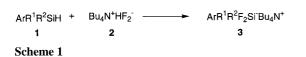
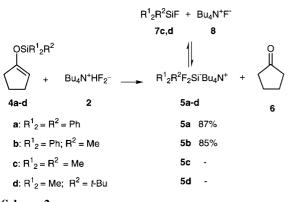
Homocoupling of Aryl Halides Promoted by Tetrabutylammonium Fluoride

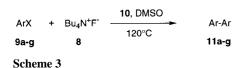
Domenico Albanese,* Dario Landini, Michele Penso, Silvia Petricci

Centro CNR and Dipartimento di Chimica Organica e Industriale dell'Università, via Venezian 21, I-20133 Milano, Italy E-mail: domenico@iumchz.chimorg.unimi.it

Received 1 December 1998


Abstract: The palladium-catalysed homocoupling of aryl halides takes place in the presence of anhydrous, *in situ* generated, tetrabutylammonium fluoride (TBAF).


Key words: homocoupling, aryl halides, tetrabutylammonium fluoride, palladium


Symmetrical biaryls have been prepared by the classic Ullmann-copper mediated synthesis,¹ whereas modern methodologies take advantage of arylstannanes,² arylboronic acids³ and arylzinc⁴ derivatives. These methods are efficient even though they suffer from the drawbacks related to the use of stoichiometric amounts of organometal-lic species.

Recently, the homocoupling of aryl halides using $Pd(OAc)_2$ and Bu_4NBr^5 has been reported therefore prompting us to present our results in this field.

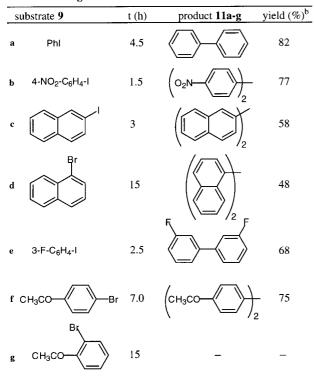
In a previous paper⁶ we described a new synthesis of pentacoordinated tetraalkylammonium (difluoro)silicates **3** by reaction of a trisubstituted silane **1**, containing at least one aryl group, and a quaternary onium hydrogendifluoride, *e.g.* tetrabutylammonium hydrogendifluoride (**2**) (TBABF) (Scheme 1). Since trialkylsilanes did not react

with 2 under these reaction conditions, we developed an alternative procedure to generate trialkyl(difluoro)silicates 5 through the reaction of TBABF with a silyl enol ether 4 (Scheme 2). The reaction of 2 with (cyclopentenyloxy)triphenylsilane (4a) or (cyclopentenyloxy)diphenylmethylsilane (4b) generated the known crystalline quaternary (difluoro)silicates $5a,b^7$ in good yields (85-87%) confirming the effectiveness of the procedure. However, in the case of trimethyl- and t-butyldimethylsilyl enol ethers **4c.d**, the corresponding trialkyl(difluoro)silicates **5c,d** could not be isolated as a consequence of their low stability.⁸ On the contrary, after trapping of the transient ammonium enolate by 2, the short lived pentacoordinate anion silicon intermediate 5 generated the fluorosilane 7, cyclopentanone 6 and tetrabutylammonium fluoride (8) (TBAF). Indeed, after treatment at 0.01 mmHg at 20°C, examination of the reaction mixture by ¹H and ¹⁹F NMR spectroscopy indicates that the residual brown syrupy oil basically consists of TBAF (8) in a low hydration state.⁹ This highly reactive form of TBAF, although relatively stable at room temperature, promotes a fast palladium catalysed homocoupling of aryl halides. The reaction of 1iodo-4-nitrobenzene (9b) in dimethylsulfoxide (DMSO) at 120°C in the presence of 8, generated *in situ* according to Scheme 2,10 and 2.5 mol % of allylpalladium chloride dimer $[PdCl(\pi-C_3H_5)]_2$ **10** afforded 77% of 4,4'-dinitrobiphenyl (11b) after only 1.5 hours (Table 1, entry 2). The water content of TBAF is crucial for the good outcome of the reaction since **11b** was generated in a 10% yield only after 24 hours by using commercially available TBAF·3H₂O (entry 1).

 Table 1. Homocoupling of 1-iodo-4-nitrobenzene (9b)^a

entry	catalyst	additive	t (h)	11b (%) ^b
1	10	TBAF·3H ₂ O	24	10
2	10	[4c + TBABF] (8)	1.5	77
3	10	[4d + TBABF] (8)	1	71
4	10	TBAF 0.5H ₂ O	20	68
5	10	TBABF	7	55¢
6	10	Bu3N	24	38
7	Pd(OAc)2	Bu ₃ N	24	46
8	Pd(OAc) ₂	[4c + TBABF] (8)	24	34c

^a The reaction was carried out at 120°C in DMSO (3ml) using 0.35 mmol of **9b** in the presence of 0.0082 mmol of the catalyst and 0.7 mmol of additive. ^b Isolated yields. ^c 80% conversion.


Synlett 1999, No. 2, 199-200 ISSN 0936-5214 © Thieme Stuttgart · New York

In a control experiment TBAF·3H₂O was dehydrated by gently heating for 31 hours under sonication and high vacuum.¹¹ TBAF·0.5H₂O thus obtained generated the homocoupled product **11b** in 68% yield in 20 h (entry 4). It seems likely that the slower reaction can be ascribed to a partial decomposition to the less reactive TBABF (**2**) taking place during dehydration of the commercial salt.¹¹ In fact under the same reaction conditions TBABF afforded 55% of **11b** in 7 hours without complete conversion of **9b** (entry 5). The use of tributylamine (**12**) instead of **8** or Pd(OAc)₂ as a substitute for **10** gave lower yields (entries 6-8).

A representative list of aryl halides **9a-g** bearing various functionalities were converted into the corresponding biaryl derivatives **11a-g** in moderate to good yield (Table 2). Iodo- and bromoaryls can be successfully used. 4-Bromoacetophenone (**9f**) generated 4,4'-diacetylbiphenyl (**11f**) in a 75% yield, whereas the homocoupling of 2-bromoacetophenone (**9g**) did not take place indicating that the reaction is sensitive to steric hindrance.

 Table 2.
 Palladium Catalysed Homocoupling of Aryl Halides

 9a-g^a

^a The reaction was carried out at 120°C in DMSO (3 ml) using 0.35 mmol of substrate **9** in the presence of 0.0082 mmol of the catalyst **10** and 0.7 mmol of TBAF (**8**). ^b Isolated yields.

In conclusion we developed a simple procedure for the phosphine-free palladium catalysed homocoupling of aryl halides. Further work is under way in order to determine the exact nature of the process and will be reported in due course.

Acknowledgement

Financial support by CNR and MURST is gratefully acknowledged.

References and Notes

- Semmelhack, M. F.; Helouit, P. M.; Jones, L. D. J. Am. Chem. Soc. 1971, 93, 5308.
- (2) Farina, V. Pure Appl. Chem. 1996, 68, 73.
- (3) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
- (4) Neguishi, E.; Acc. Chem. Res. 1982, 15, 340.
- (5) Penalva, V.; Hassan, J.; Lavenot, L.; Gozzi, C.; Lemaire, M. *Tetrahedron Lett.* **1998**, *39*, 2559.
- (6) Albanese, D.; Landini, D.; Penso, M. *Tetrahedron Lett.* 1995, 36, 8865.
- (7) A solution of 4b (280 mg, 1 mmol) in benzene (1 ml) is added dropwise to 2 (281 mg, 1 mmol) dissolved in 1 ml of benzene. After stirring under nitrogen at 20°C for 20 h the solvent is evaporated and the residue treated with hexane/benzene 3/1 (3 x 2 ml) and decanted. The solid residue is then filtered affording 406 mg (yield 85%) of 5b, mp 68-69°C (lit. ref. 7, 70°C). The same procedure afforded 470 mg of 5a (yield 87%), mp 150°C, by direct filtration of the reaction mixture followed by washing the solid with 1 ml of benzene.
- (8) Christe, K. O.; Wilson, W. W.; Wilson, R. D.; Bau, R.; Feng, J. J. Am. Chem. Soc. 1990, 112, 7619.
- (9) Karl-Fischer titration of different batches of TBAF·nH₂O indicated a hydration range n = 0.6-0.7.
- (10) **2** (1.13 g, 4 mmol) is dissolved in 2 ml of THF and added dropwise to a THF (2 ml) solution of **4c** (625 mg, 4 mmol). After stirring under nitrogen for 1h at 20°C the mixture was evaporated affording 1.04 g of TBAF (95%). This material was used for the homocoupling reaction. [PdCl(π -C₃H₅)]₂ **10** (3 mg, 0.0082 mmol) and the aryl halide (0.35 mmol) are added to a DMSO (3 ml) solution of TBAF (**8**) (192 mg, 0.70 mmol). After stirring under nitrogen at 120°C for the time indicated in Table 2, the mixture is cooled to room temperature, treated with brine and extracted with Et₂O (3 x 5 ml). The organic layer is washed with brine, dried (Na₂SO₄) and evaporated. The residue is purified by silica-gel chromatography affording biaryls **11a-f** whose physical and spectroscopic data match those reported in the literature.
- (11) Albanese, D.; Landini, D.; Penso, M. J. Org. Chem. in press.