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Tin(IV) ion-exchanged montmorillonite (Sn-Mont) was
found to be an excellent solid acid catalyst for the Mukaiyama
aldol reactions of congested ketones with silicon enolates from
ketones as well as esters. It was disclosed that Sn-Mont was
far more active than other metal ion- or proton-exchanged
montmorillonites and typical homogeneous acid catalysts such
as TMSOTf and BF3¢OEt2.

The Mukaiyama aldol reactions are Lewis acid-promoted
nucleophilic additions of silicon enolates to carbonyl acceptors,
specifically, most of which are aldehydes. On the other hand, the
use of less reactive ketones is limited as the acceptor1 because
the additions to ketones are much more sluggish than those
to aldehydes.2 Therefore, the Mukaiyama aldol reactions
between ketones and ketone enolates are still a challenge yet
to explore.

Our previous study has shown that the Mukaiyama aldol
reactions of aldehydes with silicon enolates from ketones are
effectively catalyzed by aluminum ion-exchanged montmoril-
lonite (Al-Mont).3 Montmorillonite is a naturally occurring
layered clay which is composed of lamellar aluminosilicate
layers and interlayer metal ions.4 Especially, montmorillonites
exchanged with multivalent metal ions, such as Al3+ and Fe3+

(M-Mont), act as solid acids.5 In a series of our studies of clay-
based solid acid catalysis for various organic reactions, we
discovered that tin(IV) ion-exchanged montmorillonite (Sn-
Mont) possessing a unique and delaminated silicate layer
structure, different from other laminated metal ion-exchanged
montmorillonites, showed much higher catalytic activities for
the cyanotrimethylsilylation and the Strecker reactions of
congested ketones than the conventional clay catalysts.6 Thus
it is envisaged that Sn-Mont would work as an effective solid
acid catalyst for more impracticable aldol reactions between
ketones and ketone enolates.

Initially, Sn-Mont7 was applied to the reaction of aceto-
phenone (1a) with a ketone enolate 2a,8 and compared to various
solid and homogeneous acid catalysts (Table 1). The model
reaction of 1a with 2a was limited to fewer precedents9,10 than
those of 2a with aldehydes (Table S1).11

Among the M-Monts, Sn-Mont showed the highest yield of
81% for aldol products 3aa and 4aa together with dehydrated
product 5aa (16% yield) in the shortest reaction time
(Entry 3),12 while Ti-Mont and Al-Mont gave only poor yields
(Entries 5 and 6). Although H-Mont also afforded 3aa and 4aa
in a good combined yield (73%), it required a longer reaction
time than Sn-Mont (Entry 7). The homogeneous acid catalysts,13

TMSOTf and TfOH, afforded only desilylated aldol product 4aa

in low yields after the normal workup (Entries 9 and 10), while
BF3¢OEt2 promoted no reaction (Entry 11).

Generally, the clay catalysts can be easily removed from the
reaction mixture by filtration without any workup with aqueous
bases, thus silylated aldol product 3aa was obtained as the main
product. However, in the cases of Sn-Mont and H-Mont, a part
of 3aa was hydrolyzed by some residual water included in the
clay to afford 4aa, which was further dehydrated to 5aa.14 In
order to improve the selectivity for 3aa, Sn-Mont was activated
at the higher temperature of 150 °C rather than 120 °C,15 and
almost exclusively afforded 3aa, thus suppressing the formation
of 4aa and 5aa (Entry 4), but slightly retarding the reaction. On
the contrary, the same thermal treatment on H-Mont only led to a
rather poor yield of 3aa along with the formation of both 4aa
and 5aa (Entry 8). It should be emphasized that the acid
catalysis of Sn-Mont for the aldol reaction between 1a and 2a is
quite superior to those of the precedent heterogeneous acid
catalysts.10

Next, the Sn-Mont-catalyzed Mukaiyama aldol reactions of
2a were examined with various congested ketones (Table 2). As

Table 1. The Mukaiyama aldol reaction of acetophenone (1a)
with silicon enolate 2a
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Entry Catalyst Time/h
Yield/%a,b

3aa 4aa 5aa

1 No catalyst 15 0 0 0
2 Na-Mont 3 0 0 0
3 Sn-Mont 0.75 75 6 16
4 Sn-Montc 3 88 2 0
5 Ti-Mont 3 26 0 0
6 Al-Mont 3 2 0 0
7 H-Mont 3 64 9 17
8 H-Montc 3 43 10 17
9 TMSOTfd 3 0 45 0

10 TfOHd 3 0 30 0
11 BF3¢OEt2d 4.5e 0 0 0

a1a (1.0mmol), 2a (1.1mmol), catalyst (20mg), CH2Cl2
(2mL), 0 °C. bDetermined by 1HNMR. cCatalyst was activated
at 150 °C. dFive mol% of the catalyst was used. ePerformed at
0 °C for 1.5 h and then at RT for 3 h.
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a result, the reactions of 2-acetonaphthone (1b) and nonan-5-one
(1c) afforded excellent yields of the corresponding products 3ba
and 3ca (Entries 2 and 3). However, the reaction with more
congested isopropyl phenyl ketone (1d) gave 3da in only 35%
yield (Entry 4), and that of benzophenone (1e) with 2a did not
occur (Entry 5).16 In contrast, benzophenone derivative bearing
an electron-withdrawing chlorine substituent 1f reacted with 2a
to give the product in 72% yield (Entry 6), and benzophenone
dimethyl acetal (1g) also reacted with 2a (Entry 7).

It is well known that the silicon enolates of esters are more
nucleophilic than those of ketones, and that the free energy
difference of the aldol reaction of a ketone with the ester enolate
is smaller than that with the ketone enolate.17 Some silicon
enolates of esters were then employed. As shown in Table 2, the
reactions of ketones 1a1e with ester enolate 2b afforded the
corresponding silylated aldol products 3 in excellent yields
except for 1d (Entries 812). Similar results were achieved for
the reactions with cyclic ester enolate 2c (Entries 1317). In
addition, the reactions of ketones 1a1c with more congested but
less nucleophilic disubstituted ester enolate 2d afforded good to
excellent yields of the products (Entries 1820), but no reactions
took place using 1d and 1e (Entries 21 and 22). In the reactions
of 1c with enolates 2c and 2d, the aldol products were obtained
in only 51 and 34% yields, respectively (Entries 15 and 20), and
some 2c and 2d remained intact under the standard conditions,
indicating that the catalyst became inactive. Therefore, the
amount of Sn-Mont was increased from 40 to 100mg, and the
yield of 3cd rose to 92% from 34% as expected, while that of
3cc only slightly changed.

The aldol reactions of the silicon enolates from thioesters
have been mainly applied to aldehydes. The reactions of ketones
1a and 1b with enolate 2e successfully occurred to yield
products 3ae and 3be in over 90% yields (Entries 23 and 24).

The high catalytic activity of Sn-Mont for the aldol
reactions is ascribed not only to the intrinsic strong acidic
character of Sn-Mont, but also to its unique porous structure.
Sn-Mont is composed of delaminated aluminosilicate layers
holding Sn(OH)4 nanoparticles, thus providing a high specific
surface area and a large pore volume.6c The water molecules
coordinating to Sn(OH)4-based nanoparticles are considered to
be dissociated to form acidic protons (Snx(OH)y(OH)¹£H+),
which is promoted by the neighboring montmorillonite silicate
anions, and thus show an efficient acid catalysis for the aldol
reactions. In addition, inside the characteristic voids of Sn-Mont,
the bulky reactants and products are allowed to diffuse more
easily and contact with the acid sites on the solid Sn-Mont to
promote the aldol reactions.

The natural clay-derived Sn-Mont is stable to moisture and
air so that it can be stored for a long period in air. Before use as
the solid acid, it is only necessary to be activated at 120 or
150 °C under reduced pressure.

In summary, it was demonstrated that the solid acid
Sn-Mont catalyzed the Mukaiyama aldol reactions of silicon
enolates from ketones and esters with congested ketone accep-
tors much more effectively than the other M-Monts and typical
homogeneous acid catalysts. It should be emphasized that
various congested ketones are applicable as the acceptors of this
reaction, and that the products can be isolated as moisture-
sensitive trimethylsilylated aldols which are apt to be hydro-
lyzed.

Table 2. The Mukaiyama aldol reaction of congested ketones 1
with silicon enolates 2 catalyzed by Sn-Mont
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a1 (1.0mmol), 2 (2.0mmol), catalyst (40mg), CH2Cl2 (2mL),
0 °C. bDetermined by 1HNMR. cSn-Mont was activated at
150 °C. d1 (1.0mmol), 2 (1.1mmol), catalyst (20mg). eThe
molar ratio of threo and erythro diastereomers. fPerformed
under reflux conditions. gDehydrated product 5bd was also
formed (23%). hCatalyst (100mg). iPerformed at RT.
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This paper is dedicated to Professor Teruaki
Mukaiyama in celebration of the 40th anniversary of the
Mukaiyama aldol reaction.
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