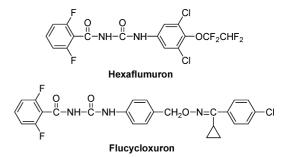
AGRICULTURAL AND FOOD CHEMISTRY

Design, Synthesis, Bioactivity, and Structure–Activity Relationship (SAR) Studies of Novel Benzoylphenylureas Containing Oxime Ether Group

Ranfeng Sun, Maoyun Lü, Li Chen, Qingshan Li, Haibin Song, Fuchun Bi, Runqiu Huang, and Qingmin Wang*

State Key Laboratory of Elemento-Organic Chemistry, Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China

Novel benzoylphenylureas containing an oxime ether group were designed and synthesized by four schemes. These benzoylphenylureas were identified by ¹H NMR spectroscopy and element analysis (or HRMS). The bioactivities of the new compounds were evaluated. These benzoylphenylureas exhibited excellent larvicidal activities against oriental armyworm, some of which were much better in comparison with the commercial Flucycloxuron. In particular, the larvicidal activities against oriental armyworm of compounds **1** and **23** were 5–10 times better than that of Flucycloxuron. Most of these benzoylphenyureas exhibited excellent larvicidal activities against mosquito. At the same time, some of these compounds have good plant growth regulatory activities as well.

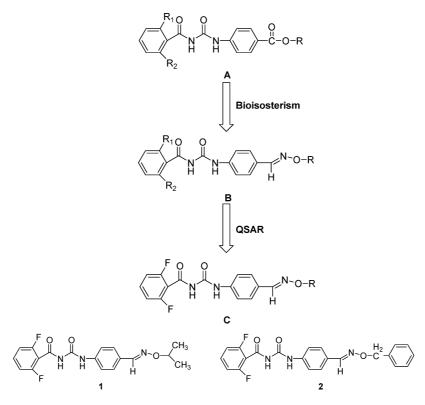

KEYWORDS: Benzoylphenylureas (BPUs); oxime ether; larvividal activity; plant growth regulatory activity; insect growth regulator; Flucycloxuron

INTRODUCTION

Benzoylphenylureas (BPUs) have been developed as chitin synthesis inhibitor since Dimilin (diflubenzuron) was introduced in the market. A unique mode of action coupled with a high degree of activity on targeted pests and low toxicity to nontarget organisms (including many beneficial arthropods) make benzoylphenylureas a new tool for integrated pest management (IPM) (1, 2). Dow AgroSciences LLC won the 2000 "Presidential Green Chemistry Challenge" award for the innovation of Sentricon Termite Colony Elimination System, a new paradigm for termite control, which contains Hexaflumuron as a major active ingredient (3). Because of the above advantages, benzoylphenylureas have attracted considerable attention for decades (4-10).

The oxime ether group is a highly efficient pharmacophore and is widely used in pesticide and drug molecular design. For example, Flucycloxuron discovered by Solvay-Duphar B.V. as insect growth regulator contains an oxime ether group (11).

Bioisosterism is an effective way to design bioactive compounds (12). A series of general structure **A** first reported by Bayer AG showed high larvicidal activity against pests of *Lepidoptera* and *Hemiptera* (13–16). Consequently, we designed the general structure **C** through bioisosterism and QSAR (17) of benzoylphenylureas. At first, compounds **1** and **2** were synthesized in our laboratory. The results of insecticidal activity showed that compound **1** exhibited much better larvicidal activity against oriental armyworm than compound **2**. For



optimizing the active compound 1, a series of novel benzoylphenylureas containing the oxime ether group were synthesized, and some of them exhibited excellent larvicidal activities against oriental armyworm and mosquito. Interestingly, some compounds showed good plant growth regulatory activities. Herein, we report the synthesis, bioactivity, and SAR of these benzoylphenylureas containing an oxime ether group (C) as shown in **Schemes 1–5**.

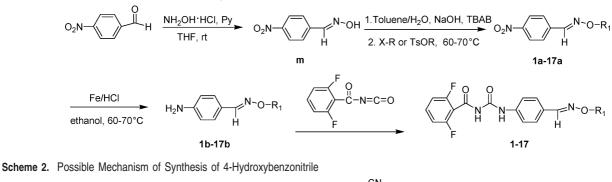
MATERIALS AND METHODS

Instruments. ¹H NMR spectra were obtained at 300 MHz using a Bruker AC-P300 spectrometer or at 400 MHz using a Varian Mercury Plus 400 spectrometer in CDCl₃ solution with tetramethylsilane as the internal standard. Chemical shift values (δ) are given in parts per million. Elemental analyses were determined on a Yanaca CHN Corder MT-3 elemental analyzer. HRMS data were obtained on an FTICR-MS instrument (Ionspec7.0T). The melting points were determined on a X-4

^{*} Author to whom correspondence should be addressed [telephone +86-(0)22-23499842; fax +86-(0)22-23499842; e-mail wang98h@263.net.

binocular microscope melting point apparatus (Beijing Tech Instruments Co., Beijing, China) and are uncorrected. Yields were not optimized.

General Synthesis. The reagents were all analytically or chemically pure. All anhydrous solvents were dried and purified by standard techniques prior to use. 2,6-Difluorobenzoyl isocyanate was prepared according to the method in the literature (*18*).

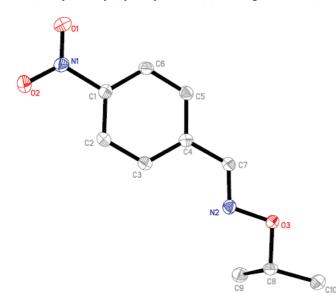

General Synthetic Procedure for the Target Compounds 1–17 (Scheme 1). Synthesis of (E)-4-Nitrobenzaldehyde Oxime (m). To a mixture of 4-nitrobenzaldehyde (12.08 g, 80 mmol) and hydroxylamine hydrochloride (6.68 g, 96 mmol) in tetrahydrofuran (80 mL) was added dropwise a solution of pyridine (7.58 g, 96 mmol) in tetrahydrofuran (10 mL). Then the mixture was stirred at room temperature. When the reaction was complete, most of the tetrahydrofuran was removed by vacuum distillation, and water was added. The mixture was extracted by ethyl acetate (40 mL \times 2). The organic extract was washed with saturated brine (40 mL), dried over anhydrous magnesium sulfate, filtered, and concentrated in vacuo to give a yellow solid. Recrystallization from a mixture of ethyl acetate and petroleum ether (60-90 °C) gave the desired compound m as a pale yellow acicular crystal (12.30 g, 92.5%): mp, 135-136 °C; ¹H NMR (300 MHz, CDCl₃), δ 8.25 (d, 2H, ³*J*_{HH} = 8.9 Hz, Ar–H), 8.21 (s, 1H, CH=N), 7.82 (s, 1H, N-OH), 7.75 (d, 2H, ${}^{3}J_{HH} = 8.9$ Hz, Ar-H).

Synthesis of (E)-O-Isopropyl-4-nitrobenzaldehyde Oxime (1a). A mixture of compound **m** (4.98 g, 30 mmol), tetrabutylammonium bromide (TBAB, 1.00 g), NaOH (1.80 g, 45 mmol), toluene (100 mL), and water (20 mL) was heated to 60-70 °C. Then a solution of 2-iodopropane (6.12 g, 36 mmol) in toluene (20 mL) was added dropwise, and the mixture was stirred for 3 h. When the reaction was complete, water (40 mL) was added. The organic layer was washed with saturated brine (50 mL) and dried over anhydrous magnesium sulfate and filtered. The filtrate was concentrated under reduced pressure to give a crude product, which was purified by flash column chromatography on silica gel using a mixture of petroleum ether (60–90 °C)

and ethyl acetate (v/v = 10:1) as the eluent to obtain compound **1a** as a yellow solid (5.76 g, 92.3%): mp, 55–56 °C; ¹H NMR (300 MHz, CDCl₃), δ 8.23 (d, 2H, ³*J*_{HH} = 8.8 Hz, Ar—H), 8.10 (s, 1H, CH=N), 7.75 (d, 2H, ³*J*_{HH} = 8.8 Hz, Ar—H), 4.50 (septet, 1H, ³*J*_{HH} = 6.3 Hz, OCH(CH₃)₂), 1.33 (d, 6H, ³*J*_{HH} = 6.3 Hz, OCH(CH₃)₂).

Synthesis of (E)-O-Isopropyl-4-aminobenzaldehyde Oxime (1b). Compound 1a (0.62 g, 3 mmol) was dissolved in ethanol (10 mL) and heated to 60-70 °C. Then water (2 mL), concentrated HCl (five drops), and iron powder (0.65 g, 10 mmol) were added. The solution was cooled to room temperature when the reaction was complete. The pH of the reaction mixture was adjusted to near 9 and filtered. To the filtrate was added water (10 mL), and the mixture was extracted by diethyl ether (10 mL \times 2). The extract was dried over anhydrous magnesium sulfate and filtered. After removal of the solvent, the residue was purified by flash column chromatography on silica gel using a mixture of petroleum ether (60–90 $^{\circ}$ C) and ethyl acetate (v/v = 3:1) as the eluent to give compound **1b** as an orange red oil (0.39 g, 73.6%): ¹H NMR (300 MHz, CDCl₃), δ 7.96 (s, 1H, CH=N), 7.39 (d, 2H, ${}^{3}J_{HH} = 8.5$ Hz, Ar–H), 6.64 (d, 2H, ${}^{3}J_{HH} = 8.6$ Hz, Ar–H), 4.40 (septet, 1H, ${}^{3}J_{HH} =$ 6.2 Hz, OCH(CH₃)₂), 3.28 (br s, 2H, NH₂), 1.28 (d, 6H, ${}^{3}J_{HH}$ $= 6.2 \text{ Hz}, \text{ OCH}(CH_3)_2).$

Synthesis of the Target Compound 1. A solution of 2,6difluorobenzoyl isocyanates (0.22 g, 1.2 mmol) in dry dichloromethane (10 mL) was added dropwise to a solution of compound **1b** (0.21 g, 1.2 mmol) in dry dichloromethane (5 mL) at room temperature. The reaction was monitored by TLC using a mixture of petroleum ether (60–90 °C) and ethyl acetate (v/v = 3:1) as the eluent. After the reaction was complete, the solvent was evaporated off under reduced pressure, and the product was purified by flash column chromatography on silica gel using a mixture of petroleum ether (60–90 °C) and ethyl acetate (v/v = 3:1) as the eluent to give compound **1** as a white solid (0.27 g, 62.8%): mp, 174–176 °C; ¹H NMR (300 MHz, CDCl₃), δ 10.49 (br s, 1H, CONHCO), 8.38 (br s, 1H, CONHAr), 8.03 (s, 1H, CH=N), 7.49–7.59 (m, 5H, Ar–H),


ŃO₂ III

7.06 (t, 2H, ${}^{3}J_{HH} = 8.6$ Hz, Ar–H), 4.45 (septet, 1H, ${}^{3}J_{HH} = 6.2$ Hz, OCH(CH₃)₂), 1.31 (d, 6H, ${}^{3}J_{HH} = 6.2$ Hz, OCH(CH₃)₂). Anal. Calcd for C₁₈H₁₇F₂N₃O₃: C, 59.83; H, 4.74; N, 11.63. Found: C, 59.67; H, 5.00; N, 11.83.

Ш

Intermediates 2a-17a, 2b-17b and the target compounds 2-17 were prepared by following the same procedures as for 1a, 1b, and 1, respectively. The physical properties and ¹H NMR data of compounds 2a-17a and 2b-17b are listed in Table 1. The physical properties, elemental analyses of the target compounds 2-17, and their ¹H NMR data are listed in Tables 2 and 3, respectively.

General Synthetic Procedure for the Target Compounds 18–22 (Scheme 3). Synthesis of (E)-O-(1,1,1,3,3,3-Hexafluoro-2-propyl)-4-nitrobenzaldehyde Oxime (18a). A suspension of sodium hydride (0.20 g, 50%, 4.2 mmol) in dry diethyl ether (30 mL) was cooled to -15 °C. Then a solution of 1,1,1,3,3,3hexafluoro-2-propanol (0.71 g, 4.2 mmol) in dry diethyl ether (30 mL) was added dropwise, and subsequently a solution of O-(mesitylsulfonyl)hydroxylamine (**n**) (0.76 g, 3.5 mmol) in

diethyl ether (10 mL) was added at -15 °C. The mixture was stirred for 3 h at -10 to 0 °C and filtered. Then to the filtrate were added a solution of 4-nitrobenzaldehyde (0.53 g, 3.5 mmol) in diethyl ether (20 mL) and 5 drops of acetic acid. After stirring at room temperature for 3 h, the reaction mixture was washed successively with water, saturated sodium carbonate solution, and saturated brine. The organic layer was dried over anhydrous magnesium sulfate. The solvent was removed to give a crude product, which was purified by flash column chromatography on silica gel using a mixture of petroleum ether (60–90 °C) and ethyl acetate (v/v = 10:1) as the eluent to obtain compound **18a** as a yellow oil (0.66 g, 60.0%): ¹H NMR (400 MHz, CDCl₃), δ 8.35 (s, 1H, CH=N), 8.28 (d, 2H, ³J_{HH} = 8.1 Hz, Ar–H), 8.79 (d, 2H, ³J_{HH} = 8.1 Hz, Ar–H), 5.10 (septet, 1H, ³J_{HF} = 6.2 Hz, OCH).

IV

Synthesis of (E)-O-(1,1,1,3,3,3-Hexafluoro-2-propyl)-4-aminobenzaldehyde Oxime (18b). Compound 18b was prepared by following the same procedure as for 1b to give an orange yellow oil (0.35 g, 75.4%): ¹H NMR (400 MHz, CDCl₃), δ 7.95 (s,

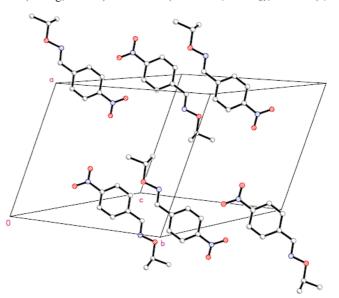


Figure 2. Packing diagram of compound 1a.

Table 1. Physical Properties and ^1H NMR Data of Intermediates $2a{-}17a$ and $2b{-}17b$

compd.	\mathbf{R}_1	yield	m.p. (°C)	¹ H NMR δ (ppm)
2a	PhCH ₂	76.6%	yellow solid	¹ H NMR (300 MHz, CDCl ₃): 8.22 (d, 2H, ${}^{3}J_{\rm HH}$ = 8.7 Hz, Ar-H),
			119-121	8.18 (s, 1H, CH=N), 7.74 (d, 2H, ${}^{3}J_{\rm HH}$ = 8.7 Hz, Ar-H),
				7.32-7.44 (m, 5H, Ph), 5.26 (s, 2H, CH ₂ Ph).
2b	PhCH ₂	42.9%	pale yellow oil	¹ H NMR (400 MHz, CDCl ₃): 8.04 (s, 1H, CH=N), 7.28-7.42 (m,
				7H, Ar-H), 6.64 (d, 2H, ${}^{3}\!J_{\rm HH}$ = 8.5 Hz, Ar-H), 5.16 (s, 2H,
				CH ₂ PH), 3.84 (brs, 2H, NH ₂).
3a	CH_3	77.8%	yellow solid	¹ H NMR (300 MHz, CDCl ₃): 8.24 (d, 2H, ${}^{3}J_{\rm HH}$ = 8.9 Hz, Ar-H),
			103-106	8.11 (s, 1H, CH=N), 7.75 (d, 2H, ${}^{3}J_{\rm HH}$ = 8.9 Hz, Ar-H), 4.04
				(s, 3H, OCH ₃).
3b	CH_3	85.2%	pale yellow oil	¹ H NMR (300 MHz, CDCl ₃): 7.96 (s, 1H, C =N), 7.38 (d, 2H,
				${}^{3}J_{\text{HH}} = 8.5 \text{ Hz}, \text{ Ar-H}$), 6.65 (d, 2H, ${}^{3}J_{\text{HH}} = 8.5 \text{ Hz}, \text{ Ar-H}$), 3.93 (s,
				3H, OCH ₃), 3.86 (brs, 2H, NH ₂).
4a	CH_3CH_2	73.7%	yellow solid	¹ H NMR (300 MHz, CDCl ₃): 8.23 (d, 2H, ${}^{3}J_{\text{HH}} = 8.8$ Hz, Ar-H),
			106-109	8.12 (s, 1H, CH=N), 7.75 (d, 2H, ${}^{3}J_{\text{HH}}$ = 8.8 Hz, Ar-H), 4.29 (q,
				2H, ${}^{3}J_{HH}$ = 7.1 Hz, OCH ₂ CH ₃), 1.35 (t, 3H, ${}^{3}J_{HH}$ = 7.1 Hz,
				CH ₃ CH ₂ O).
4b	CH ₃ CH ₂	88.9%	orange yellow	¹ H NMR (300 MHz, CDCl ₃): 7.98 (s, 1H, CH=N), 7.38 (d, 2H,
			oil	${}^{3}J_{\rm HH} = 8.5$ Hz, Ar-H), 6.64 (d, 2H, ${}^{3}J_{\rm HH} = 8.5$ Hz, Ar-H), 4.18
				$(q, 2H, {}^{3}J_{HH} = 7.1 \text{ Hz}, \text{ OCH}_{2}\text{CH}_{3}), 3.84 \text{ (brs, 2H, NH}_{2}), 1.30 \text{ (t,}$
_				$3H$, ${}^{3}J_{HH} = 7.1$ Hz, $CH_{3}CH_{2}O$).
5a	$CH_3CH_2CH_2$	83.7%	pale yellow solid	¹ H NMR (300 MHz, CDCl ₃): 8.23 (d, 2H, ${}^{3}J_{HH} = 8.9$ Hz, Ar-H),
			57-59	8.13 (s, 1H, CH=N), 7.74 (d, 2H, ${}^{3}J_{HH}$ = 8.9 Hz, Ar-H), 4.19 (t,
				2H, ${}^{3}J_{HH} = 6.7$ Hz, OCH ₂ CH ₂), 1.70-1.82 (m, 2H,
				$CH_2CH_2CH_3$), 0.99 (t, 3H, ${}^3J_{HH} = 7.4$ Hz, CH_2CH_3).
5b	$CH_3CH_2CH_2$	81.7%	orange yellow	¹ H NMR (300 MHz, CDCl ₃): 7.98 (s, 1H, CH=N), 7.38 (d, 2H,
			oil	${}^{3}J_{\rm HH} =$ 8.5 Hz, Ar-H), 6.64 (d, 2H, ${}^{3}J_{\rm HH} =$ 8.7 Hz, Ar-H), 4.07 (t,
				2H, ${}^{3}J_{HH} = 6.7$ Hz, OCH ₂ CH ₂), 3.83 (brs, 2H, NH ₂),1.66-1.82
				(m, 2H, CH ₂ CH ₂ CH ₃), 0.99 (t, 3H, ${}^{3}J_{HH} = 7.4$ Hz, CH ₂ CH ₃).
6a	CH ₂ CH ₂ Cl	59.1%	pale yellow solid	¹ H NMR (300 MHz, CDCl ₃): 8.24 (d, 2H, ${}^{3}J_{HH} = 8.8$ Hz, Ar-H),
			66-67	8.20 (s, 1H, CH=N), 7.76 (d, 2H, ${}^{3}J_{\rm HH}$ = 8.8 Hz, Ar-H), 4.45 (t,
				2H, ${}^{3}J_{HH} = 5.8$ Hz, OCH ₂ CH ₂), 3.80 (t, 3H, ${}^{3}J_{HH} = 5.8$ Hz,
0		76 404		$CH_2CH_2CI).$
6b	CH ₂ CH ₂ Cl	76.4%	orange yellow	¹ H NMR (400 MHz, CDCl ₃): 8.03 (s, 1H, CH=N), 7.38 (d, 2H,
			oil	${}^{3}J_{\text{HH}} = 7.7 \text{ Hz}, \text{ Ar-H}$), 6.65 (d, 2H, ${}^{3}J_{\text{HH}} = 7.7 \text{ Hz}, \text{ Ar-H}$), 4.33 (t,
				2H, ${}^{3}J_{\text{HH}} = 5.9$ Hz, OCH ₂ CH ₂), 3.88 (brs, 2H, NH ₂), 3.77 (t, 3H,
7.	CUCUE	88.5%		${}^{3}J_{\text{HH}} = 5.9 \text{ Hz}, \text{ CH}_2\text{CH}_2\text{CI}$
7 a	CH ₂ CH ₂ F	88.370	yellow solid	¹ H NMR (300 MHz, CDCl ₃): 8.24 (d, 2H, ³ <i>J</i> _{HH} = 8.8 Hz, Ar-H), 8.20 (s, 1H, CH=N), 7.76 (d, 2H, ³ <i>J</i> _{HH} = 8.8 Hz, Ar-H), 4.72 (dt,
				$2H_{1}^{3}J_{HH} = 4.1 \text{ Hz}, ^{2}J_{HF} = 47.5 \text{ Hz}, \text{ CH}_{2}\text{CH}_{2}\text{F}, 4.47 \text{ (dt}, 2H_{1}^{3}J_{HH})$
				$= 4.1 \text{ Hz}, {}^{3}J_{\text{HF}} = 28.6 \text{ Hz}, OCH_2\text{CH}_2\text{F}).$
7b	CH ₂ CH ₂ F	55.8%	yellow oil	¹ H NMR (300 MHz, CDCl ₃): 8.04 (s, 1H, CH=N), 7.38 (d, 2H,
70	C112C1121	55.670	yenow on	${}^{3}J_{\text{HH}} = 8.5 \text{ Hz}, \text{ Ar-H}$), 6.64 (d, 2H, ${}^{3}J_{\text{HH}} = 8.5 \text{ Hz}, \text{ Ar-H}$), 4.68
				$(dt, 2H, {}^{3}J_{HH} = 4.2 \text{ Hz}, {}^{2}J_{HF} = 47.6 \text{ Hz}, CH_{2}CH_{2}F), 4.38 (dt, 2H, 2H, 2H, 2H, 2H, 2H, 2H, 2H, 2H, 2H$
				${}^{3}J_{\rm HH} = 4.2$ Hz, ${}^{3}J_{\rm HF} = 28.7$ Hz, OCH_2CH_2F), 3.87 (brs, 2H,
				NH ₂).
8a	CH ₂ CH=CH ₂	77.7%	pale yellow solid	¹ H NMR (300 MHz, CDCl ₃): 8.23 (d, 2H, ${}^{3}J_{\text{HH}} = 8.9$ Hz, Ar-H),
			73-75	8.16 (s, 1H, CH=N), 7.75 (d, 2H, ${}^{3}J_{\rm HH}$ = 8.9 Hz, Ar-H),
				5.98-6.11 (m, 1H, CH ₂ CH=CH ₂), 5.37 (dq, 1H, ${}^{3}J_{HH} = 17.2$ Hz,
				CH ₂ CH= CH_2), 5.28 (dq, 1H, ${}^{3}J_{\text{HH}}$ = 10.4 Hz, CH ₂ CH = CH_2),
				4.73 (dt, 2H, ${}^{3}J_{\rm HH} = 5.8$ Hz, $CH_2CH = CH_2$).
	CH ₂ CH=CH ₂	95.4%	orange yellow	¹ H NMR (300 MHz, CDCl ₃): 8.01 (s, 1H, CH=N), 7.38 (d, 2H,
8b	2			
8b	2		oil	${}^{3}J_{\rm HH}$ = 8.5 Hz, Ar-H), 6.64 (d, 2H, ${}^{3}J_{\rm HH}$ = 8.5 Hz, Ar-H),
8b	22		oil	${}^{3}J_{\rm HH}$ = 8.5 Hz, Ar-H), 6.64 (d, 2H, ${}^{3}J_{\rm HH}$ = 8.5 Hz, Ar-H), 5.98-6.11 (m, 1H, CH ₂ CH=CH ₂), 5.30-5.38 (m, 1H,
8b	2		oil	

Table 1. Continued

	D	1.1.4	(00)	
compd.	R ₁ H ₂ C——H	yield	m.p. (°C)	¹ H NMR δ (ppm) ¹ H NMR (400 MHz, CDCl ₃): 8.24 (d, 2H, ³ J _{HH} = 8.8 Hz, Ar-H),
9a	П20 — П	80.4%	pale yellow solid	¹ H NMR (400 MHz, CDCl ₃): 8.24 (d, 2H, ¹ J _{HH} = 8.8 Hz, Ar-H), 8.18 (s, 1H, CH=N), 7.78 (d, 2H, ³ J _{HH} = 8.8 Hz, Ar-H), 4.83 (d,
				$2H, {}^{4}J_{\text{HH}} = 2.3 \text{ Hz, OCH}_{2}, 2.54 \text{ (t, H, }^{4}J_{\text{HH}} = 2.3 \text{ Hz, CH}_{2}.$
9b	H₂C <i>—</i> —H	57.1%	orange yellow	¹ H NMR (300 MHz, CDCl ₃): 8.02 (s, 1H, CH=N), 7.40 (d, 2H,
20		57.170	solid	${}^{3}J_{\text{HH}} = 8.5 \text{ Hz}, \text{ Ar-H}$), 6.64 (d, 2H, ${}^{3}J_{\text{HH}} = 8.5 \text{ Hz}, \text{ Ar-H}$), 4.72
			68-70	(d, 2H, ${}^{4}J_{HH} = 2.4$ Hz, OCH_{2}), 3.87 (brs, 2H, NH ₂), 2.48 (t, H,
				${}^{4}J_{\rm HH} = 2.4 \text{ Hz, } CH$).
10a	CH ₂ CO ₂ CH ₃	73.4%	pale yellow solid	¹ H NMR (300 MHz, CDCl ₃): 8.20 (s, 1H, CH=N), 8.17 (d, 2H,
			101-102	${}^{3}J_{\rm HH}$ = 8.8 Hz, Ar-H), 7.69 (d, 2H, ${}^{3}J_{\rm HH}$ = 8.8 Hz, Ar-H), 4.72 (s,
				2H, OCH ₂ CO ₂ CH ₃), 3.74 (s, 3H, CO ₂ CH ₃).
10b	CH ₂ CO ₂ CH ₃	26.7%	yellow solid	¹ H NMR (300 MHz, CDCl ₃): 8.09 (s, 1H, CH=N), 7.37 (d, 2H,
				${}^{3}J_{\rm HH} =$ 8.5 Hz, Ar-H), 6.64 (d, 2H, ${}^{3}J_{\rm HH} =$ 8.5 Hz, Ar-H), 4.68 (s,
				2H, OCH ₂ CO ₂ CH ₃), 3.88 (brs, 2H, NH ₂), 3.78 (s, 3H, CO ₂ CH ₃).
11a	CH ₂ CH ₂ OCH ₃	68.7%	pale yellow solid	¹ H NMR (300 MHz, CDCl ₃): 8.23 (d, 2H, ${}^{3}J_{\text{HH}} = 8.8$ Hz, Ar-H),
			77-79	8.19 (s, 1H, CH=N), 7.75 (d, 2H, ${}^{3}J_{\rm HH}$ = 8.5 Hz, Ar-H), 4.39 (t,
				2H, ${}^{3}J_{\rm HH}$ = 4.6 Hz, OCH ₂ CH ₂), 3.71 (t, 2H, ${}^{3}J_{\rm HH}$ = 4.6 Hz,
				OCH ₂ <i>CH</i> ₂), 3.43 (s, 3H, CH ₂ O <i>CH</i> ₃).
11b	CH ₂ CH ₂ OCH ₃	84.9%	orange yellow	¹ H NMR (300 MHz, CDCl ₃): 8.23 (d, 2H, ${}^{3}J_{HH}$ = 8.5 Hz, Ar-H),
			oil	8.19 (s, 1H, CH=N), 7.75 (d, 2H, ${}^{3}J_{\rm HH}$ = 8.5 Hz, Ar-H), 4.39 (t,
				2H, ${}^{3}J_{HH} = 4.6$ Hz, OCH ₂ CH ₂), 3.86 (brs, 2H, NH ₂), 3.71 (t, 2H,
				${}^{3}J_{\text{HH}} = 4.6 \text{ Hz}, \text{ OCH}_{2}CH_{2}$), 3.43 (s, 3H, CH ₂ OCH ₃).
12a	CH ₂ CH ₂ CH ₂ CH ₃	85.0%	yellow solid	¹ H NMR (300 MHz, CDCl ₃): 8.23 (d, 2H, ${}^{3}J_{HH} = 8.8$ Hz, Ar-H),
			38-39	8.12 (s, 1H, CH=N), 7.74 (d, 2H, ${}^{3}J_{HH} = 8.8$ Hz, Ar-H), 4.23 (t,
				2H, ${}^{3}J_{\text{HH}} = 6.7$ Hz, OCH ₂ CH ₂), 1.67-1.76 (m, 2H, OCH ₂ CH ₂),
				1.38-1.50 (m, 2H, $CH_2CH_2CH_3$), 0.97 (t, 3H, ${}^3J_{HH} = 7.3$ Hz,
				$CH_2CH_2CH_3$).
12b	CH ₂ CH ₂ CH ₂ CH ₃	82.3%	orange yellow	¹ H NMR (300 MHz, CDCl ₃): 7.98 (s, 1H, CH=N), 7.38 (d, 2H,
			oil	${}^{3}J_{\text{HH}} = 8.5 \text{ Hz}, \text{ Ar-H}), 6.64 (d, 2H, {}^{3}J_{\text{HH}} = 8.5 \text{ Hz}, \text{ Ar-H}), 4.12 (t, 0.13 \text{ Hz}), 6.64 (d, 2H, 0.13 \text{ Hz}), 6.64 (d, 2H, 0.13 \text{ Hz})$
				2H, ${}^{3}J_{\text{HH}} = 6.7$ Hz, OCH ₂ CH ₂), 3.83 (brs, 2H, NH ₂),1.63-1.73
				(m, 2H, OCH ₂ CH ₂), 1.36-1.48 (m, 2H, CH ₂ CH ₂ CH ₃), 0.95 (t, $3H$, $^{3}J_{\rm HH} = 7.3$ Hz, CH ₂ CH ₂ CH ₃).
1 3 a	CH(CH ₃)CH ₂ CH ₃	56.8%	yellow solid	¹ H NMR (300 MHz, CDCl ₃): 8.23 (d, 2H, ${}^{3}J_{HH} = 8.8$ Hz, Ar-H),
154	en(eng)engeng	50.070	yenew sond	8.11 (s, 1H, CH=N), 7.75 (d, 2H, ${}^{3}J_{HH} = 8.8$ Hz, Ar-H),
				4.23-4.36 (m, 1H, OCH (CH ₃)), 1.53-1.81 (m, 2H, OCH
				(CH ₃) <i>CH</i> ₂), 1.30 (d, 3H, ${}^{3}J_{\rm HH}$ = 6.3 Hz, OCH (<i>CH</i> ₃)), 0.97 (t,
				3H, ${}^{3}J_{\rm HH} = 7.5$ Hz, CH ₂ CH ₃).
13b	CH(CH ₃)CH ₂ CH ₃	47.9%	orange yellow	¹ H NMR (300 MHz, CDCl ₃):7.97 (s, 1H, CH=N), 7.39 (d, 2H,
			oil	${}^{3}J_{\rm HH}$ = 8.5 Hz, Ar-H), 6.65 (d, 2H, ${}^{3}J_{\rm HH}$ = 8.5 Hz, Ar-H),
				4.10-4.24 (m, 1H, OCH (CH ₃)), 3.82 (brs, 2H, NH ₂), $1.46-1.80$
				(m, 2H, OCH (CH ₃) <i>CH</i> ₂), 1.26 (d, 3H, ${}^{3}J_{HH} = 6.3$ Hz, OCH
				(CH_3)), 0.95 (t, 3H, ${}^{3}J_{\rm HH} = 7.5$ Hz, CH ₂ CH ₃).
14a	CH(CH ₃)(CH ₂) ₂ CH ₃	85.3%	yellow oil	¹ H NMR (300 MHz, CDCl ₃): 8.22 (d, 2H, ${}^{3}J_{\rm HH}$ = 8.8 Hz, Ar-H),
				8.10 (s, 1H, CH=N), 7.74 (d, 2H, ${}^{3}J_{HH} = 8.8$ Hz, Ar-H),
				4.32-4.43 (m, 1H, CH (CH ₃)CH ₂), 1.60-1.79 (m, 2H, CH
				(CH ₃)CH ₂ CH ₂), 1.38-1.55 (m, 1H, CH ₂ CH ₂ CH ₃), 1.31 (d, 3H,
				${}^{3}J_{\text{HH}} = 6.3 \text{ Hz}, \text{ CH } (CH_{3})\text{CH}_{2}$, 0.96 (t, 3H, ${}^{3}J_{\text{HH}} = 7.4 \text{ Hz},$
	OHOU YOU YOU YOU	10.007	1 11 12	$CH_2CH_2CH_3$).
14b	$CH(CH_3)(CH_2)_2CH_3$	40.0%	pale yellow oil	¹ H NMR (300 MHz, CDCl ₃): 7.96 (s, 1H, CH=N), 7.38 (d, 2H, ³ J_{HH} = 8.5 Hz, Ar-H), 6.65 (d, 2H, ³ J_{HH} = 8.5 Hz, Ar-H),
				$J_{HH} = 8.5 \text{ Hz}, \text{ Al-H}, 0.05 (u, 2H, 3_{HH} = 8.5 \text{ Hz}, \text{ Al-H}),$ 4.21-4.33 (m, 1H, <i>CH</i> (CH ₃)CH ₂), 3.84 (brs, 2H, NH ₂),
				1.60-1.77 (m, 2H, CH (CH ₃)CH ₂ CH ₂), 1.37-1.54 (m, 1H,
				$CH_2CH_2CH_3$), 1.26 (d, 3H, ${}^3J_{HH} = 6.3$ Hz, CH (<i>CH</i> ₃)CH ₂), 0.94 (t, 3H, ${}^3L_{WH} = 7.4$ Hz, CH-CH-CH-
15a	СН СИ(СЧ)	80.9%	pale yellow solid	(t, 3H, ${}^{3}J_{\text{HH}} = 7.4$ Hz, CH ₂ CH ₂ CH_3). ¹ H NMR (300 MHz, CDCl ₃): 8.23 (d, 2H, ${}^{3}J_{\text{HH}} = 8.9$ Hz, Ar-H),
134	$CH_2CH(CH_3)_2$	00.970	47-49	H NMK (300 MHz, CDC ₁₃): 8.23 (d, 2H, $J_{\text{HH}} = 8.9$ Hz, Ar-H), 8.11 (s, 1H, CH=N), 7.75 (d, 2H, $^{3}J_{\text{HH}} = 8.9$ Hz, Ar-H), 3.91 (d,
				2H, ${}^{3}J_{HH} = 6.7$ Hz OCH ₂), 1.99-2.15 (m, 1H, CH ₂ CH (CH ₃) ₂),
				0.97 (d, 6H, ${}^{3}J_{\text{HH}} = 6.7$ Hz, CH (CH ₃) ₂).

Table 1. Continued

compd.	\mathbf{R}_1	yield	m.p. (°C)	$^{1}\mathrm{H}\mathrm{NMR}\delta$ (ppm)
15b	CH ₂ CH(CH ₃) ₂	83.0%	pale yellow solid	¹ H NMR (300 MHz, CDCl ₃): 7.99 (s, 1H, CH=N), 7.38 (d, 2H,
				${}^{3}J_{\rm HH} =$ 8.8 Hz, Ar-H), 6.63 (d, 2H, ${}^{3}J_{\rm HH} =$ 8.8 Hz, Ar-H), 3.89
				(d, 2H, ${}^{3}J_{HH} = 6.7$ Hz OCH ₂), 3.83 (brs, 2H, NH ₂),1.97-2.10 (m,
				1H, CH ₂ <i>CH</i> (CH ₃) ₂), 0.95 (d, 6H, ${}^{3}J_{\text{HH}} = 6.7$ Hz, CH (<i>CH</i> ₃) ₂).
16a	CH ₂ (CH ₂) ₃ CH ₃	79.6%	yellow solid	¹ H NMR (300 MHz, CDCl ₃): 8.23 (d, 2H, ${}^{3}J_{HH} = 8.8$ Hz, Ar-H),
				8.09 (s, 1H, CH=N), 7.75 (d, 2H, ${}^{3}J_{\rm HH}$ = 8.8 Hz, Ar-H), 4.11 (t,
				2H, ${}^{3}J_{\text{HH}}$ = 6.8 Hz OCH ₂), 1.65-1.74 (m, 2H, OCH ₂ CH ₂),
				1.34-1.39 (m, 4H, OCH ₂ (<i>CH</i> ₂) ₂), 0.90 (t, 3H, ${}^{3}J_{HH} = 7.2$ Hz).
16b	CH ₂ (CH ₂) ₃ CH ₃	87.0%	pale yellow oil	¹ H NMR (300 MHz, CDCl ₃): 7.98 (s, 1H, CH=N), 7.38 (d, 2H,
				${}^{3}J_{\rm HH}$ = 8.5 Hz, Ar-H), 6.64 (d, 2H, ${}^{3}J_{\rm HH}$ = 8.5 Hz, Ar-H), 4.11 (t,
				2H, ${}^{3}J_{\rm HH} = 6.8$ Hz OCH ₂), 3.82 (brs, 2H, NH ₂), 1.65-1.74 (m,
				2H, OCH2CH2), 1.34-1.39 (m, 4H, OCH2 (CH2)2), 0.90 (t, 3H,
				${}^{3}J_{\rm HH} = 7.2$ Hz).
17a	cyclopentyl	86.0%	yellow solid	¹ H NMR (300 MHz, CDCl ₃): 8.22 (d, 2H, ${}^{3}J_{HH} = 8.8$ Hz, Ar-H),
				8.08 (s, 1H, CH=N), 7.74 (d, 2H, ${}^{3}J_{HH} = 8.8$ Hz, Ar-H),
				4.81-4.87 (m, 1H), 1.56-1.89 (m, 8H).
17b	cyclopentyl	54.2%	orange yellow	¹ H NMR (300 MHz, CDCl ₃): 7.94 (s, 1H, CH=N), 7.38 (d, 2H,
			oil	${}^{3}J_{\rm HH}$ = 8.8 Hz, Ar-H), 6.65 (d, 2H, ${}^{3}J_{\rm HH}$ = 8.8 Hz, Ar-H),
				4.81-4.87 (m, 1H), 3.88 (brs, 2H, NH ₂), 1.56-1.90 (m, 8H).

1H, CH=N), 7.52 (d, 2H, ${}^{3}J_{\text{HH}} = 8.1$ Hz, Ar–H), 6.65 (d, 2H, ${}^{3}J_{\text{HH}} = 8.1$ Hz, Ar–H), 4.95 (septet, 1H, ${}^{3}J_{\text{HF}} = 6.2$ Hz, OCH), 3.82 (br s, 2H, NH₂).

Synthesis of the Target Compound 18. Compound 18 was prepared by following the same procedure as for 1 to give a white solid (0.33 g, 63.4%): mp, 186–188 °C; ¹H NMR (400 MHz, CDCl₃), δ 10.62 (br s, 1H, CONHCO), 9.06 (br s, 1H, CONHAr), 8.23 (s, 1H, CH=N), 7.48–7.59 (m, 5H, Ar–H), 7.07 (t, 2H, ³J_{HH} = 9.0 Hz, Ar–H), 5.06 (septet, 1H, ³J_{HF} = 6.2 Hz, OCH). Anal. Calcd for C₁₈H₁₁F₈N₃O₃: C, 46.01; H, 2.36; N, 8.95. Found: C, 46.09; H, 2.38; N, 8.96.

Intermediates **19a**-**22a**, **19b**-**22b**, and the target compounds **19**-**22** were prepared by following the same procedures as for **18a**, **18b**, and **1**, respectively. The physical properties and ¹H NMR data of compounds **19a**-**22a** and **19b**-**22b** are listed in **Table 4**. The physical properties, elemental analyses of the target compounds **19**-**22**, and their ¹H NMR data are listed in **Tables 5** and **6**, respectively.

Synthetic Procedure for the Target Compound 23 (Scheme 4). Synthesis of (E)-O-tert-Butyl-4-nitrobenzaldehyde Oxime (23a). A solution of m (0.83 g, 5 mmol) in chloroform (20 mL) was heated to 50-60 °C, and isobutylene was bubbled into the solution. Then, 0.5 mL of concentrated H₂SO₄ was added into the mixture. The mixture was washed successively with water, saturated sodium carbonate solution, and saturated brine when the reaction was complete (monitored by TLC using a mixture of petroleum ether (60–90 °C) and ethyl acetate (v/v = 10:1) as the eluent). The organic layer was dried over anhydrous magnesium sulfate and filtered. The solvent was removed to give a crude product, which was purified by flash column chromatography on silica gel using petroleum ether (60-90 °C) as the eluent to obtain compound **23a** as a yellow solid (0.80 g, 72.1%): mp, 59–61 °C.; ¹H NMR (400 MHz, CDCl₃), δ 8.22 (d, 2H, ³J_{HH} = 8.7 Hz, Ar—H), 8.09 (s, 1H, CH=N), 7.75 (d, 2H, ${}^{3}J_{HH} = 8.7$ Hz, Ar—H), 1.38 (s, 9H, OC (*CH*₃)₃).

Synthesis of (E)-O-tert-Butyl-4-aminobenzaldehyde Oxime (23b). Compound 23b was prepared by following the same procedure as for 1b to give an orange-yellow oil (1.06 g, 81.5%):

¹H NMR (400 MHz, CDCl₃), δ 7.95 (s, 1H, CH=N), 7.40 (d, 2H, ³*J*_{HH} = 8.5 Hz, Ar-H), 6.65 (d, 2H, ³*J*_{HH} = 8.5 Hz, Ar-H), 3.81 (br s, 2H, NH₂), 1.34 (s, 9H, OC(*CH*₃)₃).

Synthesis of the Target Compound **23**. Compound **23** was prepared by following the same procedure as for **1** to give a white solid (1.90 g, 63.4%): mp, 171–173 °C; ¹H NMR (400 MHz, CDCl₃), δ 10.48 (br s, 1H, CONHCO), 8.44 (br s, 1H, CONHAr), 8.02 (s, 1H, CH=N), 7.49–7.59 (m, 5H, Ar–H), 7.07 (t, 2H, ³J_{HH} = 8.8 Hz, Ar–H), 1.37 (s, 9H, OC (*CH*₃)₃). Anal. Calcd for C₁₉H₁₉F₂N₃O₃: C, 60.79; H, 5.10; N, 11.19. Found: C, 60.89; H, 5.22; N, 11.19.

Synthetic Procedure for the Target Compound 24 (Scheme 5). Synthesis of 4-Aminobenzaldehyde. 4-Aminobenzaldehyde was prepared according to the literature (18). The product was not purified to be used in the next step because of its easy self-condensation. ¹H NMR (400 MHz, CDCl₃), δ 9.76 (s, 1H, CHO), 7.69 (d, 2H, ³J_{HH} = 8.4 Hz, Ar–H), 4.25 (br s, 2H, NH₂).

Synthesis of 1-(2,6-Difluorobenzoyl)-3-(4-formylphenyl)urea (24a). A solution of 2,6-difluorobenzoyl isocyanates (1.51 g, 8.3 mmol) in dichloromethane (20 mL) was added dropwise to a solution of 4-aminobenzaldehyde in dichloromethane (20 mL) at room temperature. Then the mixture was stirred overnight, and the solvent was removed under reduced pressure. The product was purified by flash column chromatography on silica gel using a mixture of petroleum ether (60–90 °C) and ethyl acetate (v/v = 3:1) as the eluent to give compound 24a as a white solid (0.66 g, 20.6%, yield of two steps): mp, 205–206 °C; ¹H NMR (400 MHz, CDCl₃), δ 10.75 (br s, 1H, CONHCO), 9.76 (s, 1H, CHO), 9.02 (br s, 1H, CONHAr), 7.86 (d, 2H, ³J_{HH} = 8.5 Hz, Ar–H), 7.68 (d, 2H, ³J_{HH} = 8.4 Hz, Ar–H), 7.60 (m, 1H, Ar–H), 7.08 (t, 2H, ³J_{HH} = 8.4 Hz, Ar–H).

Synthesis of (E)-1-(2,6-Difluorobenzoyl)-3-(4-((hydroxyimino)methyl)phenyl)urea (**24b**). Compound **24b** was prepared by following the same procedure as for **m** to give a white solid (98.4%): mp, 201–203 °C. ¹H NMR (400 MHz, CDCl₃): δ 11.47 (brs, 1H, CONHCO), 11.15 (s, 1H, N-OH), 10.27 (brs, 1H, CONHAr), 8.10 (s, 1H, CH=N), 7.56–7.67 (m, 5H, Ar–H), 7.26 (t, 2H, ³J_{HH} = 8.3 Hz, Ar–H).

Table 2. Physical Properties and Elemental Analyses of the Target Compounds 2-17

	D			Element analysis (%, calc.)
compd.	R_1	yield	m.p. (°C)	C H N
2	PhCH ₂	50.23%	white solid 174-176	64.44 (64.54) 4.27 (4.19) 10.27 (10.26)
3	CH ₃	32.5%	white solid 179-181	57.54(57.66) 4.02 (3.93) 12.59 (12.61)
4	CH ₃ CH ₂	46.9%	white solid 174-176	58.66 (58.79) 4.41 (4.35) 12.15 (12.10)
5	CH ₃ CH ₂ CH ₂	50.6%	white solid 171-173	59.81 (59.83) 4.85 (4.74) 11.78 (11.63)
6	CH ₂ CH ₂ Cl	37.3%	white solid 184-186	53.41 (53.48) 3.75 (3.70) 11.19 (11.01)
7	CH ₂ CH ₂ F	47.4%	white solid 175-176	55.79 (55.89) 3.74 (3.70) 11.12 (11.01)
8	CH ₂ CH=CH ₂	79.4%	white solid 165-167	60.01 (60.17) 4.11 (4.21) 11.58 (11.69)
9	H₂C ─── H	30.5%	white solid 183-184	60.68 (60.51) 3.64 (3.67) 11.76 (11.76)
10	CH ₂ CO ₂ CH ₃	46.9%	white solid 175-177	55.12 (55.25) 3.95 (3.86) 11.00 (10.74)
11	CH ₂ CH ₂ OCH ₃	60.5%	white solid 161-163	57.11 (57.29) 4.53 (4.54) 11.27 (11.14)
12	CH ₂ CH ₂ CH ₂ CH ₃	34.0%	white solid 164-166	60.69 (60.79) 5.25 (5.10) 11.18 (11.19)
13	CH(CH ₃)CH ₂ CH ₃	64.3%	white solid 167-169	60.52 (60.79) 5.07 (5.10) 11.39 (11.19)
14	CH(CH ₃)(CH ₂) ₂ CH ₃	64.5%	white solid 154-155	HRMS (ESI) m/z calcd for $C_{20}H_{21}F_2N_3O_3$ (M+Na) ⁺ 412.1443, found 412.1444
15	CH ₂ CH(CH ₃) ₂	53.6%	white solid 181-182	60.97 (60.79) 5.17 (5.10) 11.08 (11.19)
16	CH ₂ (CH ₂) ₃ CH ₃	51.0%	white solid 153-155	61.50 (61.69) 5.33 (5.44) 10.74 (10.79)
17	cyclopentyl	43.2%	white solid 185-187	62.09 (62.01) 5.00 (4.94) 10.80 (10.85)

Synthesis of the Target Compound 24. Compound 24b (0.32 g, 1 mmol) was dissolved in a mixture of tetrahydrofuran (6 mL) and diethyl ether (25 mL), and then a solution of chlorotrimethylsilane (0.13 g, 1.2 mmol) in diethyl ether (5 mL) was added dropwise. The mixture was stirred overnight at room temperature. Then triethylamine (0.12 g, 1.2 mmol) was added and filtered. The solvent was evaporated off under reduced pressure, and the product was purified by flash column chromatography on silica gel using a mixture of petroleum ether (60-90 °C) and ethyl acetate (v/v = 3:1) as the eluent to give compound 24 as a white solid (0.18 g, 47.4%): mp, 182-184 °C; ¹H NMR (400 MHz, CDCl₃), δ 10.53 (br s, 1H,CONHCO), 8.77 (br s, 1H, CONHAr), 8.16 (s, 1H, CH=N), 7.47-7.59 (m, 5H, Ar-H), 7.06 (t, 2H, ${}^{3}J_{\text{HH}} = 8.5$ Hz, Ar-H), 0.29 (s, 9H, Si (CH₃)₃). HRMS (ESI) m/z calcd for C₁₈H₁₉F₂N₃O₃Si (M + H)⁺ 392.1237, found 392.1246.

Biological Assay. All bioassays were performed on representative test organisms reared in the laboratory. The bioassay was repeated at 25 ± 1 °C according to statistical requirements. Assessments were made on a dead/alive basis, and mortality rates were corrected using Abbott's formula (19). Evaluations are based on a percentage scale of 0–100 in which 0 = no activity and 100 = total kill. Larvicidal Activity against Oriental Armyworm (Mythimna separata). The larvicidal activities of the target compounds 1-24 against oriental armyworm were evaluated by foliar application using the reported procedure (20–22). For the foliar armyworm tests, individual corn leaves were placed on moistened pieces of filter paper in Petri dishes. The leaves were then sprayed with the test solution and allowed to dry. The dishes were infested with 10 fourth-instar oriental armyworm larvae. Percentage mortalities were evaluated 4 days after treatment. Each treatment was performed three times. For comparative purposes, Flucycloxuron was tested under the same condition.

Larvicidal Activity against Mosquito (Culex pipiens pallens). The larvicidal activities of the target compounds 1-24 against mosquito were evaluated by using the reported procedure (23). The compounds 1-24 were prepared to different concentrations by dissolving 1-24 in acetone and adding distilled water. Then 20 fourth-instar mosquito larvae were put into 10 mL of the test solution and raised for 8 days. The results were expressed by death percentage. For comparative purposes, Flucycloxuron was tested under the same condition.

Plant Growth Regulatory Activity Assay. The plant growth regulatory activities of the target compounds 1-4, 6-8, 11, 12, and 14-17 were evaluated using previously reported

Novel Benzoylphenylureas Containing Oxime Ether Group

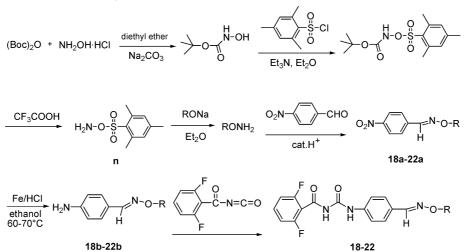

procedures (24-26). Seeds of cucumber were incubated at 26 °C in the dark for 72 h, and 10 cotyledons were cut off. *N*,*N*-Dimethylformamide solutions of the test compounds were prepared at concentrations of 10 mg/L. The experiments were conducted in sterile Petri dishes (6 cm diameter) lined with a sheet of filter paper. To each dish was added 0.3 mL of the test solution, and the solvent was evaporated before

Table 3. ¹H NMR of the Target Compounds 2-17

addition of 3 mL of water, followed by the above cotyledons. Assays were carried out at 26 $^{\circ}$ C in the dark in an incubator for 5 days. The number of roots was counted, and the growth regulatory activities were evaluated. Controls were performed under the same conditions, using only water. Each treatment was performed in triplicate.

compd.	¹ H NMR δ (ppm)
2	¹ H NMR (300 MHz, CDCl ₃): 10.50 (brs, 1H, CONHCO), 8.43 (brs, 1H, CONHAr), 8.11 (s, 1H, CH=N),
	7.29-7.56 (m, 9H, Ar), 7.06 (t, 2H, ${}^{3}J_{HH} = 8.5$ Hz, Ar-H), 5.21 (s, 2H, CH ₂ Ph).
3	¹ H NMR (300 MHz, CDCl ₃): 10.53 (brs, 1H, CONHCO), 8.92 (brs, 1H, CONHAr), 8.04 (s, 1H, CH=N)
	7.50-7.59 (m, 5H, Ar), 7.06 (t, 2H, ${}^{3}J_{\text{HH}} = 8.4 \text{ Hz}$, Ar-H), 3.98 (s, 3H, OCH ₃).
4	¹ H NMR (300 MHz, CDCl ₃): 10.52 (brs, 1H, CONHCO), 8.93 (brs, 1H, CONHAr), 8.05 (s, 1H, CH=N)
	7.50-7.59 (m, 5H, Ar), 7.06 (t, 2H, ${}^{3}J_{HH} = 8.4$ Hz, Ar-H), 4.23 (q, 2H, ${}^{3}J_{HH} = 7.1$ Hz, OCH ₂ CH ₃), 1.33 (t 3H, ${}^{3}J_{HH} = 7.1$ Hz, CH ₃ CH ₂ O).
5	¹ H NMR (300 MHz, CDCl ₃): 10.51 (brs, 1H, CONHCO), 9.08 (brs, 1H, CONHAr), 8.05 (s, 1H, CH=N)
5	7.47-7.58 (m, 5H, Ar), 7.05 (t, 2H, ${}^{3}J_{HH} = 8.3$ Hz, Ar-H), 4.13 (t, 2H, ${}^{3}J_{HH} = 6.7$ Hz, OCH ₂ CH ₂), 1.69-1.8
	(m, 2H, $CH_2CH_2CH_3$), 0.99 (t, 3H, ${}^{3}J_{HH} = 7.4$ Hz, CH_2CH_3).
6	¹ H NMR (300 MHz, CDCl ₃): 10.51 (brs, 1H, CONHCO), 8.88 (brs, 1H, CONHAr), 8.11 (s, 1H, CH=N)
	7.48-7.58 (m, 5H, Ar), 7.05 (t, 2H, ${}^{3}J_{\text{HH}} = 8.4$ Hz, Ar-H), 4.33 (t, 2H, ${}^{3}J_{\text{HH}} = 4.7$ Hz, OCH ₂ CH ₂), 3.70 (t 3H, ${}^{3}J_{\text{HH}} = 4.7$ Hz, CH ₂ CH ₂ Cl).
7	¹ H NMR (300 MHz, CDCl ₃): 10.55 (brs, 1H, CONHCO), 9.40 (brs, 1H, CONHAr), 8.11 (s, 1H, CH=N)
	7.46-7.58 (m, 5H, Ar), 7.04 (t, 2H, ${}^{3}J_{HH} = 8.3$ Hz, Ar-H), 4.70 (dt, 2H, ${}^{3}J_{HH} = 4.1$ Hz, ${}^{2}J_{HF} = 47.6$ Hz CH ₂ CH ₂ F), 4.41 (dt, 2H, ${}^{3}J_{HH} = 4.1$ Hz, ${}^{3}J_{HF} = 28.5$ Hz, OCH ₂ CH ₂ F).
8	¹ H NMR (300 MHz, CDCl ₃): 10.53 (brs, 1H, CONHCO), 8.24 (brs, 1H, CONHAr), 8.09 (s, 1H, CH=N)
-	7.47-7.58 (m, 5H, Ar), 7.05 (t, 2H, ${}^{3}J_{HH} = 8.3$ Hz, Ar-H), 6.00-6.13 (m, 1H, CH ₂ CH=CH ₂), 5.36 (dq, 1H)
	${}^{3}J_{\text{HH}} = 17.3 \text{ Hz}, \text{CH}_2\text{CH}=CH_2$), 5.26 (dq, 1H, ${}^{3}J_{\text{HH}} = 10.4 \text{ Hz}, \text{CH}_2\text{CH}=CH_2$), 4.68 (dt, 2H, ${}^{3}J_{\text{HH}} = 5.8 \text{ Hz}$
	$CH_2CH=CH_2).$
9	¹ H NMR (300 MHz, CDCl ₃): 10.52 (brs, 1H, CONHCO), 8.52 (brs, 1H, CONHAr), 8.10 (s, 1H, CH=N)
,	7.49-7.60 (m, 5H, Ar), 7.06 (t, 2H, ${}^{3}J_{HH} = 8.4$ Hz, Ar-H), 4.77 (d, 2H, ${}^{4}J_{HH} = 2.4$ Hz, OCH ₂), 2.50 (t, H
	${}^{4}J_{\text{HH}} = 2.4 \text{ Hz,CH}$.
10	¹ H NMR (400 MHz, CDCl ₃): 10.53 (brs, 1H, CONHCO), 8.58 (brs, 1H, CONHAr), 8.17 (s, 1H, CH=N)
	7.50-7.58 (m, 5H, Ar), 7.06 (t, 2H, ${}^{3}J_{HH} = 8.4$ Hz, Ar-H), 4.73 (s, 2H, OCH ₂ CO ₂ CH ₃), 3.80 (s, 3H
	CO_2CH_3).
11	¹ H NMR (300 MHz, CDCl ₃): 10.50 (brs, 1H, CONHCO), 8.58 (brs, 1H, CONHAr), 8.11 (s, 1H, CH=N)
	7.48-7.58 (m, 5H, Ar), 7.06 (t, 2H, ${}^{3}J_{HH} = 8.4$ Hz, Ar-H), 4.33 (t, 2H, ${}^{3}J_{HH} = 4.7$ Hz, OCH ₂ CH ₂), 3.70 (t
	2H, ${}^{3}J_{\text{HH}} = 4.7 \text{ Hz}$, OCH ₂ CH ₂), 3.43 (s, 3H, CH ₂ OCH ₃).
12	¹ H NMR (300 MHz, CDCl ₃): 10.52 (brs, 1H, CONHCO), 8.85 (brs, 1H, CONHAr), 8.05 (s, 1H, CH=N)
	7.50-7.59 (m, 5H, Ar), 7.06 (t, 2H, ${}^{3}J_{HH} = 8.4$ Hz, Ar-H), 4.18 (t, 2H, ${}^{3}J_{HH} = 6.7$ Hz, OCH ₂ CH ₂), 1.66-1.75
	(m, 2H,OCH ₂ CH ₂), 1.38-1.50 (m, 2H, CH ₂ CH ₂ CH ₃), 0.97 (t, 3H, ${}^{3}J_{HH} = 7.3$ Hz, CH ₂ CH ₂ CH ₃).
13	¹ H NMR (400 MHz, CDCl ₃): 10.53 (brs, 1H, CONHCO), 9.24 (brs, 1H, CONHAr), 8.03 (s, 1H, CH=N)
	7.46-7.57 (m, 5H, Ar), 7.05 (t, 2H, ${}^{3}J_{HH} = 8.5$ Hz, Ar-H), 4.20-4.28 (m, 1H, OCH (CH ₃)), 1.54-1.80 (m
	2H, OCH (CH ₃) <i>CH</i> ₂), 1.28 (d, 3H, ${}^{3}J_{HH} = 6.3$ Hz, OCH (<i>CH</i> ₃)), 0.96 (t, 3H, ${}^{3}J_{HH} = 7.5$ Hz, CH ₂ <i>CH</i> ₃).
14	¹ H NMR (300 MHz, CDCl ₃): 10.51 (brs, 1H, CONHCO), 8.87 (brs, 1H, CONHAr), 8.03 (s, 1H, CH=N)
	7.49-7.56 (m, 5H, Ar), 7.06 (t, 2H, ${}^{3}J_{HH}$ = 8.4 Hz, Ar-H), 4.26-4.35 (m, 1H, OCH (CH ₃)CH ₂), 1.62-1.75 (m, 2H, 2H) (CH ₃)CH ₂), 1.62-1.75 (m, 2H) (CH ₃)CH ₃), 1.62-1.75 (m, 2H) (CH
	(m, 2H, OCH (CH ₃) CH_2 CH ₂), 1.35-1.51 (m, 2H, CH ₂ CH_2 CH ₂), 1.30 (d, 3H, ${}^{3}J_{HH}$ = 6.3 Hz, OCH
	(CH_3) CH ₂), 0.96 (t, 3H, ³ J _{HH} = 7.5 Hz, CH ₂ CH ₃).
15	¹ H NMR (300 MHz, CDCl ₃): 10.52 (brs, 1H, CONHCO), 8.80 (brs, 1H, CONHAr), 8.07 (s, 1H, CH=N)
	7.49-7.59 (m, 5H, Ar), 7.06 (t, 2H, ${}^{3}J_{HH} = 8.4$ Hz, Ar-H), 3.94 (d, 2H, ${}^{3}J_{HH} = 6.8$ Hz, OCH ₂), 1.99-2.13 (m
	1H, CH ₂ <i>CH</i> (CH ₃) ₂), 0.95 (d, 6H, ${}^{3}J_{HH} = 6.7$ Hz, CH (<i>CH</i> ₃) ₂).
16	¹ H NMR (300 MHz, CDCl ₃): 10.52 (brs, 1H, CONHCO), 9.12 (brs, 1H, CONHAr), 8.04 (s, 1H, CH=N)
	7.47-7.58 (m, 5H, Ar), 7.04 (t, 2H, ${}^{3}J_{HH}$ = 8.4 Hz, Ar-H), 4.16 (t, 2H, ${}^{3}J_{HH}$ = 6.7 Hz OCH ₂), 1.68-1.75 (m
	2H, OCH ₂ <i>CH</i> ₂), 1.37-1.41 (m, 4H, OCH ₂ (<i>CH</i> ₂) ₂), 0.93 (t, 3H, ${}^{3}J_{HH} = 6.8$ Hz).
17	¹ H NMR (300 MHz, CDCl ₃): 10.52 (brs, 1H, CONHCO), 9.04 (brs, 1H, CONHAr), 8.01 (s, 1H, CH=N)

7.48-7.58 (m, 5H, Ar), 7.04 (t, 2H, ${}^{3}J_{HH} = 8.4$ Hz, Ar-H), 4.76-4.82 (m, 1H), 1.58-1.88 (m, 8H).

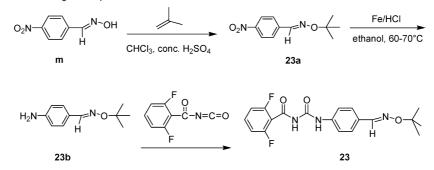
RESULTS AND DISCUSSION

-

p-Nitrobenzaldehyde was condensed with hydroxylamine hydrochloride to give intermediate \mathbf{m} according to the reported procedure (27), and subsequent reaction with R–X or TsOR yielded

Synthesis. The target compounds 1-17 were synthesized from
(*E*)-4-nitrobenzaldehyde oxime (m) as shown in Scheme 1.chlorid
(27), 4Table 4. Physical Properties and ¹H NMR Data of Intermediates 19a-22a and 19b-22b19b-22b

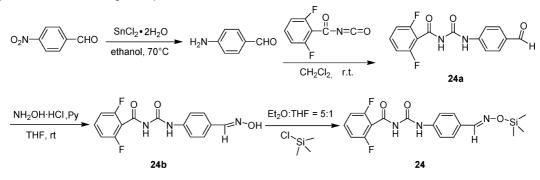
compd.	R	yield	m.p. (°C)	¹ H NMR δ (ppm)
19a	/_℃/	38.0%	pale yellow solid	¹ H NMR (400 MHz, CDCl ₃): 8.21 (d, 2H, ${}^{3}J_{HH} = 8.5$ Hz,
			86-88	Ar-H), 8.10 (s, 1H, CH=N), 7.73 (d, 2H, ${}^{3}J_{HH} = 8.5$ Hz,
				Ar-H), 4.08 (dt, 1H, J = 4.0, 10.6 Hz), 2.03-2.20 (m, 2H),
				1.68-1.71 (m, 2H), 1.41-1.50 (m, 2H), 1.04-1.12 (m, 3H),
				0.94 (d, 3H, ${}^{3}J_{\text{HH}} = 6.5 \text{ Hz}$), 0.91 (d, 3H, ${}^{3}J_{\text{HH}} = 7.0 \text{ Hz}$), 0.83
				(d, 3H, ${}^{3}J_{\rm HH} = 7.0$ Hz).
19b	/_℃	55.6%	orange yellow oil	¹ H NMR (400 MHz, CDCl ₃): 8.10 (s, 1H, CH=N), 7.38 (d,
				2H, ${}^{3}J_{\text{HH}} = 8.3$ Hz, Ar-H), 6.64 (d, 2H, ${}^{3}J_{\text{HH}} = 8.3$ Hz, Ar-H),
				3.95 (dt, $J = 4.3$, 10.9 Hz, 1H), 3.81 (brs, 2H, NH ₂),
				2.11-2.23 (m, 2H), 1.65-1.68 (m, 2H), 1.23-1.48 (m, 2H),
				0.98-1.11 (m, 3H), 0.82-0.93 (m, 9H).
20a	CF_3CH_2	69.0%	pale yellow solid	¹ H NMR (400 MHz, CDCl ₃): 8.25 (d, 2H, ³ J_{HH} = 8.6 Hz,
			76-78	Ar-H), 8.24 (s, 1H, CH=N), 7.77 (d, 2H, ${}^{3}J_{HH} = 8.6$ Hz,
				Ar-H), 4.29 (q, 2H, ${}^{3}J_{\text{HF}} = 8.2 \text{ Hz}, \text{ O}CH_2 \text{ CF}_3$).
20b	CF ₃ CH ₂	45.1%	orange yellow oil	¹ H NMR (400 MHz, CDCl ₃): 8.05 (s, 1H, CH=N), 7.38 (d,
				2H, ${}^{3}J_{\text{HH}} = 8.1$ Hz, Ar-H), 6.64 (d, 2H, ${}^{3}J_{\text{HH}} = 8.1$ Hz, Ar-H),
				4.46 (q, 2H, ${}^{3}J_{\text{HF}} = 8.2 \text{ Hz}$, OCH ₂ CF ₃), 3.89 (brs, 2H, NH ₂).
21 a ^a		28.3%	pale yellow solid	¹ H NMR (400 MHz, CDCl ₃): 8.23 (d, 2H, ³ J_{HH} = 8.5 Hz,
	CH ₂		47-49	Ar-H), 8.13 (s, 1H, CH=N), 7.74d, 2H, ${}^{3}J_{HH} = 8.5$ Hz, Ar-H),
				4.12 (d, 2H, ${}^{3}J_{HH}$ = 7.2 Hz), 2.27-2.38 (m, 1H), 1.77-1.83 (m,
				2H), 1.58-1.64 (m, 2H), 1.24-1.41 (m, 4H).
21b	Г → СН₂	67.3%	orange yellow oil	¹ H NMR (400 MHz, CDCl ₃): 7.98 (s, 1H, CH=N), 7.37 (d,
				2H, ${}^{3}J_{HH} = 8.4$ Hz, Ar-H), 6.64 (d, 2H, ${}^{3}J_{HH} = 8.4$ Hz, Ar-H),
				4.00 (d, 2H, ${}^{3}J_{HH} = 7.2$ Hz), 3.83 (brs, 2H, NH ₂), 2.55-2.33
				(m, 1H), 1.73-1.80 (m, 2H), 1.54-1.63 (m, 4H), 1.22-1.34
				(m, 2H).
$22a^b$)>−сн₂	40%	pale yellow solid	¹ H NMR (400 MHz, CDCl ₃): 8.22 (d, 2H, ${}^{3}J_{HH} = 8.5$ Hz,
			69-71	Ar-H), 8.15 (s, 1H, CH=N), 7.74d, 2H, ${}^{3}J_{HH} = 8.5$ Hz, Ar-H),
				4.04 (d, 2H, ${}^{3}J_{\text{HH}} = 7.2 \text{ Hz}$), 1.17-1.24 (m, 1H), 0.58-0.63 (m,
				2H), 0.32-0.36 (m, 2H).
22b)>−сн₂	67.6%	orange yellow oil	¹ H NMR (400 MHz, CDCl ₃): 8.01 (s, 1H, CH=N), 7.38 (d,
				2H, ${}^{3}J_{HH} = 8.3$ Hz, Ar-H), 6.64 (d, 2H, ${}^{3}J_{HH} = 8.3$ Hz, Ar-H),
				3.94 (d, 2H, ${}^{3}J_{HH} = 7.1$ Hz), 3.83 (brs, 2H, NH ₂), 1.14-1.28
				(m, 1H), 0.55-0.59 (m, 2H), 0.29-0.33 (m, 2H).


Table 5. Physical Properties and Elemental Analyses of the Target Compounds 19-22

compd.	R	yield	m.p. (°C)	Element analysis (%,calc.)		
			1. 1.1	C H N		
19		78.3%	white solid	65.33 (65.63) 6.40 (6.39) 9.27 (9.18)		
	\searrow \land	101010	174-175			
•	OF OH	(7.20)	white solid			
20	20 CF_3CH_2	67.3%	189-190	50.51 (50.88) 3.27 (3.01) 10.65 (10.47)		
	\frown	04.40/	white solid			
21	CH ₂	81.1%	171-173	62.66 (62.84) 5.42 (5.27) 10.65 (10.47)		
			white solid			
22	22 CH ₂	81.3%	185-187	60.91 (61.12) 4.70 (4.59) 11.49 (11.25		

Table 6. ¹H NMR of the Target Compounds 19-22

compd.	¹ H NMR δ (ppm)
19	¹ H NMR (400 MHz, CDCl ₃): 10.49 (brs, 1H, CONHCO), 8.56 (brs, 1H, CONHAr), 8.03 (s, 1H
	CH=N), 7.50-7.59 (m, 5H, Ar), 7.06 (t, 2H, ${}^{3}J_{HH}$ = 8.7 Hz, Ar-H), 4.01 (dt, 1H, J = 4.1, 11.1 Hz)
	2.11-2.25 (m, 2H), 1.67-1.70 (m, 2H), 1.39-1.50 (m, 2H), 0.99-1.13 (m, 3H), 0.93 (t, 6H, ${}^{3}J_{\rm HH} = 7.73$
	Hz), 0.84 (d, 3H, ${}^{3}J_{\text{HH}} = 6.9$ Hz).
20	¹ H NMR (400 MHz, CDCl ₃): 10.57 (brs, 1H, CONHCO), 8.88 (brs, 1H, CONHAr), 8.14 (s, 1H
	CH=N), 7.51-7.58 (m, 5H, Ar), 7.06 (t, 2H, ${}^{3}J_{HH} = 8.5$ Hz, Ar-H), 4.52 (q, 2H, ${}^{3}J_{HF} = 8.5$ Hz, OCH
	CF ₃).
21	¹ H NMR (400 MHz, CDCl ₃): 10.51 (brs, 1H, CONHCO), 8.79 (brs, 1H, CONHAr), 8.06 (s, 1H
	CH=N), 7.49-7.59 (m, 5H, Ar), 7.06 (t, 2H, ${}^{3}J_{\text{HH}} = 8.5$ Hz, Ar-H), 4.06 (d, 2H, ${}^{3}J_{\text{HH}} = 7.2$ Hz), 2.24-2.3
	(m, 1H), 1.74-1.84 (m, 2H), 1.57-1.64 (m, 4H), 1.25-1.38 (m, 2H).
22	¹ H NMR (400 MHz, CDCl ₃): 10.51 (brs, 1H, CONHCO), 8.93 (brs, 1H, CONHAr), 8.08 (s, 1H
	CH=N), 7.49-7.55 (m, 5H, Ar), 7.05 (t, 2H, ${}^{3}J_{HH}$ = 8.6 Hz, Ar-H), 3.99 (d, 2H, ${}^{3}J_{HH}$ = 7.1 Hz), 1.16-1.2
	(m, 1H), 0.57-0.61 (m, 2H), 0.31-0.35 (m, 2H).


Scheme 4. Synthetic Route for the Target Compound 23

compounds 1a-17a; further reduction using iron powder as a reductant provided compounds 1b-17b (28), which were combined with 2,6-difluorobenzoyl isocyanate to afford compounds 1-17.

To obtain the target compound **22**, we attempted to synthesize intermediate (*E*)-O-(1,1,1-trifluoroethyl)-4-nitrobenzaldehyde oxime (**22a**) from 4-nitrobenzaldehyde oxime and 2,2,2-trifluoroethyl 4-methylbenzenesulfonate according to **Scheme 1**

Scheme 5. Synthetic Route for the Target Compound 24

11386 J. Agric. Food Chem., Vol. 56, No. 23, 2008

Table 7. Larvicidal Activities against Oriental Armyworm and Mosquito of Compounds 1-24 and Flucycloxuron

compd.	R	Toxicities against C			ainst Mosquito
iompu.	K	concentration (mg L ⁻¹)	larvicidal activity (%)	concentration (mg L ⁻¹)	larvicidal activit (%)
		2.5	100	1	100
		1.0	100	0.5	100
		0.5	50	0.25	100
		0.25	0	0.1	100
				0.05	100
1	CH(CH ₃) ₂			0.025	100
				0.01	100
				0.005	75
				0.0025	15
				0.001	0
		200	40	1	100
		100	30	0.5	100
2	PhCH ₂	50	10	0.25	20
		25	0	0.1	10
		100	90	1	100
		50	40	0.5	100
		25	40	0.25	100
2	CH	20	0	0.23	100
3	CH ₃			0.05	100
				0.025	10 0
		100	100	0.01	
		100	100	1	100
		50	100	0.5	100
		25	75	0.25	100
4	$\mathrm{CH}_3\mathrm{CH}_2$	10	10	0.1	100
		5	0	0.05	10
				0.025	10
		100		0.01	0
		100	80	1	100
		50	70	0.5	100
5	CH ₃ CH ₂ CH ₂	25	20	0.25	100
		2.5	0	0.1	100
				0.05	50
				0.025	0
6	CH ₂ CH ₂ Cl	50	100	1	100
		10	100	0.5	100
		5	75	0.25	100
		2.5	55	0.1	90
		1.0	0	0.05	90
		1.0	Ū		
				0.025	20
				0.01	0
		50	90	1	100
		25	90	0.5	100
7	CH ₂ CH ₂ F	10	20	0.25	100
	£ '2"	2.5	0	0.1	60
				0.05	10
				0.025	0
		100	90	1	100
		50	66.7	0.5	100
			10		100
0		25	10	0.25	100
8	CH ₂ CH=CH ₂	25 10	0	0.25	100 90

Table 7. Continued

compd.	R	-	Oriental armyworm		ainst Mosquito
compu.	K	concentration (mg L ⁻¹)	larvicidal activity (%)	concentration (mg L ⁻¹)	larvicidal activit
		50	100	1	100
		25	75	0.5	100
		10	55	0.25	100
9	H₂C ─── H	2.5	10	0.1	100
		1.0	0	0.05	40
				0.025	10
				0.01	0
		200	90	1	100
		100	80	0.5	100
10	CH ₂ CO ₂ CH ₃	50	56.7	0.25	80
		25	30	0.1	0
		10	10		
		2.5	0		100
		200	40	1	100
11	CH ₂ CH ₂ OCH ₃	100	10	0.5	0
		50	0		100
		200	50	1	100
		100	40	0.5	100
12	CH ₂ CH ₂ CH ₂ CH ₃	50	0	0.25	100
				0.1 0.05	100 10
				0.03	0
13	CH(CH ₃)CH ₂ CH ₃	25	100	0.1	100
15	CII(CII3)CII2CII3	10	80	0.05	100
		5	50	0.025	100
		2.5	30	0.023	40
		2.5 1.0	0	0.005	40 20
		1.0	0	0.0025	20 10
		50	80	0.1	100
		25	70	0.05	100
		10	20	0.025	100
14	$CH(CH_3)(CH_2)_2CH_3$	2.5	0	0.01	40
				0.005	20
				0.0025	10
		100	100	1	100
		50	80	0.5	100
		25	30	0.25	100
15	CH CH(CH)	2.5	0	0.1	100
15	$CH_2CH(CH_3)_2$	2.5	v	0.05	10
				0.025	10
				0.01	0
		50	90	2	100
		25	20	1	100
	ATT (2000)	10	0	0.5	90
16	$CH_2(CH_2)_3CH_3$			0.25	80
				0.1	15
				0.05	0
		200	70	1	100
		100	20	0.5	100
		50	0	0.25	100
17	cyclopentyl			0.1	100
				0.05	10
				0.025	0

Table 7. Continued

i D		Toxicities against	Oriental armyworm	Toxicities ag	ainst Mosquito
compd.	R	concentration (mg L ⁻¹)	larvicidal activity (%)	concentration (mg L ⁻¹)	larvicidal activity (%)
		25	100	0.1	100
		10	100	0.05	100
		5	100	0.025	100
		2.5	100	0.025	100
18	CH(CF ₃) ₂	1	90	0.005	100
10		0.5	40	0.0025	100
		0.25	0	0.0025	90
		0.23	0		
				0.0005	60 20
				0.00025	30
19		25	100	0.01	100
		10	100	0.005	100
		5	100	0.0025	100
		2.5	100	0.001	80
		1	80	0.0005	10
		0.5	40		
		0.25	10		
		0.125	0		
		25	100	0.1	100
		10	100	0.05	100
		5	100	0.025	100
20	CH ₂ CHF ₃	2.5	100	0.01	100
		1.0	90	0.005	100
		0.5	60	0.0025	70
		0.25	0	0.001	10
		200	80	2	100
		100	40	1	100
21	CH2	50	10	0.5	10
21			10		10
		25		0.25	
		10	0	0.1	10
		25	100	0.01	100
	N	10	100	0.005	100
22	CH ₂	5	100	0.0025	60
		2.5	90	0.001	0
		1.0	0		
		25	100	0.1	100
		10	100	0.05	100
		5 2.5	100 100	0.025 0.01	100 100
23	$C(CH_3)_3$	1.0	100	0.005	100
		0.5	85	0.0025	90
		0.25	0	0.001 0.0005	70 20
		200	100	2	100
24	<u>()(OIL)</u>	100	60	1	100
24	Si(CH ₃) ₃	50	0	0.5	100
	Fo o	200	0	0.25	0 100
24a	О́́́Ц № р-О-сно	100	Ő	1	80
	F	200	00	0.5	0
		200	80	2 1	100 100
24b	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			0.5	60
240				0.25	40
				0.1	10
F	lucycloxuron	10	95 90	0.1	100
		5 2.5	90 50	0.05 0.025	100 15
		2.5 1.0	50 10	0.025	15 0
		1.0		0.01	v

Table 8. Plant Growth Regulatory Activities of Compounds 1-4, 6-8, 11, 12, and 14-17

compd.	plant growth regulatory activities on the radicle growth of cucumber at concentration of 10 mg L^{-1} (%)	rank [*]
1	55.0	+
2	60.0	+
3	30.0	-
4	0	-
6	110	++
7	110	++
8	120	++
11	30.0	-
12	50.0	+
14	45.0	-
15	45.0	-
16	50.0	-
17	85.0	+

*Symbols: +++, ≥150%; ++, ≥100%; +, ≥50%; -, <50%.

Table 9. Selected Bond Lengths and Torsion Angles of Compound 1a

elected bond	bond length (Å)	selected torsion angles	torsion angles (°)
C(4)-C(7)	1.470(3)	C(5)-C(4)-C(7)-N(2)	-178.28(14)
N(1)-C(1)	1.470(3)	C(3)-C(4)-C(7)-N(2)	2.0(2)
N(1)-O(1)	1.229(2)	C(7)-N(2)-O(3)-C(8)	-173.07(12)
N(2)-C(7)	1.276(2)	O(1)-N(1)-C(1)-C(6)	11.6(2)
N(2)-O(3)	1.408(2)	O(2)-N(1)-C(1)-C(2)	12.4(2)
O(3)-C(8)	1.460(2)	N(2)-O(3)-C(8)-C(9)	62.85(17)
C(8)-C(9)	1.514(3)	O(3)-N(2)-C(7)-C(4)	-179.81(12)

(29). Unfortunately, we did not get the desired compound **22a**. Then the solvent was changed to DMF and the reaction was stirred at 70–80 °C for 12 h. Surprisingly, compound **22a** was obtained as byproduct, whereas the product was 4-hydroxybenzonitrile, which was confirmed by ¹H NMR ((400 MHz, CDCl₃), δ 6.92 (d, J = 8.8 Hz, 2 H), 7.56 (d, J = 8.8 Hz, 2 H), 6.17 (br s, 1H)) and GC-MS (m/z M⁺ = 119) (30). The possible mechanism, which was reported by Knudsen et al. in 1975, is shown in **Scheme 2** (31).

The target compounds 18-22 were synthesized from *O*-(mesitylsulfonyl)hydroxylamine (n) as shown in Scheme 3. The powerful aminating reagent n was prepared according to the method of the literature and preserved at -20 °C (*32, 33*). The reagent n was treated with RONa to provide *O*-alkylhydroxylamines, which were used without further purification and reacted with *p*-nitrobenzaldehyde to afford compounds 18a-22a (*34*). Then reduction of compounds 18a-22a using iron powder as a reductant provided compounds 18b-22b, which were combined with 2,6-difluorobenzoyl isocyanate to afford compounds 18-22.

The target compound 23 was synthesized from (*E*)-4nitrobenzaldehyde oxime (m) as shown in Scheme 4. Compound m was reacted with newly prepared isobutylene (35) using concentrated H_2SO_4 as a catalyst to afford 23a, and subsequent reduction using iron powder as a reductant provided compound 23b, which was combined with 2,6-difluorobenzoyl isocyanate to afford compound 23.

The target compound 24 was synthesized from p-nitrobenzaldehyde as shown in Scheme 5. The reduction of p-nitrobenzaldehyde provided p-aminobenzaldehyde according to reported procedure (36), and subsequent combination with 2,6-difluorobenzoyl isocyanate afforded compound **24a**; further reaction with hydroxylamine hydrochloride gave compound **24b**. However, compound **24** was not obtained in dry tetrahydrofuran from **24b** and chlorotrimethylsilane. Interestingly, the mixture of diethyl ether and tetrahydrofuran (v/v = 1:5) was used as solvent to give compound **24** in good yield.

Structure. (E)-O-Isopropyl-4-nitrobenzaldehyde oxime (1a) was confirmed by ¹H NMR and melting point (37). Pejković-Tadić et al. reported that oximyl hydrogen chemical shifts of various substituted benzaldoximes were dramatically different for the Eand Z isomers, with all E isomers having protons with $\delta_{\rm H} > 8$, whereas the Z isomers had $\delta_{\rm H} < 7.5$ (38). This distinction enabled us to assign the configuration of compound 1a as the E configuration. Fortunately, compound 1a was recrystallized from a mixture of ethyl acetate and petroleum ether (60-90 °C) to give a colorless crystal suitable for X-ray single-crystal diffraction. The crystal belongs to triclinic, space group $P\overline{1}$ with the following crystallographic parameters: a = 11.344(10) Å, b = 13.010(8) Å, c =13.154(4) Å, $\alpha = 60.79(10)^\circ$, $\beta = 70.08(10)^\circ$, $\gamma = 76.65(10)^\circ$, μ $= 0.098, V = 1588.1(18) \text{ Å}^3, z = 4, Dx = 1.304 \text{ mg/m}^3, F(000)$ = 658, T = 113(2) K, $1.80^{\circ} \le \theta \le 24.87^{\circ}$, and the final R factor $R_1 = 0.0496$, $\omega R_2 = 0.1233$. It could be seen from the X-ray singlecrystal figures (Figures 1 and 2) that p-nitrophenyl and O-isopropyl are of the opposite of the C=N double bond. Hence, compound 1a was of the E configuration. Its subsequent reaction gave the E isomer of compound 1. Selected bond lengths and torsion angles are listed in Table 9. The bond length of N(2)-O(3) (1.408 Å) is shorter than normal N–O (1.46 Å), the bond length of N(2)–C(7) is shorter than normal C=N (1.34 Å), the bond length of C(4)-C(7) (1.470 Å) and N(1)-C(1) (1.470 Å) is shorter than

typical C—O (1.51 Å), which suggest that the electron density is localized among the nitro group, phenyl, and C=N—O. We can conclude that the nitro group, phenyl, and C=N double bond are close to planar from the selected torsion angles of O(3)–N(2)–C(7)–C(4), C(5)–C(4)–C(7)–N(2), and O(1)–N(1)–C(1)–C(6) in **Table 9**.

Structure-Activity Relationship (SAR). Larvicidal Activities against Oriental Armyworm (Mythimna separata). Table 7 shows the larvicidal activities of the target compounds 1-24 and Flucycloxuron against oriental armyworm and mosquito. The results indicate that most compounds have excellent larvicidal activities against oriental armyworm and that some compounds exhibit higher larvicidal activities than Flucycloxuron. For example, the larvicidal activities of compounds 1, 18, 19, 20, and 23 against oriental armyworm at 1.0 mg L^{-1} were 100, 90, 80, 90, and 100%, respectively, as compared with 10% mortality of Flucycloxuron at the same concentration. However, intermediates 24a and 24b showed no or poor larvicidal activities against oriental armyworm and mosquito, which suggest that the O-alkyl oxime ether group would have great influence on the activities. The result in Table 7 shows that there exist steric effects and electric effects on the larvicidal activities. The activity becomes higher with the size of O-alkyl of compounds increasing, for example, compounds 23 and 1 exhibit higher larvicidal activities against oriental armyworm than compounds 5, 12, 13, and 15. The larvicidal activities of compounds 11, 10, 9, 8, 7, and 23 against oriental armyworm increase subsequently with the electron density of the C atom connecting to the O atom in the O-alkyl chain decreasing. Although the electron density of the C atom connecting to the O atom in the O-alkyl chain of compound 18 is higher than that of compound 1, compounds 18 and 1 displayed similar larvicidal activities against oriental armyworm. Compound 23 displayed excellent larvicidal activity against oriental armyworm, whereas compound 24 exibited poor larvicidal activity against oriental armyworm when the C atom connecting to the O atom in the O-alkyl chain was replaced by a Si atom. The larvicidal activities of several commercial benzoylphenylureas against oriental armyworm were tested under the same condition, and the results have been reported (39). The LC₅₀ values of Chlorfluazuron, Teflubenzuron, Dichlorbenzuron, Chlorbenzuron, Flucycloxuron, and Hexaflumuron were 1.03, 1.14, 1.82, 2.29, 2.44, and 4.70 mg L^{-1} , respectively. From **Table** 7, it can be seen that the LC₅₀ of compound 1 is 0.5 mg L⁻¹; therefore, the index of relative toxicity is 940-fold compared with that of Hexaflumuron.

Larvicidal Activities against Mosquito (Culex pipiens pallens). It is seen from **Table 7** that the target compounds 1-24 displayed similar structure-activity relationships (SAR) against mosquito. In particular, the larvicidal activities of compounds **18**, **19**, **20**, and **23** against mosquito were 10 times better than that of Flucycloxuron. Compound **18** exhibited the best larvicidal activity against mosquito, which had 90% mortality even at 0.001 mg L⁻¹.

Plant Growth Regulatory Activity. The plant growth regulatory activities of the target compounds 1-4, 6-8, 11, 12, and 14-17 were evaluated, and their effects on the radicle growth of cucumber are shown in **Table 89**. Interestingly, some compounds showed good stimulation of radicle growth of cucumber, for example, compounds 6, 7, and 8 gave 110, 110, and 120% promotion, respectively.

In summary, a series of novel benzoylphenylureas containing an oxime ether group were designed and synthesized and their structures characterized by ¹H NMR, elemental analysis (or HRMS), and single-crystal X-ray diffraction analysis. The larvicidal activities against oriental armyworm and mosquito and plant growth regulatory activities of these benzoylphenyureas were evaluated. The results of larvicidal activities showed that most compounds exhibited excellent larvicidal activities against oriental armyworm and mosquito. The structure-activity relationship indicated that a bigger size of O-alkyl of the target compounds increases the larvicidal activities. In particular, the larvicidal activities against oriental armyworm of compounds 1 and 23 were 5-10 times better than that of Flucycloxuron. Compound 18 exhibited excellent larvicidal activity against mosquito, which had 90% mortality even at 0.001 mg L^{-1} . Surprisingly, some of these benzoylphenylureas exhibited good plant growth regulatory activities.

LITERATURE CITED

- Oberlander, H.; Silhacek, D. L. New perspectives on the mode of action of benzoylphenyl urea insecticides. In *Insecticides with Novel Modes of Action: Mechanism and Application*, 1st ed.; Ishaaya, I., Degheele, D., Eds.; Springer-Verlag: Berlin, Germany, 1998; pp 92–105.
- (2) Oberlander, H.; Silhacek, D. L. Mode of action of insect growth regulators in Lepidopteran tissue culture. *Pestic. Sci.* 1998, 54, 300–302.
- (3) http://www.epa.gov/greenchemistry/pubs/pgcc/winners/ dgca00.html.
- (4) Xu, X. Y.; Qian, X. H.; Li, Z.; Huang, Q. C.; Chen, G. Synthesis and insecticidal activity of new substituted *N*-aryl-*N*'-benzoylthiourea compounds. *J. Fluorine Chem.* **2003**, *121*, 51–54.
- (5) Qian, X. H. Quantitative studies on structure-activity relationship of sulfonylurea and benzoylphenylurea type pesticides and their substituents' bioisosterism using synthons' activity contribution. *J. Agric. Food Chem.* **1999**, *47*, 4415–4418.
- (6) Yang, X. L.; Wang, D. Q.; Chen, F. H.; Zhang, Z. N. The synthesis and larvicidal activity of *N*-aroyl-*N'*-(5-aryl-2-furoyl)ureas. *Pestic. Sci.* **1999**, *52*, 282–286.
- (7) Li, X. H.; Ling, Y.; Yang, X. L. Synthesis of novel benzoyl ureas containing thiadiazole and their insecticidal activity. *Huaxue Tongbao* 2003, 66 (5), 333–336.
- (8) Kubato, S.; Shono, Y.; Matsunaga, T.; Tsunoda, K. Laboratory evaluation of bistrifluron, a benzoylphenylurea compound, as a bait toxicant against *Coptotermes formosanus* (Isoptera: Rhinotermitidae). J. Econ. Entomol. 2006, 99, 1363–1368.
- (9) Chen, L.; Ou, X. M.; Mao, C. H.; Shang, J.; Huang, R. Q.; Bi, F. C.; Wang, Q. M. Synthesis and bioassay evaluation of 1-(4substitutedideneaminooxymethyl)-phenyl-3-(2,6-difluorobenzoyl) ureas. *Bioorg. Med. Chem.* **2007**, 3678–3683.
- (10) Yoon, C.; Yang, J. O.; Kang, S. H.; Kim, G. H. Insecticidal properties of bistrifluron against sycamore lace bug, *Corythucha ciliata* (Hemiptera: Tingidae). *J. Pestic. Sci.* **2008**, *33*, 44–50.
- (11) Brouwer, M. S.; Grosscurt, A. C. Benzoylurea compounds, and pesticidal and pharmaceutical compositionscomprising same. U.S. Patent 4609676, 1986.
- (12) Lima, L. M. A.; Barreiro, E. J. Bioisosterism: A useful strategy for molecular modification and drug design. *Curr. Med. Chem.* 2005, *12* (1), 23–49.
- (13) Sirrenberg, W.; Hamman, I.; Stendel, W.; Klauke, E. Combating arthropods with *N*-benzoyl-*N'-tert*-alkoxycarbonylphenyl-(thio) ureas. U.S. Patent 4234600, 1980.
- (14) Lange, A.; Kiehs, K.; Adophi, H. N-Benzoyl-N'-phenylureas and their use for insect control. U.S. Patent 4599356, 1986.
- (15) Neubauer, H. J.; Hofmeister, P.; Kuenast, C. (N-Benzoyl-N'halogenoalkoxycarbonylphenyl)-ureas. DE 3722155, 1989.
- (16) Brouwer, M. S.; Grosscurt, A. C.; Van Hes, R. Benzoylurea compounds, and insecticidal and acaricidal compositions comprising same. EP 167197, 1986.

- (17) Nakagawa, Y.; Sotomastu, K.; Irie, K.; Kitahara, K.; Iwamura, H.; Fujita, T. Quantitative structure-activity studies of benzoylphenylurea lavicides III. Effects of substitutes at the benzoyl moiety. *Pestic. Biochem. Physiol.* **1987**, *27*, 143–155.
- (18) Meazza, G.; Rama, F.; Bettarini, F. Synthesis and bioactivity of some fluorine-containing benzoyl arylureas. Part I: Insecticidalacaricidal products in which the aryl group bears a trifluoromethyl-substituted alkyl or alkenyl side chain. *Pestic. Sci.* **1992**, *35*, 137.
- (19) Abbott, W. S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925, 18, 265–267.
- (20) Mao, C. H.; Wang, Q. H.; Huang, R. Q.; Bi, F. C.; Chen, L.; Liu, Y. X.; Shang, J. Synthesis and insecticidal evaluation of novel *N*-oxalyl derivatives of tebufenozide. *J. Agric. Food Chem.* **2004**, *52*, 6737–6741.
- (21) Hsu, A. C.; Murphy, R. A.; Aller, H. E.; Hamp, D. W.; Weinstein, B. Insecticidal N'-substituted-N,N'-disubstitutedhydrazines. U.S. Patent 5117057, 1992.
- (22) Luo, Y. P.; Yang, G. F. Discovery of a new insecticide lead by optimizing a target-diverse scaffold: tetrazolinone derivatives. *Bioorg. Med. Chem.* 2007, 15, 1716–1724.
- (23) Chen, L.; Huang, Z. Q.; Wang, Q. M.; Shang, J.; Huang, R. Q.; Bi, F. C. Insecticidal benzoylphenylurea-S-carbamate: a new propesticide with two effects of both benzoylphenylureas and carbamates. J. Agric. Food Chem. 2007, 55, 2659–2663.
- (24) Liu, Y. X.; Cai, B. L.; Li, Y. H.; Song, H. B.; Huang, R. Q.; Wang, Q. M. Synthesis, crystal structure, and biological activities of 2-cyanoacrylates containing furan or tetrahydrofuran moieties. *J. Agric. Food Chem.* **2007**, *55*, 3011–3017.
- (25) Einhellig, F. A.; Schan, M. K.; Rasmunsen, J. A. Synergistic effects of four cinnamic acid compounds on grain sorghum. *Plant Growth Regul.* **1983**, *1*, 251–258.
- (26) Demuner, A. J.; Barbosa, L. C. A.; Veloso, D. P. New 8-oxabicyclo[3.2.1]oct-6-en-3-one derivatives with plant growth regulatory activity. J. Agric. Food Chem. **1998**, 46, 1173–1176.
- (27) Yang, S. H.; Chang, S. Highly efficient and catalytic conversion of aldoximes to nitriles. *Org. Lett.* **2001**, *3* (26), 4209–4212.
- (28) West, R. W. Reduction of aromatic nitro-compounds. J. Chem. Soc., Trans. **1925**, 127, 494.
- (29) Edgell, W. F.; Parts, L. Synthesis of alkyl and substituted alkyl fluorides from *p*-toluenesulfonic acid esters. The preparation of

p-toluenesulfonic acid esters of lower alcohols. *J. Am. Chem. Soc.* **1955**, 77, 4899.

- (30) Yashuhara, A.; Kasano, A.; Sakamoto, T. An efficient method for the deallylation of allyl aryl ethers using electrochemically generated nickel. *J. Org. Chem.* **1999**, *64*, 4211–4213.
- (31) Knudsen, R. D.; Morrice, A. G.; Snyder, H. R. *p*-Cyanophenol from *p*-nitrobenzaldoxime by an apparent dehydration-displacement, and a suggested modification of the Miller–Loudon conversion of aldehydes to nitriles. *J. Org. Chem.* **1975**, *40*, 2878–2880.
- (32) Dauvergne, J.; Happe, A. M.; Jadhav, V.; Judtice, D.; Matos, M. C.; McCormack, P. J.; Pitts, M. R.; Roberts, S. M.; Singh, S. K.; Snape, T. J.; Whittall, J. Synthesis of 4-azacyclopent-2enones and 5,5-dialkyl-4-azacyclopent-2-enones. *Tetrahedron* 2004, 60, 2559–2567.
- (33) Krause, J. G. *O*-Mesitylenesulfonylhydroxylamine. *Synthesis* **1972**, *3*, 140.
- (34) Hiroshi, I.; Keiichi, I. Oxime compounds, their use, and intermediates for their production. WO 9845254, 1998.
- (35) Deanesly, R. M.; Engs, W. Process for the preparation of substantially pure tertiary olefins. U.S. Patent 2012785, 1992.
- (36) Bellamy, F. D.; Ou, K. Selective reduction of aromatic nitro compounds with stannous chloride in non acids an non aqueous medium. *Tetrahedron Lett.* **1984**, *25* (8), 839–842.
- (37) McCaroll, A. J.; Walton, J. C. Photolytic and radical induced decompositions of *O*-alkyl aldoxime ethers. *J. Chem. Soc.*, *Perkin Trans.* 2 2000, 1868–1875.
- (38) Tadić, I. P.; Jakovljević, M. H.; Nešić, S.; Pascual, C.; Simon, W. Protonenresonanzspektren von oximen aromatischer aldehyde. *Helv. Chim. Acta* **1965**, 1157. 48.
- (39) Bi, F. C.; Chen, L.; Wang, Q. M.; Huang, R. Q. Insecticidal activities of 12 insect growth regulators on oriental armyworms. *Pestic. Sci. Admin.* 2005, *36* (7), 10–11.

Received for review June 21, 2008. Revised manuscript received July 29, 2008. Accepted October 1, 2008. This work was supported by the National Key Project for Basic Research (2003CB114400) and the National Natural Science Foundation of China (20672064).

JF801901H