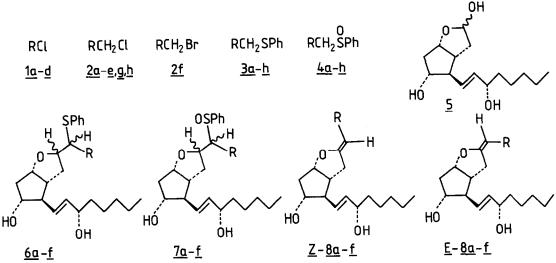
SYNTHESIS OF STABLE PROSTACYCLIN ANALOGUES

- G. Galambos^X, V. Simonidesz, J. Ivanics, K. Horváth, G. Kovács CHINOIN Pharmaceutical and Chemical Works Ltd., H-1325 Budapest, P.O.Box 110, Hungary
- <u>Abstract</u>: The synthesis of novel, stable PGI₂ analogues, 4-oxoprostacyclin methyl ester /<u>Ba</u>/ and its congeners is described here; the key step of the procedure is a Knoevenagel condensation between hemiacetal <u>5</u> and the sulfides <u>3</u> or sulfoxides 4.

Since the discovery, identification and first syntheses of prostacyclin² /PGI₂/ great efforts have been made to prepare its chemically and biologically more stable analogues. Two approaches have been published for the chemical stabilisation. One is the substitution of the enol ether functionality with isosterical groups /e.g. carbaprostacyclin³/, the other is the insertion of an electron-withdrawing group into the vicinity of the enol ether moiety. This latter way was taken by our research group synthesizing 7-oxo-FGI₂, which exhibits promising pharmacological activity⁴. Along this line the synthesis of 4-oxo-FGI₂ was also sought, however no succesful approach has been published so far.


The key step of our procedure is the Knoevenagel condensation⁵ between the hemiacetal 5 and sulfides 3 or sulfoxides 4. As we recently published⁶ this type of carbon-carbon bond formation provides an extremely simple access to a number of 5-substituted and 4,5-disubstituted PGI₁ derivatives. The phenylsulfenyl molety in <u>6</u> can be transformed to double bond by the well-known oxidation-elimination sequence⁷. The Knoevenagel condensation of sulfoxides <u>4</u> leads directly, without isolation of <u>7</u> to the desired PGI₂ analogues $\frac{18}{10}$.

Sulfide condensating agents /3/ were prepared from the corresponding chlorides /2a-e, g,h/ or bromide /2f/, with sodium thiophenoxide in methanol in yields given in Table 1. Not available chlorides /2a-d/ were synthesized from the acid chlorides /1a-d/ by Arndt-Eistert transformation⁸. Oxidation of 3 with m-chloroperbenzoic acid furnished the corresponding sulfoxides /4/ in good yields.

The Knoevenagel condensation of hemiacetal 5 with sulfides 3a-f led to 6a-f in good yields /0.5-1.0 g/ml of benzene, 3-5 eq. 3, 0.5-1.0 eq. piperidine, 0.5-2.0 eq. acetic acid, reflux, continuous removal of water, 30-40 hr/. Sulfides 3g,h however, gave no reaction even at higher temperatures and with prolonged reaction times. Oxidation of 6a-f with mCPBA to sulfoxides 7a-f and then thermal elimination in DMF at 130-135°C furnished 8a-f as an easily separable mixture of E and Z isomers /Table 1/.

1282

Condensations of <u>5</u> with sulfoxides <u>4a-f</u> provided <u>Ba-f</u> in acceptable yields, but the purification of the reaction mixtures was extremely tedious /100-300 mg/ml of xylene, 3-5 eq. <u>4</u>, 1.0 eq. piperidine, reflux, continuous removal of water, 3-4 hr/. Similarly to the sulfides, in the reaction of <u>4g,h</u> no transformation could be detected. This inertness of esters <u>3g,4g</u> and nitriles <u>3h,4h</u> can be attributed to their weaker acidities.

<u>Table 1^a</u>

R	ع ⁶	<u>4</u> b	<u>6</u> b,h	<u>7</u> ^{b,h}	<u> </u>	8 ^{d,e}
a. C/O/-/CH ₂ /2CO_Me	90 ^f	93	90	85	50/2.7:1/	33
ъ. с/о/-/сн ₂ /4 ^{сн} 3	8 9^f	9 5	87	93	63/5:1/	33
c. C/O/~/CH ₂ /3 ^{CO} 2 ^{Me}	85 ^f	88	78	9 5	56/3:1/	35
d. C/O/-/CH ₂ /4CO ₂ Et	90 ^f	90	85	8 7	52/2.5:1/	28
e. C/O/-CH3	93	83	81	85	43/4:1/	32
f. C/0/-Ph	83	88	84	91	41 ^g	30
g. CO ₂ Me	91	87	0	-	-	0
h. CN	9 5	79	0	-	-	0

a/ not optimized isolated yields; b/ all compounds were identified by UV, IR, ¹H NMR spectroscopy; c/ thermolysis of <u>7</u>; d/ condensation with <u>4</u>; e/ the E/Z ratio is similar to that in the previous column; f/ overall yield from <u>1</u> by Arndt-Eistert synthesis; g/ only one, presumably the E isomer was isolated; h/ mixture of isomers.

	10010	<u> </u>	Ъ	υν°	IR ^d	1 _{H NMR} e		~
Compound		R _f ^a /eluent/	^{mp} . ⁰ / ⁰ C/	λ_{\max} log E	/cm ⁻¹ /	H NMR	M: base peak	M.+
<u>8a</u> i	<u>Z</u>	0.28 /3Et-1A/	-	261 4.264	1640, 1740 [°]	5.22	202	3
	E	0.35 /3Et-la/	90-92	265 4.303	1607, 1673, 1710, 1745 ^g	5.92	293	ر
					1590, 1672, 1735 ^h			
<u>8b</u>	<u>Z</u>	0.15 /Et/	-	260 4.190	-	5.30	-	-
	E	0.24 /Et/	-	265 4.225	-	6.05		
8.0	<u>Z</u>	0.18 /1H-1A/	-	262 4.198	1635, 1737 ^f	5.23	202	,
<u>8c</u>	E	0,29 /lH-lA/	70 - 75	266 4.210	1610, 1680, 1730 ^g	5 .9 5	293	4
~ 1	<u>z</u>	0.26 /1H-1A/	-	261 4.180	-	5.27		-
<u>8d</u>	E	0.39 /1H-1A/	-	266 4.305	-	5 .9 8	293	3
_	<u>Z</u>	0.16 /6Et-1A/	-	262 4.292	1635, 1675 [°]	5.25		_
<u>8e</u>	E	0.31 /6Et-1A/	-	267 4.413	1590, 1670 ^f	5.92	85	7
<u>8f</u>		0.33 /3Et-1A/	101-103	254 4.109 292 4.292	1590, 1650 ^g	6.73	105	5

Table 2

a/ Et: ethyl acetate, H: hexane, A: acetone; b/ not corrected; c/ in EtOH, λ_{max} in nm; d/ \mathcal{V}_{oxo} , \mathcal{V}_{ester} , \mathcal{V}_{enol} ether; e/ in $C_6 D_6$, δ /ppm/, C=CH=CO; f/ film; g/ KBr; h/ in DMSO; i/ for ¹³C NMR data of isomers see ref.10.

The stereochemistry of the 4-oxoprostacyclin analogues $/\underline{8a-f}$ generally can be unambiguously assigned by spectroscopic means /Table 2/. The most significant difference appear in the ¹H NMR spectra of the two isomers. The very characteristic C5-H exhibits a ca. 0.7 ppm upfield shift in <u>Z-8</u>. This difference is analogous to that observed in the PGI₂ isomers⁹. The UV spectra show little, but characteristic difference in λ_{max} : there is a hypsochromic shift of ca. 5 nm in the Z isomers. No difference could be detected in the MS spectra. This can be rationalised by the fast isomerisation of the double bond prior to fragmentation¹¹. In the case of <u>8f</u>, when only one isomer was isolated, the TLC behaviour of the compound renders likely its E configuration.

Our experiments have revealed that these compounds are rather sensitive to bases. Depending upon the reaction conditions isomerisation and decomposition occur. The mildest method to equilibrate the enon system is the treatment of the material with excess DBN or DBU /the reaction was performed with $\underline{8a}$ -d/. According to TLC and PMR analysis the equilibrium lies far on the side of the E isomers />90%/.

Preliminary results reveal, that the pharmacological potency of both isomers of 4oxo-prostacyclin methyl ester is lower than that of PGI₂ methyl ester. In ADP induced

1284

acgregation of rabbit PRP the ID_{50} values of <u>Z-8e</u> and <u>E-8a</u> were higher of 4×10^2 and 9×10^4 , respectively, than that of the reference compound. The other analogues showed even weaker pharmacological activities¹².

References and Notes

- 1. Part of this paper was presented at the Vth. International Conference on Prostaglandins, Florence, 1982.
- K.C. Nicolau, G.P. Gasic, W.E. Barnette, Angew. Chem., Int. Ed. Engl., 1978, <u>17</u>, 293; M.P.L. Caton, Tetrahedron, 1979, <u>35</u>, 2705; J.R. Vane, S. Bergström, Eds., Prostacyclin, Raven Press, New York, 1979.
- 3. W. Skuballa, H. Vorbrüggen, Angew. Chem., Int. Ed. Engl., 1981, <u>20</u>, 1046, and references cited therein.
- G. Kovács, V. Simonidesz, I. Tömösközi, P. Körmöczy, I. Székely, Á. Papp-Behr, I. Stadler, L. Szekeres, Gy. Papp, J. Med. Chem., 1982, <u>25</u>, 505; I. Tömösközi, K. Kánai, P. Győry, G. Kovács, Tetrahedron Lett., 1982, <u>23</u>, 1091.
- G. Jones, Org. Reactions, 1967, <u>15</u>, 204; H.O. House, Modern Synthetic Reactions, 2nd Ed., W.A. Benjamin Inc., Menlo Park California, 1972.
- J.Ivanics, V. Simonidesz, G. Galambos, P. Körmöczy, G. Kovács, Tetrahedron Lett., accepted for publication.
- For example: B.M. Trost, Chem. Rev., 1978, <u>78</u>, 363; B.M. Trost, Accts. Chem. Res., 1978, <u>11</u>, 453.
- 8. W.E. Bachmann, W.S. Strune, Org. Reactions, 1942, 1, 38.
- 9. R.A. Johnson, F.H. Lincoln, E.G. Nidy, W.P. Schneider, J.L. Thompson, U. Axen, J.Am. Chem. Soc., 1978, <u>100</u>, 7690.
- 10. ¹³C NMR /acetone-d₆/ **d**/ppm/: Z-<u>Ba</u>: 195.7/C-4/, 173.4/C-1/, 171.3/C-6/, 136.5/C-14/, 129.8/C-13/, 100.0/C-5/, 89.8/C-9/, 76.9/C-15/, 71.9/C-11/, 54.8/C-12/, 50.8/0CH₃/, 43.6/C-3/, 40.5/C-10/, 37.5/C-16/, 37.2/C-8/, 37.0/C-7/, 31.7/C-2/, 27.9/C-18/, 25.1 /C-17/, 22.4/C-19/, 13.5/C-20/; E-<u>Ba</u>: 196.7/C-4/, 176.7/C-6/, 173.5/C-1/, 136.7/C-14/, 130.1/C-13/, 98.0/C-5/, 86.8/C-9/, 77.3/C-15/, 72.3/C-11/, 55.9/C-12/, 51.2/0CH₃/, 44.8/C-3/, 40.6/C-10/, 38.0/C-16,C-8/, 37.0/C-7/, 32.2/C-2/, 28.3/C-18/, 25.5/C-17/, 22.9/C-19/, 13.9/C-20/.
- 11. Dr. Gy. Horváth, personal communication.
- 12. We are grateful to Drs. L. Pusztai, and J. Hollós for recording the UV, IR and MS spectra and for the help in the interpretation. Antiaggregatory tests were made in Dr. I. Stadler's laboratory. Mrs. M. Szebeni's valuable technical assistance is ac-knowledged here.

(Received in UK 6 January 1983)