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Catalytic Hydrosilylation of Carbonyl Compounds with Zinc(II) Acetate: 
Asymmetric Induction Collaborated with N2S2 Ligands
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Abstract: Zinc acetate proved to be an efficient catalyst for hydro-
silylation of ketones and aldehydes in the combination with
(EtO)2MeSiH, and a good to excellent asymmetric induction was
observed in the presence of chiral N2S2 ligands.
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Reduction method of carbonyl compounds has been rap-
idly progressing as compatible with social demands such
as environmetally benign and inexpensive procedures.1 In
this context, iron catalysts have been highlighted to show
efficient activity including asymmetric induction with ap-
propriate phosphine, nitrogen, or sulfur ligands.2 In place
of iron catalysts, biologically benign zinc-based catalyts
can also be applied as one of alternatives. In 1999, actual-
ly, Mimoun et al. reported the excellent achievement of
economical reduction method with zinc catalysts derived
from Zn(2-ethylhexanoate)2 (2-EH)/NaBH4 or ZnEt2/
Me2N(CH2)2NMe2 (TMEDA) in the presence of inexpen-
sive polymethylhydrosiloxane (PMHS) as a hydride don-
nor.3 The zinc-catalyzed reduction of ketones was fol-
lowed by Carpentier,4 Parrodi–Juaristi–Walsh,5 Mikami,6

and Riant,7 to disclose asymmetric reductions. Recently,
Bandini–Umani–Ronchi8 applied their chiral diamine-
bisthiophene ligands with ZnEt2 for asymmetric reduction
of ketones.9 Here, we disclose that Zn(OAc)2 can act as an
efficient catalyst for hydrosilylation of ketones with
(EtO)2MeSiH as hydride donor, and we show some exam-
ples for asymmetric induction by use of N2S2 ligands.

A system of Zn(2-EH)2/PMHS reported by Mimoun
needs NaBH4 as a metal activator for hydrosilylation of
ketones.9 During our previous work for metal-catalyzed
hydrosilylation,10 we happened to find that a cheep zinc
salt Zn(OAc)2 by itself with (EtO)2MeSiH sufficiently
works a reducing agent of ketones. The representative ex-
ample is as follows: methyl biphenyl-4-yl ketone (1) (1.0
mmol) was treated in a THF (3.0 mL) solution at 65 °C for
12 hours with Zn(OAc)2 (0.05 mmol, 5 mol%) and
(EtO)2MeSiH (2.0 mmol). The hydrosilylation smoothly
took place followed by hydrolysis to produce the corre-
sponding secondary alcohol 2 in almost quantitative yield
(Table 1, entry 1). The reaction proceeded very slowly at

30 °C; ca. 50% for 72 hours (entry 2). The catalyst loading
of 1 mol% worked sufficiently to result in the almost the
same result (entry 3). The PMHS in place of (EtO)2MeSiH
did not work well under the above conditions, even in
methanol-containing solution described by Mimoun
(entry 4). Alkoxysilanes such as (EtO)Me2SiH and
(EtO)3SiH gave good yields (entries 5 and 6), but alkyl-
silanes did not give the product alcohol (entries 7 and 8).

Under the conditions used in entry 1 of Table 1, represen-
tative aromatic and aliphatic ketones were subjected to the
hydrosilylation to give the corresponding secondary alco-
hols in high yields 91–99% (Table 2, entries 1–9). In ad-
dition, hydrosilylation of the several aldehydes was also
demonstrated to give the corresponding primary alcohols
in high yields 91–99% (entry 10–13). Benzalacetone was
reduced to exclusively give 1,2-reduction product (entry
14).

In the case of reduction of ester groups, Mimoun reported
that the reduction of methyl benzoate to benzyl alcohol
was readily promoted by Zn(2-EH)2/NaBH4/PMHS sys-

Table 1 Catalytic Hydrosilylation of 1 with Zn(OAc)2 and Hydrosi-
lanesa

Entry Silane Time (h) Yield (%)

1 (EtO)2MeSiH 12 99

2b (EtO)2MeSiH 72 49

3c (EtO)2MeSiH 18 98

4 PMHS 24 trace

5 (EtO)Me2SiH 24 97

6 (EtO)3SiH 18 98

7 Et3SiH 24 no reaction

8 Me2PhSiH 24 no reaction

a Reaction conditions: 1 (1.0 mmol), silane (2.0 mmol), THF (3.0 
mL).
b At 30 °C.
c With Zn(OAc)2 (1 mol%).
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tem, while the reduction with Zn(OAc)2/NaBH4/PMHS
resulted in a low yield 2%.9 Therefore, we were interested
in the reduction ability of our system with Zn(OAc)2/
(EtO)2MeSiH using 4-MeOCOC6H4C(=O)Me (3) as a
substrate (Scheme 1). Gratifyingly, the chemoselective
hydrosilylation was realized at 50 °C on the ketone moi-
ety to give the corresponding secondary alcohol 4 in 95
yield with small amount (ca. 5%) of the diol 5. Further-
more, both of the ketone and the ester moiety were re-
duced at 100 °C in a dioxane solution to the diol 5 in 72%
with 24% of 4.

Bandini–Umani–Ronchi have recently developed chiral
diamino-bis(thiophene) ligands of N2S2 type, including 6a
and 6b to apply them to asymmetric hydrosilylation of
several ketones with ZnEt2 and PMHS.8,11 We were inter-
ested in study on the matching of Zn(OAc)2 and the N2S2-
type ligands 6a and 6b in asymmetric hydrosilylation. In
addition, we newly prepared 4-subsituted thiophene
ligands 7a and 7b for this purpose. The hydrosilylation in
the presence of 6a and 6b proceeded smoothly at 30 °C to
result in 61% and 63% ee of 2 (S), respectively (Table 3,
entry 1 and 2). It is noteworthy that the ligands 7a and 7b
with substituents at 4-position of the thiophene skeletons

were capable to increase the enantioselectivity up to 78–
83% (entry 3 and 4). It was thus found that modification
on the thiophene rings could give us change of enantio-
selectivity. The reaction with the ligand 7a was accelerat-
ed to finish at 65 °C for 3 hours, but the ee decreased to
50%.

Some of ketone substrates (1.0 mmol) were examined for
asymmetric hydrosilylation with Zn(OAc)2 (5 mol%),
(EtO)2MeSiH (2 mmol), and N2S2 ligand 7a (6 mol%,
Figure 1). Several substituted phenyl ketones were re-
duced in ca. 70% ee of 8–12. Methyl a-naphthyl ketone
successfully gave the corresponding alcohol 13 in 92% ee
(S) with 95% yield.12,13

In conclusion, it was found that commercially available
zinc acetate as a catalyst without any assistance of ligands
could promote hydrosilylation of carbonyl compounds in
the combination of diethoxymethylsilane. Although the
asymmetric induction with chiral N2S2 ligands is still

Table 2 Catalytic Hydrosilylation of Other Ketones and Aldehydes 
with Zn(OAc)2 and (EtO)2MeSiHa

Entry R1 R2 Yield (%)

1 Ph Me 98

2b 4-MeOC6H4 Me 98

3 4-BrC6H4 Me 98

4c 4-F3CC6H4 Me 91

5b 2,6-(MeO)2C6H3 Me 95

6 2-Naph Me 98

7 Ph n-C5H11 99

8 Ph(CH2)2 Me 99

9 n-C11H23 Me 99

10c 4-PhC6H4 H 99

11c 4-NCC6H4 H 91

12b,c 4-MeOPh H 99

13c 9-Anth H 93

14b PhCH=CH Me 99

a Reaction conditons: carbonyl compound (1.0 mmol), THF (3.0 mL), 
12 h.
b Work-up: KF (2 mmol), TBAF (TBAF, ca. 1 mL, 1 M in THF), 0 °C, 
2 h.
c 24 h.
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Table 3 Asymmetric Hydrosilylation of 1a

Entry Ligand Time (h) Yield (%) ee (%)
(abs. config)

1 6a 24 99 61 (S)

2 6b 24 97 63 (S)

3 7a 24 98 83 (S)

4 7b 18 99 78 (S)

a Reaction conditons: 1 (1.0 mmol), 6 and 7 (6 mol%), THF (3.0 mL).

Scheme 1 Chemoselective reduction
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good to excellent, further experiments are now under way
to reach high efficiency.
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solution (15 mL) of the solids was treated with NaBH4 (392 
mg) at r.t. for 18 h. Then, H2O (15 mL) was added, and the 
mixture was extracted with EtOAc. The extract was washed 
with brine and dried over Na2SO4. After concentration, the 
residue was purified by silica gel column chromatography 
with hexane–EtOAc to give white solids (265 mg, 0.58 
mmol) in 58% yield.
Compound 7a: mp 113–115 °C. IR (KBr): n = 3100, 3056, 
2927, 2853, 1451, 737, 688 cm–1. 1H NMR (300 MHz, 
CDCl3): d = 0.91–2.37 (m, 14 H), 3.90–3.94 (m, 2 H), 4.13–
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29 –17.0 (c 1.00, CHCl3).
Synthesis of Compound 7b
Starting from 2,6-diisopropylaniline via 2,6-diisopropyl-
phenyliodide, 2,6-diisopropylphenyl boronic acid was 
prepared. The mixture of the boronic acid (463 mg, 2.25 
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Figure 1 Asymmetric reduction of several ketones
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(218 mg, 0.8 mmol, commercially available), and MgSO4 
(960 mg) in THF (5.0 mL) was stirred at r.t. for 24 h. After 
diluted with EtOAc, the mixture was filtered through Celite 
and was concentrated to give white solids. A MeOH solution 
(10 mL) of the solids was treated with NaBH4 (151 mg) at 
r.t. for 24 h. Then, H2O (10 mL) was added, and the mixture 
was extracted with EtOAc. The extract was washed with 
brine and dried over Na2SO4. After concentration, the 
residue was purified by silica gel column chromatography 
with hexane–EtOAc to give the desired amine 7b (178 mg, 
0.284 mmol) in 71% yield.

Compound 7b: oil. IR (film): n = 3055, 2959, 2927, 2861, 
1459, 751, 673 cm–1. 1H NMR (300 MHz, CDCl3): d = 1.09–
1.10 (m, 24 H), 1.15–1.40 (m, 6 H), 1.85 (m, 2 H), 2.23 (m, 
2 H), 2.42 (m, 2 H), 2.83 (m, 4 H), 4.00 (d, J = 14.9 Hz, 2 H), 
4.19 (d, J = 14.9 Hz, 2 H), 6.82 (s, 2 H), 6.93 (s, 2 H), 7.22–
7.27 (m, 4 H), 7.38 (m, 2 H). 13C (75 MHz, CDCl3): d = 24.2, 
24.3, 24.5, 24.6, 25.1, 30.3, 30.4, 31.6, 45.5, 60.2, 121.0, 
122.1, 126.9, 127.6, 134.4, 139.2, 144.0, 147.4. HRMS–
FAB: m/z calcd for C40H55Cl2N2S2

+ [M + H]: 627.3807; 
found: 627.3805. [a]D

29 –23.4 (c 1.00, CHCl3).
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