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Molten zinc chloride has been proposed as a hydrocracking solvent for 
coal slurries and heavy oil fractions [l]. Nitrogen is one of several hetero- 
atoms inevitably introduced with the feedstock and is reduced to NH, under 
the usual operating conditions (420 o C and 180 atm hydrogen overpressure). 
The NH, forms strong complexes, principally ZnCl,(NH,), and ZnCl,NH,, 
with zinc chloride and these steadily accumulate in the melt. As part of a 
programme [2,3] to study the thermodynamics of reactions involving molten 
zinc chloride and its regeneration from contaminated melts, the thermal 
decomposition of ZnCl,(NH,), has been examined by modified entrain- 
ment. 

EXPERIMENTAL 

The modified entrainment method has been described in detail previously 
[4,5]. Briefly, a spherical quartz capsule containing ZnCl,(NH,), was sus- 
pended from one arm of a recording microbalance. The capsule contents are 
in contact with a downward flowing argon stream (ca. 90 cm3 (s.t.p.) mm-‘) 
via a capillary (ca. 20 mm long X 1 mm internal diameter) fused to the top 
of the capsule; this capillary acts as a diffusive resistance and isolates the 
diammine from the irreproducible effects of the flowing carrier gas. The 
experimental parameter is the rate of mass loss cj from the capsule at a 
preset temperature in the range 16%230°C. Temperature was measured 
with a calibrated chromel-alumel thermocouple positioned immediately 
below the capsule. 

Materials 

Diamminedichlorozinc(I1) was prepared by the method of Perchard and 
Novak [6] from ethanolic zinc chloride into which ammonia was passed. 
Zinc was determined by EDTA titration and chloride was determined 
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argentiometrically. Found: Cl = 41.55% Zn = 38.9%; calculated: Cl = 41.6%, 
Zn = 38.4%. The purification of zinc chloride has been described previously 
[2]. The argon was purified by passage through a rare gas purifier (model 
RGP-4, BOC Ltd.). 

RESULTS 

Stoichiometly of the thermal decomposition 

Zinc chloride forms several ammines, ZnCl,(NH,)., where n = 6, 4, 2, 
1.5, 1, 0.5 and 0.167. Their thermal stability and phase interrelationships 
have been well documented [7-121. The monoammine and the diammine 
have been most thoroughly characterized, namely by X-ray diffraction [13], 
vibrational spectroscopy [6], temperature dependence of viscosity and con- 
ductivity [lo], thermogravimetric analysis [7,8], thermomechanical analysis 
[7] and molecular mass in solution [lo]. The starting material in this work, 
ZnCl,(NH,) 2, remains solid on heating to over 190 o C when the presence of 
a liquid phase (ZnCl,NH,, see below) becomes apparent. Quantitative 
analysis [ll] of all of the phases present in a closed system between 220 and 
540” C initially charged with diammine has established the equilibrium 
stoichiometry as ZnCl,(NH,), + ZnCl,NH, + NH,. The product of the 
reaction under investigation, ZnCl,NH,, may be prepared by the controlled 
thermal decomposition [7,10] of the diammine in an open system at 200 o C 
until the proportional mass loss is 10%. The thermal stability of ZnCl,NH, 
has been examined in open systems by Zubakhina [8] and Volova et al. [7] 
who report insignificant decomposition (to ZnCl,(NH,). (where n < 1) and 
NH,) below 320°C and 380°C respectively. 

The physical properties of ZnCl,NH, have been extensively studied 
[7,10]. The room temperature phase is a glassy polymer, (ZnCl,NH,),, 
where m = 30. On heating it passes through an elastic phase (34-60 O C) and 
becomes increasingly viscous to 90 O C. From 90 to 140° C it displays 
increasing crystallinity, and finally undergoes a reversible depolymerization 
and melting from 140 to 148 O C. 

The work reported here was confined to 11 temperatures in the range 
166-228’ C where the diammine is solid and the monoammine is liquid (and 
is insignificantly decomposed to lower ammines). Furthermore, the cumula- 
tive proportional mass loss throughout the experiments was 4.1% less than 
the 10% required for quantitative conversion to ZnCl,NH,. Taken together 
the above evidence supports a reaction stoichiometry given by 

ZnCl,(NH,),(c) + ZnCl,NH,(l) + NH,(g) 
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Modified entrainment 

For equilibrium (l), involving a single gaseous species, the partial pressure 
of NH, is given [4] by 

p& = P(1 - emENH3) (2) 

where 

5 NH, = &RTl/gMPA (3) 

In eqn. (3), ti is the rate of mass loss at temperature T, Z/A is the length 
over the cross-sectional area of the capsule capillary (2.006 x lo4 m-l), M 
is the molecular mass of NH,, P is the total system pressure (usually a few 
mmHg above atmospheric pressure) and 9 is the binary diffusivity of NH, 
in Ar. The diffusivity was estimated over the experimental temperature 
range (438-503 K) from the Lennard-Jones potential parameters for Ar and 

NH, 1141 

g(NH,,Ar)(m2 s-l ) = 1.825 x 10-5(T/273.15)1’842 (4) 

Only limited experimental evidence [15] exists for this system and not within 
our temperature range. The equilibrium constant for reaction (l), &u,/p* 
( pe = 101325 N mp2), was obtained from eqns. (2)-(4) and the corre- 
sponding AGP value was linearly regressed against T (K) to give eqn. (5) 

AGy(J mol-‘) = (118500 f 3800) - (218 f 8)T (5) 

The uncertainty intervals in eqn. (5) are standard deviations of the regres- 
sion coefficients. The dissociation pressure above ZnCl 2 (NH,) z (tryst) has 
been reported before [16,17] at five temperatures in the range 401-490 K. 
The decomposition reaction was quoted as eqn. (1) except that the monoam- 
mine phase was written as solid. Converting these early results to free 
energies we obtain 

AG’(J mol-‘) = (118 800 f 9600)-(219 + 21)T (6) 

The coefficients in eqn. (6) have large uncertainty intervals but are close to 
those of eqn. (5) and it seems likely that Biltz and Messerknecht [16] failed 
to identify the monoammine phase correctly. 
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