ }^{\text {a }}$, Sung Hye Cho ${ }^{\text {a }}$ \& J ung D Lee ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Chemistry, Chung-Ang University, Seoul, 156-756, Republic of KOREA

Available online: 18 Feb 2009

To cite this article: J ong Chan Lee, Yoon Seok Oh, Sung Hye Cho \& J ung D Lee (1996): EFFICIENT IN SITU ESTERIFICATION OF CARBOXYLIC ACIDS USING CESIUM CARBONATE, Organic Preparations and Procedures International: The New J ournal for Organic Synthesis, 28:4, 480-483

To link to this article: http:// dx. doi.org/ 10.1080/00304949609356558

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions
This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Acknowledgements.- We are grateful to Dr. E. Hong for providing us with a pure sample of compound 4. Financial support from DGAPA (UNAM) and CONACYT Project $481100-3194 \mathrm{~N}$ is acknowledged.

REFERENCES

1. a) H. R. Le Sueur and P. Haas. J. Chem. Soc., 97, 967 (1910); b) O. Eisleb and O. Schaumann, Deut. Med. Worrsch., 65, 967, Chem. Abstr., 36, 5465^{3} (1939); c) O. Eisleb, Ber., 74, 1443 (1941); d) A. T. Nielsen, J. Org Chem., 31, 1053 (1966); e) J. Carrol, A. N. Fergusson and J. B. Lewis, ibid., 31, 2957 (1966); f) D. S. Watt, Tetrahedron, 24, 175 (1968).
2. a) E. Hong, US Patent $3,860,717$; Chem. Abstr., 82, $149531 z$ (1975); b) L. E. Mather and P. J. Meffin., Clin. Pharmacokinet., 3, 352 (1978); Chem. Abstr., 90, 40w (1979).
3. T. D. Perrine, J. Org. Chem., 22, 1484 (1957).

EFFICIENT IN SITU ESTERIFICATION OF CARBOXYLIC ACIDS USING CESIUM CARBONATE

 (12/05/95)Submitted by Jong Chan Lee*, Yoon Seok Oh, Sung Hye Cho, and Jung Il Lee
Department of Chemistry, Chung-Ang University
Seoul, 156-756, Republic of KOREA

The esterification of carboxylic acids is a fundamental process in organic synthesis ${ }^{1}$ and may effected by the reaction of carboxylate anions with alkyl halides. ${ }^{2}$ Compared to other alkali metal carboxylate salts, cesium salts have been shown to be especially efficient in esterification ${ }^{3-6}$ and macrocyclization reactions. ${ }^{7}$ However, these reactions usually required high boiling solvent (DMF) in the presence of water ${ }^{3-5}$ or cesium fluoride/DMF system ${ }^{6}$ which are undesirable in terms of convenience. We now report a highly effective method for the esterification of carboxylic acids in acetonitrile with readily available cesium carbonate under non-aqueous conditions.

Acetonitrile was used as a reaction medium because of its appropriate boiling point as well as high dielectric constant and polar aprotic nature. The latter two properties should provide good solubility for the cesium carboxylate salt and concomitant rate enhancement of the reaction. Reflux of the carboxylic acids with alkyl iodides (1.0-5.0 equiv.) and cesium carbonate (1.5 equiv.) in

TABLE 1. Yields of Esters from Esterification Using Cesium Carbonate

Entry	$\begin{gathered} \mathrm{RCO}_{2} \mathrm{H} \\ (\mathbf{1}) \\ \hline \end{gathered}$	$R^{\prime} X^{a}$ (2)	$\begin{gathered} \text { Time }^{\mathrm{b}} \\ (\mathrm{hrs}) \end{gathered}$	Yield of $\mathbf{3}^{c}$ (\%)	bp. (mp.) $\left({ }^{\circ} \mathrm{C}\right)^{\mathrm{d}}$
1	Benzoic acid	EtI	1	96	210-212
2	Benzoic acid	EtI	e,f,g		
3	Benzoic acid	i-PrI	1	93	217-218
4	Benzoic acid	$\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{Br}$	0.5	100	240-242
5	Benzoic acid	$\mathrm{PhCH}_{2} \mathrm{Br}^{\text {h }}$	0.5	96	(20-21)
6	Benzoic acid	$\mathrm{PhCH}_{2} \mathrm{Cl}^{\mathrm{h}}$	0.5	90	
7	2,4,6-Trimethylbenzoic acid	EtI	2	100	129-130
8	2,4,6-Trimethylbenzoic acid	i-PrI	2	96	135-137
9	2,4,6-Trimethylbenzoic acid	$\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{Br}$	0.5	98	226-227
10	2,4,6-Trimethylbenzoic acid	$\mathrm{PhCH}_{2} \mathrm{Br}^{\text {h }}$	0.5	97	309-311
11	trans-Cinnamic acid	EtI	2	100	269-271
12	trans-Cinnamic acid	i-PrI	2	95	268-270
13	Phenylpropiolic acid	EtI	1.5	100	262-265
14	trans-3-(3-Pyridyl)acrylic acid	EtI	1	97	93-95
15	4-Fluorophenoxyacetic acid	EtI	1.5	99	(31-32)
16	3-Quinoline carboxylic acid	EtI	1.5	93	(68-69)
17	4-Nitrobenzoic acid	EtI	1.5	91	(55-57)
18	4-Nitrobenzoic acid	i-PrI	1.5	95	(108-109)
19	2-Chlorobenzoic acid	EtI	1.5	98	241-243
20	4-Methoxybenzoic acid	EtI	1.5	100	261-263
21	1-Naphtoic acid	EtI	1.5	100	308-310
22	Phenylacetic acid	EtI	1.5	98	226-228
23	Cyanoacetic acid	$E t^{\text {h }}$	1.5	98	207-209
24	Eicosanoic acid	$E t^{\text {h }}$	2	97	(47-48)
25	trans-2-Hexenoic acid	$\mathrm{PhCH}_{2} \mathrm{Br}^{\text {h }}$	0.5	98	231-232
26	Cyclohexanecarboxylic acid	i-PrI	1	91	130-131
27	N-Acetyl-DL-alanine	EtI	2	90	(34-35)
28	N-Acetyl-DL-alanine	i-PrI	2	93	175-176
29	N -Acetyl-L-phenylalanine	EtI	1.5	99	(88-89)
30	N -Acetyl-L-phenylalanine	i-PrI	1.5	98	(72-73)
31	(R)-(-)-2-Phenylbutyric acid	EtI	1.5	100	205-206
32	(R)-(-)-2-Phenylbutyric acid	i-PrI	1	98	207-208

a) Five equiv. were used unless otherwise indicated. b) Reaction in $\mathrm{CH}_{3} \mathrm{CN}$ with 1.5 equiv. of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$. c) Yield of isolated product. d) Uncorrected. e) Reaction in $\mathrm{CH}_{3} \mathrm{CN}$ at reflux with 2.5 equiv. of $\mathrm{K}_{2} \mathrm{CO}_{3}$ for 4 hrs gave a 67% yield. f) Reaction in THF at reflux with 1.5 equiv. of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ for 24 hrs gave a 72% yield. g) Reaction in DMF at 80° with 1.5 equiv. of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ for 7 hrs gave a 59% yield. h) One equiv. was used.
acetonitrile for $0.5-2 \mathrm{hrs}$ yielded the corresponding esters in essentially quantitative yield. The generality of this reaction was shown by use of a variety of carboxylic acids. The results are summarized in Table 1. The yields obtained in the present study were always higher than or comparable to those reported in the literature. Alkyl iodides were generally used as alkylating agents because not only their high reactivity in nucleophilic reaction but also the easy separation of precipitated cesium iodide from the esterification products. ${ }^{8}$ All of the reactions were completed within 2 hrs . The use of potassium carbonate instead of cesium carbonate, however, decreased the yield significantly (Entry 2). The use of either tetrahydrofuran (THF) or dimethylformamide (DMF) proved to be less effective than acetonitrile (Entry 2). These results clearly demonstrate the advantages of the present reaction conditions with respect to the yields and reaction times, there was no need to pre-form the cesium carboxylate salts which makes this method convenient for the in situ esterification of carboxylic acids. The procedure is also effective for the preparation of the sterically hindered esters (Entries 7-10). The mildness of the present method is illustrated with the use of base-sensitive functional groups (Entries 22, 23, 25 and 26). In addition, no racemization was observed with optically pure compounds (Entries 29-32).

In conclusion, an economical and practical method for the esterification of variety of carboxylic acids has been developed using readily available reagents under mild conditions. We believe this procedure provides an attractive alternative to the previously established methods in light of its high yield, short reaction time, and easy product isolation.

TABLE 2. Combustion Analysis Data for Compounds 9, 24, 25, 28, 30 and 32

Cmpd.	bp. (mp.) $\left({ }^{\circ} \mathrm{C}\right)$	C (Found)	H (Found)	N (Found)
$\mathbf{9}$	$226-227$	$76.44(76.36)$	$7.90(7.80)$	
$\mathbf{2 4}$	$(47-48)$	$77.58(77.42)$	$13.02(13.06)$	
$\mathbf{2 5}$	$231-232$	$76.44(76.36)$	$7.90(7.79)$	
$\mathbf{2 8}$	$175-176$	$55.47(55.38)$	$8.73(8.64)$	$8.09(8.02)$
$\mathbf{3 0}$	$(72-73)$	$67.45(67.30)$	$7.68(7.57)$	$5.62(5.59)$
$\mathbf{3 2}$	$207-208$	$75.69(75.50)$	$8.80(8.65)$	

EXPERIMENTAL SECTION

${ }^{1} \mathrm{H}$ NMR spectra were recorded with Bruker AW 80 spectrometer. IR spectra were obtained using a Unicam Mattson FT 1000 spectrometer. Cesium carbonate (99.5%) was obtained from Janssen Chimica. HPLC grade acetonitrile was obtained from EM Science and used without purification. All other commercially available reagents were obtained in high purity. All products showed spectral data consistent with their proposed structures. Elemental analyses were performed by Korea Basic Science Institute.

Typical Procedure.- To a solution of benzoic acid $(0.24 \mathrm{~g}, 2.0 \mathrm{mmol})$ and cesium carbonate $(0.98 \mathrm{~g}$, 3.0 mmol) in acetonitrile (20 mL) was added iodoethane $(1.56 \mathrm{~g}, 10.0 \mathrm{mmol})$ and the mixture was
stirred at reflux for 1 hr . After cooling to room temperature, the precipitate was filtered off and the filtrate was concentrated in vacuo. The residue was dissolved in chloroform (100 mL) and washed with 20% aq. NaHCO_{3} solution ($3 \times 30 \mathrm{~mL}$). The chloroform layer was washed (brine), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated under reduced pressure to give pure ethyl benzoate ($0.29 \mathrm{~g}, 96 \%$).

Acknowledgement.- We are grateful to The Korea Science and Engineering Foundation (941-0300-030-2) for financial support.

REFERENCES

1. E. Haslam, Tetrahedron, 36, 2409 (1980).
2. a) J. H. Clark, Chem. Commun., 789 (1978) and references cited therein; b) J. P. Tam, S. B. H. Kent, T. W. Wong and R. B. Merrifield, Synthesis, 955 (1979); c) B. F. Gisin, Helv. Chim. Acta, 56, 1476 (1973).
3. S. S. Wang, B. F. Gisin, D. P. Winter, R. Makofske, I. D. Kulesha, C. Tzougraki and J. Meienhofer, J. Org. Chem., 42, 1286 (1977).
4. H. G. Lerchen and H. Kunz, Tetrahedron Lett., 26, 5257 (1985).
5. H. Kunz and H. G. Lerchen, ibid., 28, 1873 (1987).
6. T. Sato, J. Otera and H. Nozaki, J. Org. Chem., 57, 2166 (1992).
7. A. Ostrowicki, E. Koepp and F. Vogtle, Top. Curr. Chem., 161, 37 (1992).
8. The higher bp. of the iodides also allowed the esterification of be performed at reflux in acetonitrile.
