N-Aminoimidazole Derivatives Inhibiting Retroviral Replication via a Yet **Unidentified Mode of Action**

Irene M. Lagoja,^{†,‡} Christophe Pannecouque,^{*,§,‡} Arthur Van Aerschot,[†] Myriam Witvrouw,[‡] Zeger Debyser,[‡] Jan Balzarini,[‡] Piet Herdewijn,^{*,†} and Erik De Clercq[‡]

Laboratory of Medicinal Chemistry and Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium

Received December 10. 2002

The synthesis of a series of N-aminoimidazoles (NAIMs) with an uncommon spectrum of antiretroviral activity is described. From a group of 60 closely related molecules, we were able to subdivide the molecules in different groups based on their anti-HIV and anti-SIV activity in vitro: (i) molecules acting on a new, immediate postintegration step, (ii) molecules acting on both postintegration and HIV-1 reverse transcriptase (RT) as NNRTI, and (iii) molecules that mainly act at the HIV-1 RT according to an NNRTI-type mode of action.

Introduction

Replication of human immunodeficiency virus type 1 can be reduced in HIV-infected patients using a combination of antiviral drugs targeted at the reverse transcriptase (RT) and protease.1 Unfortunately, because of the high mutation rate of HIV, treatment, even combination therapy, is required for drug-resistant variants.²

Shortly after the discovery of the nonnucleoside reverse transcriptase inhibitors (NNRTIs), it became clear that resistance to this class of compounds emerges rapidly.³ Moreover, cross-resistance is very important. If a patient's virus becomes resistant to NNRTIs, no other member of the group can be used effectively. Capravirine (S-1153), a 1,2,4,5-substituted imidazole derivative, is an NNRTI⁴ that is able to inhibit HIV-1 strains that are resistant to other NNRTIs. This ability to cope with typical NNRTI-induced mutations is based, at least in part, on an extensive network of hydrogen bonds involving the main chain of residues 101, 103, and 236 of the p66 RT subunit. Side chain mutations are not likely to disrupt these interactions.⁵

We synthesized a series of N-aminoimidazoles via a one-pot synthesis. The similarity of this series of compounds to S-1153 is depicted in Chart 1.

The in vitro antiviral evaluation of a series of 60 N-aminoimidazole and N-aminoimidazole thiones yielded unexpected antiviral activity findings. Out of a series of 60 compounds, 7 compounds were equipotent against the replication of HIV-1 (strains III_B and the molecular clone NL4.3), an NNRTI-resistant HIV-1 strain (with mutations K103N, Y181C in RT), HIV-2(ROD), and SIV(mac251). The most potent of these compounds were also active against MSV-induced transformation of C3H/ 3T3 embryo murine fibroblast in vitro.

Chart 1. Structure Analogy of S-1153 vs N-Aminoimidazole Derivatives 3 and 7

This very unusual antiviral activity pattern suggests that the antiretroviral activity of these compounds is not based on an inhibition of the reverse transcriptase activity as might have been expected from the structural similarity with capravirine.

Other members of the series had an activity profile that coincided with that of the NNRTIs (no activity against HIV-2(ROD) and reduced activity against an NNRTI-resistant strain), but some of these compounds inhibited the replication of SIV(mac251) to the same extent as wild-type HIV-1 strains, unlike the classical NNRTIs nevirapine, delavirdine, and efavirenz.

These results prompted us to study the structureactivity relationship and potential mode of action of these *N*-aminoimidazoles (NAIMs) more thoroughly.

Chemistry

Starting from cheap, easily available compounds such as hydrazines 1, α -bromoketones 2, and potassium thiocyanate, N-substituted 1-amino-2,3-dihydro-1H-imidazole-2-thiones 3 were formed in good yield in a onepot reaction (Scheme 1).⁶ By use of strategies of parallel synthesis and combination of starting materials 1 and 2, a broad range of differently substituted heterocycles 3 could be obtained.

This multistep reaction is considered to occur via the conversion of an α -thiocyanatoketone (formed by nucleophilic substitution reaction) to the thiocyanato-

^{*} To whom correspondence should be addressed. Phone: +32 16 33 73 87. Fax: +32 16 33 73 40. E-mail: piet.herdewijn@ rega.kuleuven.ac.be.

[†] Laboratory of Medicinal Chemistry. [‡] Both authors contributed equally.

[§] Laboratory of Virology and ChemotherapyIntroduction.

Scheme 1. Synthesis of *N*-Aminoimidazoline-2-thiones **3**

Scheme 2. Most Likely Pathway for the Formation of 2-Iminothiazoles **6**

hydrazone **4**. Subsequent 1,4-elimination led to the corresponding azoalkene and thiocyanic acid. The thus formed two intermediates can undergo a [3 + 2] cycloaddition reaction, and following hydrogen shift, the 1-amino-2,3-dihydro-1*H*-imidazole-2-thiones **3** were obtained.

In the case of ortho-substituted ketones, it was found that the reaction did not follow the pathway outlined in Scheme 1. Instead of the cycloaddition, a 5-exo-dig cyclization reaction (Scheme 2) took place. Likewise, in this pathway the α -thiocyanatohydrazone **4** is the key intermediate. In the case of substituents in the ortho position of the former ketone **2**, the 1,4-elimination giving rise to the formation of azoalkenes, which are planar, delocalized π -electron systems, is not favored. As shown in Scheme 2, a cyclization reaction yielding a 2-iminothiazole **6** took place instead. Attempts to convert the 2-iminothiazole **6** to the desired imidazoline-2-thione derivative **3** by way of a Dimroth rearrangement⁷ failed.

The two isomers can be easily distinguished by NMR methods. The signal corresponding to the carbon 2 of the imidazoline-2-thione derivative **3** was found in the range δ 160–162 ppm, whereas the corresponding signal of the 2-iminothiazole **6** was found in the range δ 169–171 ppm.

In the case of isomer **3**, saturation of the 3-NH causes a 10% nuclear Overhauser enhancement (NOE) at the 4-substituent, whereas irradiation of the imino NH showed an NOE enhancement of 5% relative to the exocyclic NH. The results of structure elucidation are summarized in Chart 2.

Besides the restriction of having a substituent in the ortho position of ketone **2**, the method of generating *N*-aminoimidazoline-2-thiones **3** in a one-pot-reaction starting from hydrazines **1**, ketones **2**, and potassium thiocyanate is suitable for all substituents, R^1 , R^2 , and R^3 being either aryl or alkyl. The method is also suitable

Chart 2. Comparison between the NMR Data of 2-Iminothiazoles **6** and *N*-Aminoimidazoline-2-thiones **3**

Chart 3. Structures of *N*-Aminoimidazoles **7** and *S*-Alkylaminoimidazoles **8**

for the conversion of N,N-disubstituted hydrazines **1**, obtaining the corresponding imidazoline thione **3** with an N,N-disubstituted side chain. Further derivatization of heterocycle **3** could be achieved by desulfurization with hydrogen peroxide in acetic acid,⁸ yielding the corresponding *N*-aminoimidazole derivatives **7**.

Alkylation of the imidazoline-2-thiones **3** quantitatively formed the *S*-alkyl product **8** (Chart 3), even under Mitsunobu⁹ conditions. Substitution patterns, yields, melting points, R_f values and HRMS of the imidazole derivatives **3** and **7** are shown in Table 1.

Biological Results and Discussion

Inhibition of HIV and SIV Replication in Cell Culture by *N*-**Aminoimidazoles 3 and 7.** We tested a series of *N*-arylaminoimidazoles **7** for their potential to inhibit the replication of HIV and SIV in a cell culture model for acute infection. The cytotoxicity of the compounds was determined in parallel. The antiviral activity and cytotoxicity data are presented in Table 2. From a series of 60 compounds, 26 compounds were active against the replication of at least one of the included virus strains. Seven compounds (**3.01**, **3.05**, **3.07**, **3.39**, **7.01**, **7.02**, and **7.03**) were equally potent inhibitors of the HIV-1, HIV-2, and SIV replication in MT-4 cells. Similar results were obtained in peripheral blood mononuclear cells (PBMCs) (data not shown).

Some molecules showed reduced activity against a clinically relevant NNRTI-resistant strain (mutations in RT K103N and Y181C), but unlike established NNRTIs as nevirapine, delavirdine, and efavirenz, they remained potent inhibitors of SIV(mac251) replication in vitro. Moreover, the most potent broad-spectrum *N*-aminoimidazole derivatives **3** and **7** inhibited MSV-induced transformation of C3H/3TC embryo murine fibroblasts in vitro (Table 3).

Structure–Activity Relationship (SAR) for *N*-Aminoimidazole Derivatives 3 and 7. All the antiretroviral-active *N*-aminoimidazoles 3 and 7 have in common the basic molecule depicted in Chart 4. No marked difference in antiviral activity and cytotoxicity was observed between the imidazoles 7 and their 2thiono homologue 3 series. However, alkylation (methylation or benzylation) of the sulfur led to complete

Table 1. Analytical Data of *N*-Aminoimidazole-2-thiones **3** (Written as Thiole Tautomer with $R^4 = SH$) and *N*-Aminoimidazoles **7** ($R^4 = H$)^{*a*}

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
	compd	\mathbb{R}^1	R ²	R ³	yield (%)	$R_{f}{}^{b}$	mp (MeOH, °C)	exact mass
3.01 3.02 3.02 2.10 2.11 Calce 3.06 9.07 1.11 Found 3.0 3.02 2.CCLH CH4	0.011		C II	CU	00	0 55	017 017	
3.02 2.1.C.974, C.P1, C.P1, State C.P1, State C.P1, State C.P1, P.P1, Found 3 10, 3.05 4.C.C.H. 4.B.C.H. C.H. 6.0 4.2 2.2.14 Calcd 308, 3973 M + H17, Found 3 10, 3.06 3.C.C.H. 4.B.C.H. C.H. 86 0.52 2.2.2.2 Calcd 308, 3973 M + H17, Found 3 10, 3.07 3.C.C.H. 4.C.C.J.H. C.C.J.H. 80 0.53 2.2.2.2.2 Calcd 30, 0355 M + H17, Found 3 10, 3.08 3.C.C.J.H. 4.C.C.J.H. C.L.G.H. C.H. S.0.3 2.2.2.2.2.2 Calcd 316, 0375 M + H17, Found 3 31, 3.10 3.C.C.J.H. 4.C.C.J.H. C.H. C.A.B. 0.53 2.2.2.2.22 Calcd 310, 0370 M + H17, Found 3 31, 3.11 3.D.C.C.H. C.H. C.H. C.A.B. 0.3.2 2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	3.01	$3-ClC_6H_4$	C_6H_5	CH ₃	82	0.55	215-217	Calcd: $316.0675 [M + H]^+$. Found: 316.0660
3.00 +FC_QFI Capits CH3 633 220-210 Calication Calicati	3.0211	$2-CIC_6H_4$	C_6H_5	CH_3	80	0.54	220-221	Calcd: $316.0675 [M + H]^{+}$. Found: 316.0703
3.00 3.01 3.02 212–214 Calcet 380.970 M+17: Found: 39 3.00 3.CCGH4 4.BCGH4 CH5 84 0.52 220–222 Calcet 380.970 M+117: Found: 39 3.00 3.CCGH4 4.BCGH4 CH5 84 0.52 220–227 Calcet 380.985 M+117: Found: 39 3.00 3.CCGH4 4.CCGH4 CH5 84 0.53 226–220 Calcet 380.0855 M+117: Found: 39 3.10 3.CCGH4 4.CH3OCH4 CH5 84 0.53 228–240 Calcet 380.0875 M+117: Found: 39 3.11 3.CCGH4 CH5 CH4 CH4 CH20-77 79 52 148 151 Calcet 380.0170 M+117: Found: 39 3.13 3.CCGH4 CH4 CH3 20 52 0.52 190–193 Calcet 380.0282 M+117: Found: 39 3.14 3.BCGH4 CA14 CA15 CH4 CH3 20 522 120–192 Calcet 380.0282 M+117: Found: 39 321 33.14	3.03	4-FC ₆ H ₄	C_6H_5	CH_3	68	0.53	228-231	Calcd: $300.0971 \text{ [M + H]}^+$. Found: 300.0996
3.05 3-C(C ₄ H ₄ 3-BrC ₄ H ₄ CH ₄ 8H C ₄ H ₄ CH ₄ 86 0.52 196-200 Calct 339.3970 [M + H] ⁻ , Found 39 3.07 3-C(C ₄ H ₄ 4-C(C ₄ H ₄ CH ₄ (H ₅ 85 0.52 204-227 Calct 330.0855 [M + H] ⁻ , Found 35 3.09 3-C(C ₄ H ₄ 4-C(C ₄ H ₄ CH ₅ 82 0.52 226-226 Calct 340.055 [M + H] ⁻ , Found 35 3.09 3-C(C ₄ H ₄ 4-C(C ₄ H ₄ CH ₅ 88 0.33 226-229 Calct 340.075 [M + H] ⁻ , Found 35 3.10 3-C(C ₄ H ₄ 4-C(C ₄ H ₄ CH ₅ 84 0.33 226-229 Calct 340.075 [M + H] ⁻ , Found 35 3.11 3-C(C ₄ H ₄ 4-C(H ₂) _C 79 0.52 148-151 Calct 280.0765 [M + H] ⁻ , Found 36 3.13 3-C(C ₄ H ₄ C ₄ H ₅ C ₄ H ₅ CH ₅ 80 0.32 228-220 Calct 310.075 [M + H] ⁻ , Found 37 3.11 3-C(C ₄ H ₄ C ₄ H ₅ C ₄ H ₅ CH ₅ 0.42 20 3.12 4-C(H ₂) _C 79 0.52 148-151 Calct 280.095 [M + H] ⁻ , Found 38 3.13 3-C(H ₄ -4CH ₅ -C ₄ H ₅ C ₄ H ₅ CH ₅ CH ₅ 0.52 228-220 Calct 310.075 [M + H] ⁻ , Found 38 3.14 3-C(H ₄ -4CH ₅ -C ₄ H ₅ C ₄ H ₅ CH ₅ CH ₅ 0.54 260-292 Calct 300.0952 [M + H] ⁻ , Found 38 3.16 2-(D-5-C(C ₄ H ₅ CH ₅ CH ₅ CH ₅ 80 0.53 226-229 Calct 300.0952 [M + H] ⁺ , Found 38 3.16 3-C(H ₄ -CH ₅ CH ₅ CH ₅ CH ₅ 80 0.53 226-229 Calct 320.0958 [M + H] ⁺ , Found 38 3.17 3. NO ₅ CH ₄ C ₄ H ₅ CH ₅ CH ₅ 80 0.53 226-227 Calct 320.0958 [M + H] ⁺ , Found 28 3.20 3-C(C ₄ H ₄ CH ₅ CH ₅ CH ₅ 80 0.54 220-222 Calct 320.191 [M + H] ⁺ , Found 25 3.22 3. C(H ₄ CH ₅ CH ₅ CH ₅ 80 0.54 220-222 Calct 320.191 [M + H] ⁺ , Found 25 3.23 3-C(C ₄ H ₄ CH ₅ CH ₅ CH ₅ 80 0.57 17-219 Calct 320.0908 [M + H] ⁺ , Found 32 3.24 3-C(C ₄ H ₄ CH ₅ CH ₅ CH ₅ 80 0.47 210-219 Calct 320.131 [M + H] ⁺ , Found 33 3.26 2-C(C ₄ H ₄ CH ₅ CH ₅ CH ₅ 80 0.57 178-180 Calct 320.137 [M + H] ⁺ , Found 33 3.26 2-C(C ₄ H ₄ CH ₅ CH ₅ CH ₅ 80 0.57 178-180 Calct 320.137 [M + H] ⁺ , Found 33 3.26 2-C(C ₄ H ₄ CH ₅ CH ₅ CH ₅ 80 0.57 178-180 Calct 320.137 [M + H] ⁺ , Found 33 3.26 2-C(C ₄ H ₄ CH ₅ CH ₅ CH ₅ 80 0.57 178-180 Calct 320.137 [M + H] ⁺ , Found 33 3.33 3-C(C ₆ H ₄ CH ₅ CH ₅ CH ₅ CH ₅ 80 0.57 178-180 Calct 320.1	3.04°	$4-CIC_6H_4$	C_6H_5	CH ₃	85	0.54	212 - 214	Calcd: $316.0675 [M + H]^+$. Found: 316.0662
3.06 3-ClC ₄ H ₄ 4-BrC ₄ H ₄ CH ₅ 84 0.52 220-222 Calcle: 350.0855 [M + H]: Found: 35 3.07 3-ClC ₄ H ₄ 4-ClC ₆ H ₄ CH ₅ 85 0.52 225-226 Calcle: 350.0855 [M + H]: Found: 35 3.08 3-ClC ₆ H ₄ CH ₅ O ₄ CH ₄ CH ₅ O ₄ CH ₄ CH ₆ O ₄ C	3.05	$3-ClC_6H_4$	$3-BrC_6H_4$	CH_3	86	0.52	196 - 200	Calcd: $393.9790 [M + H]^+$. Found: 393.9839
	3.06	$3-ClC_6H_4$	$4-BrC_6H_4$	CH_3	84	0.52	220 - 222	Calcd: 393.9790 [M + H] ⁺ . Found: 393.9779
3.00 3-Clc_6H ₄ 4-Clc_QL ₄ CH ₃ 82 0.52 225-226 Cahch: 346.0781 M + H]: Found: 55 3.10 3-Clc_6H ₄ CH ₃ CH ₃ 0.53 228-229 Cahch: 346.0781 M + H]: Found: 35 3.11 3-Clc_6H ₄ CH ₄ CH ₃ 9 0.40 224-226 Cahch: 340.0781 M + H]: Found: 31 3.13 3-CH ₂ -4-CH ₃ -C ₄ H ₄ CH ₅ CH ₃ 2 0.52 190-192 Cahch: 300.0825 M + H]: Found: 33 3.14 3-Clc_6H ₄ CH ₅ CH ₃ 2 0.52 190-192 Cahch: 300.0826 M + H]: Found: 33 3.15 3-Cl-4-CH ₅ -CH ₅ CH ₅ CH ₃ 2 0.52 190-192 Cahch: 300.0826 M + H]: Found: 33 3.16 2-Cl-5-ClC ₄ H ₅ CH ₅ CH ₃ 6 0.53 226-270 Cahch: 300.0826 M + H]: Found: 32 3.18 3-ClC ₄ H ₄ CH ₅ CH ₃ 6 0.53 226-229 Cahch: 300.0821 M + H]: Found: 32 3.20 3-ClC ₄ H ₄ CH ₅ CH ₃ 6 0.53 217-219 Cahch: 300.081 M + H]: Found: 32 3.21 CH ₄ CH	3.07	3-ClC ₆ H ₄	3-ClC ₆ H ₄	CH_3	85	0.52	204 - 207	Calcd: 350.0855 [M + H] ⁺ . Found: 350.0271
3.00 3.Clc_4H ₄ 4.Cl ₄ D ₀ C ₄ H ₄ CH ₅ Calc 3.228-228 Calc 3.60781 [M + H] ⁺ , Found: 33 3.11 3.Clc_6H ₄ $-(CH_2)_{-}$ 79 0.52 148-151 Calcd: 316.0075 [M + H] ⁺ , Found: 28 3.128 CA ₄ CA ₄ CH ₅ 224-226 Calcd: 328.1065 [M + H] ⁺ , Found: 38 3.13 3.5Cl ₇ -4.Cl ₇ C ₆ H ₃ CH ₅ CH ₅ 0.52 190-192 Calcd: 300.0275 [M + H] ⁺ , Found: 38 3.15 3.Cl-4.CH ₅ C ₆ H ₃ CH ₅ CH ₅ 20.52 190-193 Calcd: 300.0821 [M + H] ⁺ , Found: 39 3.16 2.ClCH ₅ C ₆ H ₃ CH ₅ CH ₅ 80.49 214-116 Calcd: 300.0821 [M + H] ⁺ , Found: 39 3.17 3.No ₅ C ₆ H ₄ CH ₅ CH ₅ 8.053 226-220 Calcd: 300.081 [M + H] ⁺ , Found: 33 3.28 3.Clc_6H ₄ CH ₅ CH ₅ 8.053 226-221 Calcd: 300.081 [M + H] ⁺ , Found: 33 3.223 3.Clc_6H ₄ CH ₅ CH ₅ 8.053 226-221 Calcd: 300.081 [M + H] ⁺ , Found: 33 3.223	3.08	3-ClC ₆ H ₄	4-ClC ₆ H ₄	CH_3	82	0.52	225 - 226	Calcd: 350.0855 [M + H] ⁺ . Found: 350.0356
3.10 3-ClC ₆ H ₄ CH ₃ C ₁ H ₃ 8 0.53 238-240 Calcd: 280.0675 [M + H]'. Found: 28 3.12 ⁸ C ₆ H ₅ C ₁ H ₃ CH ₃ 9 0.49 224-226 Calcd: 280.0675 [M + H]'. Found: 28 3.13 3-CH ₃ -4-CH ₃ -C ₄ H ₄ C ₄ H ₅ CH ₅ 0.52 190-192 Calcd: 300.078 [M + H]'. Found: 33 3.14 3-BrC ₆ H ₄ C ₄ H ₅ CH ₅ 20 0.52 190-192 Calcd: 300.082 [M + H]'. Found: 33 3.16 2-CL-5-ClC ₄ H ₅ C ₄ H ₅ CH ₅ 80 0.53 226-270 Calcd: 300.082 [M + H]'. Found: 32 3.17 3-NO ₅ C ₄ H ₄ C ₄ H ₅ CH ₅ 86 0.53 226-229 Calcd: 300.082 [M + H]'. Found: 32 3.20 3-ClC ₄ H ₄ CH ₅ CH ₅ 86 0.53 217-219 Calcd: 240.090 [M + H]'. Found: 32 3.20 3-ClC ₄ H ₄ CH ₅ CH ₅ 78 0.54 230-222 Calcd: 300.81 [M + H]'. Found: 32 3.22 3-ClC ₆ C ₄ H ₄ CH ₅ CH ₅ 78 0.53 230-2240 Calcd: 300.81 [M + H]'. Found: 32 3.23	3.09	3-ClC ₆ H ₄	4-CH ₃ OC ₆ H ₄	CH_3	88	0.53	226 - 229	Calcd: 346.0781 [M + H] ⁺ . Found: 350.0831
3.11 3-ClCqH ₂ -(CH ₂) ₋ 79 0.52 148-151 Calcd: 282.065 [M + H]; Found: 28 3.12 ⁶ GH ₅ CH ₅ Q 0.49 224-226 Calcd: 282.065 [M + H]; Found: 28 3.13 3-BCrGH ₄ CH ₅ CH ₅ 0.52 190-192 Calcd: 300.075 [M + H]; Found: 30 3.15 3-Cl-4-CH ₅ CqH ₄ CH ₅ CH ₅ 0.52 190-192 Calcd: 300.083 [M + H]; Found: 33 3.16 2-Cl-5-ClC ₃ H ₃ CH ₅ CH ₅ 80 0.53 226-220 Calcd: 300.083 [M + H]; Found: 33 3.17 3-NO ₅ C ₆ H ₄ CH ₅ CH ₅ 60 0.53 226-227 Calcd: 300.081 [M + H]; Found: 23 3.20 3-ClC ₆ C ₄ H ₄ CH ₅ CH ₅ 78 0.53 217-212 Calcd: 230.081 [M + H]; Found: 23 3.21 C ₄ H ₅ CH ₅ 78 0.53 217-212 Calcd: 300.081 [M + H]; Found: 33 3.22 3-ClC ₆ C ₄ H ₄ CH ₅ 60 57 230-22 Calcd: 310.0137 [M + H]; Found: 33 3.23 3-Cl	3.10	3-ClC ₆ H ₄	CH_3	C_6H_5	83	0.53	238 - 240	Calcd: 316.0675 [M + H] ⁺ . Found: 316.0684
3.12 ^a C _H C _H Q2 0.49 224-226 Calct: 282.1065 [M + H] ⁺ , Found: 31 3.13 3.5H 3.5H 4.4CH, G _H C _H 62 0.52 190-192 Calct: 310.1378 [M + H] ⁺ , Found: 33 3.14 3.5H 3.5H 4.4CH, C _H C _H 12 105-193 Calct: 330.0285 [M + H] ⁺ , Found: 33 3.16 3.2C-4.2H, C _G H ₃ C _H C _H 14 80 141-16 Calct: 330.0285 [M + H] ⁺ , Found: 32 3.17 3.NO _C GH ₄ C _H C _H 80 0.53 226-229 Calct: 300.0971 [M + H] ⁺ , Found: 32 3.19 3.CH _C G _H C _H T 80 0.53 226-229 Calct: 324.0968 [M + H] ⁺ , Found: 32 3.20 3.20 3.21 C _H C _H C _H 78 0.53 217-219 Calct: 324.0968 [M + H] ⁺ , Found: 32 3.22 3.CH _C C _H C _H C _H 78 0.54 230-232 Calct: 324.1056 [M + H] ⁺ , Found: 32 3.23 3.CH _C C _H C _H C _H 78 0.52 224 234 234 234 234 23	3.11	3-ClC ₆ H ₄	$-(CH_2)$	4-	79	0.52	148 - 151	Calcd: 280.0675 [M + H] ⁺ . Found: 280.0733
3.13 3-Cf4,C,H-,-C,H, C,H, CH, 62 0.53 228-230 Calck : 310.1378 [M + H] ⁺ . Found: 38 3.14 3-BrC-H, C,H, CH, 52 190-193 Calck : 300.078 [M + H] ⁺ . Found: 33 3.15 3-C1-4-CH,CaH, C,H, CH, 60 0.54 280-270 Calck : 300.082 [M + H] ⁺ . Found: 33 3.17 3-NO,CaH, C,H, CH, 60 0.53 228-229 Calck : 300.082 [M + H] ⁺ . Found: 30 3.18 3-FCaH, C,H, CH, 64 0.64 220-220 Calck : 320.091 [M + H] ⁺ . Found: 32 3.20 3-CLCaH, C,H, CH, 78 0.53 221-219 Calck : 240.090 [M + H] ⁺ . Found: 32 3.22 3-CH,G,H, C,H, CH, 78 0.53 217-219 Calck : 341.051 [M + H] ⁺ . Found: 32 3.23 3-CH,G,G,H, C,H, CH, 78 0.53 217-219 Calck : 341.051 [M + H] ⁺ . Found: 32 3.23 3-CL,G,A, C,H, C,H, CH, 78 0.53 220-220 Calck : 341.051 [M + H] ⁺ . Found: 33 320 3.23 3-CL,G,A,	3.12 ⁶	C ₆ H ₅	C ₆ H ₅	CH ₃	92	0.49	224 - 226	Calcd: 282.1065 $[M + H]^+$. Found: 282.1037
3.14 3-Br C ₄ H ₄ C ₄ H ₅ CH ₅ 52 0.52 190-192 Calcit. 380.0170 M+ H ¹ Found. 33 3.16 3-CL4-CHLC ₄ H ₄ C ₄ H ₅ CH ₅ 60 0.54 286-270 Calcit. 380.0385 M+ H ¹ Found. 33 3.17 3-No ₇ C ₄ H ₄ C ₄ H ₅ CH ₅ 48 0.53 226-229 Calcit. 280.0971 M+ H ¹ Found. 32 3.18 3-FC ₄ H ₄ C ₄ H ₅ CH ₅ 88 0.53 226-229 Calcit. 280.019 M+ H ¹ Found. 39 3.20 3-CLG ₂ H ₄ CH ₈ CH ₃ CH ₈ 87 0.53 217-219 Calcit. 280.058 M+ H ¹ Found. 39 3.21 3-CH ₅ C ₆ H ₄ CH ₈ CH ₃ CH ₃ CH ₃ 230.23 Calcit. 280.058 M+ H ¹ Found. 33 3.22 3-CH ₅ C ₆ H ₄ CH ₈ CH ₃ CH ₃ CH ₃ 20.222 Calcit. 280.058 M+ H ¹ Found. 33 3.23 3-CH ₅ C ₆ H ₄ C ₄ H ₅ CH ₃ CH ₂ CH ₄ <th>3.13</th> <th>$3-CH_3-4-CH_3-C_6H_3$</th> <th>C₆H₅</th> <th>CH₃</th> <th>62</th> <th>0.53</th> <th>228-230</th> <th>Calcd: 310.1378 [M + H]⁺. Found: 310.1373</th>	3.13	$3-CH_3-4-CH_3-C_6H_3$	C ₆ H ₅	CH ₃	62	0.53	228-230	Calcd: 310.1378 [M + H] ⁺ . Found: 310.1373
3.16 2.0.1-4.CH, C.H., 3.16 2.0.1-2.2 190-193 Calk: 330.082 M + H1'. Found: 35 3.16 2.0.1-5-ClCaH ₃ C.H., C.H., 3.17 3.N.O, C.H., 3.16 C.H., C.H., 3.17 3.N.O, C.H., 3.17 C.H., 3.18 3.FC, C.H., 3.14 C.H., 3.14 C.H., C.H., 3.15 3.FC, C.H., 3.16 C.H.C., 3.17 3.N.O, C.H., 3.16 C.H.C., 3.17 3.N.O, C.H., 3.16 C.H.C., 3.17 3.N.O, C.H., 3.16 C.H.C., 3.16 C.H.C., 3.16 2.0.12 M.H.I'. Found: 30 3.19 3.CH ₂ C ₄ H ₄ C.H., C.H., 3.22 C.H.C., 3.24 S.C.C., 3.24 C.H.C., 3.24 S.C.C., 3.24 C.H.C., 3.24 S.C.C., 3.24 S.C.C., 3.24 S.C.C., 3.24 S.C.C., 3.24 C.H.C., 3.24 S.C.C., 3.24 S.C.C., 3.24 S.C.C., 3.24 S.C.C., 3.24 S.C.C., 3.24 S.C.C., 3.24 C.H.C., 3.24 S.C.C., 3.24	3.14	3-BrCeH4	CeHs	CH ₂	52	0.52	190-192	Calcd: $360.0170 [M + H]^+$ Found: 360.0168
16 2-Cl $-5-ClC_{H_2}$ CH ₂ 60 0.54 286-270 Calc: 250.0285 M + H1 ⁺ , Found: 250.235 3.16 3-FC ₄ H ₄ C _H ₃ CH ₃ 36 0.49 214-116 Calc: 250.0285 M + H1 ⁺ , Found: 250.320 3.18 3-FC ₄ H ₄ C _H ₃ CH ₃ 78 0.53 226-229 Calc: 250.1621 M + H1 ⁺ , Found: 250.321 3.20 3-CH ₂ C ₄ H ₄ CH ₃ CH ₃ 87 8.053 227-222 Calc: 250.1065 M + H1 ⁺ , Found: 250.323 3.22 3-CH ₂ C ₄ H ₄ C _H ₄ CH ₃ CH ₃ 80.52 116-118 Calc: 3105 M + H1 ⁺ , Found: 323.33 3-CH ₄ C ₄ C ₄ H ₄ C _H ₄ CH ₃ CH ₄ 68 0.52 116-118 Calc: 310.317 M + H1 ⁺ , Found: 323.32 3.21 3-ClC ₄ H ₄ C _H ₄ CH ₃ CH ₄ 68 0.52 116-118 Calc: 310.311.371 M + H1 ⁺ , Found: 333.33	3.15	3-Cl-4-CH ₂ C ₆ H ₂	CeHr	CH ₂	32	0.52	190-193	Calcd: 330 0832 $[M + H]^+$ Found: 330 0834
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3 16	2 - C = 5 - C = C + 3	C ₀ H ₂	CH ₀	60	0.54	266-270	Calcd: $350.0285 [M + H]^+$ Found: 350.0248
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3 17	3-NO ₂ C ₂ H	C ₀ H ₂	CH ₂	/8	0.01	214-116	Calcd: $327.0916 [M + H]^+$ Found: 327.0928
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	218	3-FC-H.	C.H.	CH ₂	36	0.45	226-220	Calcd: $327.0010 [M + H]^{+}$ Found: 327.0020
3.19 3-CLT3CH14 CH33 CH3 CH4 234-236 Calcdt 234.0151 H + H) ⁺ , Found 22 3.21 3-CH3CH4 CH3 CH3 CH3 CH4 6 0.50 220-222 Calcdt 224.1065 H + H) ⁺ , Found 32 3.223 3-CH3CH4 CaH3 CH4, CH3 CH4 6 0.50 220-222 Calcdt 320.0831 M + H) ⁺ , Found 33 3.23 3-CH4, CH4, CH4 CH4 CH4 CH4 CA 0.57 178-180 Calcdt 310.1377 M + H) ⁺ , Found 33 3.26 3-CICeH4 CH4, CH3 CH3 52 0.30 166-162 Calcdt 284.0261 M + H) ⁺ , Found 32 3.31 3-CH2, CH4 CH4 CH3 CH3 82 0.53 168-170 Calcdt 310.171 M + H) ⁺ , Found 33 3.33 3.33 3.33 3.33 3.33 3.33 3.33 3	J.10 9 10	2 CH C H			50	0.55	206 207	Calcd: 300.0371 [M + H] ⁺ Found: 300.0335
3.21 C.H.3 C.H.4 C.H.4 C.H.4 C.H.3 C.H.3 C.H.3 C.H.4 C.H.4 C.H.4 C.H.3 C.H.3 C.H.3 C.H.4 C.H.4 C.H.4 C.H.3 C.H.3 C.H.4 C.H.3 C.H.3 C.H.4 C.H.4 H.H.7 Found: 31 S.J.3 C.H.2 C.H.4 C.H.3 S.G. C.H.4 C.H.3 S.G. C.H.4 C.H.3 S.G. C.H.4 <t< th=""><th>3.19 2 90</th><th>$3-CH_{3}C_{6}H_{4}$</th><th></th><th></th><th>07</th><th>0.55</th><th>200-207</th><th>Calcu. 290.1221 $[M + H]^+$ Found: 290.1206</th></t<>	3.19 2 90	$3-CH_{3}C_{6}H_{4}$			07	0.55	200-207	Calcu. 290.1221 $[M + H]^+$ Found: 290.1206
3.2.2 3.2.4 3.2.4.4 CH3 CH3 CH3 CH3 CH3 CH4	3.2U 9.91	$5 - C I C_6 \Pi_4$		CH_3	01 70	0.54	234-230	Calcd: 234.0319 [W \pm H] ⁺ Found: 234.0321
3.22 3 -CH ₃ C ₄ F ₄ , CH ₃ CH ₃ CH ₃ CH ₃ 3 0 .34 230–232 Calc: 234.105 [M + H] ⁺ , Found: 32 3.24 3 -ClC ₆ H ₄ C ₄ H ₅ CH ₅ (H ₂ H ₆ 6 .50 220–222 Calc: 324.1534 [M + H] ⁺ , Found: 32 3.25 3 -ClC ₆ H ₄ C ₄ H ₅ CH ₅ (CH ₂ 7 0 .53 202–204 Calc: 310.1377 [M + H] ⁺ , Found: 31 3.26 3 -ClC ₆ H ₄ C ₄ H ₅ CH ₂ (CH ₂ 7 0 .57 178–180 Calc: 310.1377 [M + H] ⁺ , Found: 31 3.27 3 -ClC ₆ H ₄ CH ₃ (CO + H ₃ 6 8 0.49 194–196 Calc: 298.0417 [M + H] ⁺ , Found: 29 3.28 3 -ClC ₆ H ₄ CH ₃ CH ₅ CH ₅ 5 0 .05 160–162 Calc: 310.1377 [M + H] ⁺ , Found: 29 3.28 3 -ClC ₆ H ₄ CH ₃ CH ₅ CH ₅ CH ₅ 2 0.53 240–242 Calc: 310.1378 [M + H] ⁺ , Found: 31 3.31 3 -CH ₅ O ₆ H ₄ CH ₃ CH ₅ CH ₅ 2 0.53 240–242 Calc: 310.1378 [M + H] ⁺ , Found: 31 3.32 3 -ClC ₆ H ₄ 3 -CNC ₆ H ₄ CH ₅ CH ₅ 8 0 .053 184–186 Calc: 310.1378 [M + H] ⁺ , Found: 31 3.33 3 -MC ₆ C ₄ H ₄ 3 -CNC ₆ H ₄ CH ₃ 80 0.53 184–186 Calc: 310.1378 [M + H] ⁺ , Found: 31 3.34 3 -CH ₅ O ₆ H ₄ 3 -CNC ₆ H ₄ CH ₃ 80 0.54 160–162 Calc: 310.1378 [M + H] ⁺ , Found: 31 3.35 3 -CH ₅ C ₆ H ₄ 3 -CNC ₆ H ₄ CH ₃ 80 0.54 160–162 Calc: 310.1378 [M + H] ⁺ , Found: 31 3.36 3 -ClC ₆ H ₄ 3 -CNC ₆ H ₄ CH ₃ 80 0.54 160–162 Calc: 310.1378 [M + H] ⁺ , Found: 34 3.38 3 -ClC ₆ H ₄ 3 -CNC ₆ H ₄ CH ₃ 80 0.54 160–168 Calc: 340.0120 [M + H] ⁺ , Found: 34 3.38 3 -ClC ₆ H ₄ 3 -H0COC ₆ H ₄ CH ₃ 61 0.33 166–168 Calc: 330.1147 [M + H] ⁺ , Found: 34 3.39 3 -CH ₅ C ₆ H ₄ 3 -H0COC ₆ H ₄ CH ₃ 70 0.34 170–172 Calc: 330.137 [M + H] ⁺ , Found: 34 3.39 3 -ClC ₆ H ₄ 3 -H0COC ₆ H ₄ CH ₃ 71 0.56 194–196 Calc: 330.1137 [M + H] ⁺ , Found: 34 3.40 4-CH ₅ SC ₄ H ₄ C ₄ H ₅ CH ₃ CH ₃ 73 0.35 164–166 Calc: 330.1137 [M + H] ⁺ , Found: 33 3.40 4-CH ₅ SC ₄ H ₄ C ₄ H ₅ CH ₃ CH ₃ 58 0.50 180–182 Calc: 310.1378 [M + H] ⁺ , Found: 31 3.40 4-CH ₅ SC ₄ H ₄ C ₄ H ₅ CH ₃ CH ₃ 58 0.50 180–182 Calc: 310.1378 [M + H] ⁺ , Found: 32 702 3 -ClC ₆ H ₄ 3 -H0COC ₆ H ₄ CH ₃ 50 0	3.61	$C_6\Pi_5$			10	0.55	217-219	Calcu: $220.0906 [W + H]^+$. Found: 220.0644
$ 3.2.3 3-CH_{3}C_{4}H_{4} \qquad C_{4}H_{5} \qquad (CH_{3}D_{2}CH) 46 \qquad 0.30 \qquad 220-222 \qquad CalcG: 324.134 \\ M + H1', Found: 33 \\ 3.2.5 \qquad 3-CH_{3}C_{4}H_{4} \qquad C_{4}H_{5} \qquad CH_{3}CH_{2} CR \\ 3.2.5 \qquad 3-CC_{6}H_{4} \qquad C_{6}H_{5} \qquad CH_{5}C_{4}H_{2} \qquad 72 \qquad 0.53 \qquad 202-204 \qquad CalcG: 310.01377 \\ M + H1', Found: 31 \\ 3.2.6 \qquad 3-CC_{6}H_{4} \qquad C_{4}H_{5} \qquad C_{6}H_{5} \qquad 6.57 \qquad 178-180 \qquad CalcG: 320.081 \\ M + H1', Found: 32 \\ 3.2.8 \qquad 3-CC_{6}H_{4} \qquad COH \qquad CH_{3} \qquad 68 \qquad 0.49 \qquad 194-196 \qquad CalcG: 280.0417 \\ M + H1', Found: 29 \\ 3.2.9 \qquad 3-CC_{6}H_{4} \qquad COH \qquad CH_{3} \qquad 52 \qquad 0.30 \qquad 166-168 \qquad CalcG: 280.0417 \\ M + H1', Found: 29 \\ 3.30 \qquad 3-CH_{3}-5-CH_{3}C_{6}H_{4} \qquad C_{4}H_{5} \qquad CH_{3} \qquad 80 \qquad 0.53 \qquad 184-186 \qquad CalcG: 312.1171 \\ M + H1', Found: 29 \\ 3.30 \qquad 3-CH_{3}-5-CH_{3}C_{6}H_{4} \qquad C_{4}H_{5} \qquad CH_{3} \qquad 80 \qquad 0.53 \qquad 184-186 \qquad CalcG: 312.1171 \\ M + H1', Found: 31 \\ 3.32 \qquad 3-CC_{6}H_{4} \qquad 3-CNC_{6}H_{4} \qquad CH_{3} \qquad 80 \qquad 0.53 \qquad 184-186 \qquad Calcd: 312.1171 \\ M + H1', Found: 31 \\ 3.33 \qquad 3-MeC_{4}H_{4} \qquad 3-CNC_{6}H_{4} \qquad CH_{3} \qquad 80 \qquad 0.54 \qquad 170-172 \qquad Calcd: 310.1378 \\ M + H1', Found: 32 \\ 3.34 \qquad 3-CC_{6}H_{4} \qquad 3-MeOCOC_{6}H_{4} \qquad CH_{3} \qquad 80 \qquad 0.52 \qquad 164-166 \qquad Calcd: 321.1174 \\ M + H1', Found: 35 \\ 3.36 \qquad 3-CC_{6}H_{4} \qquad 3-MeOCOC_{6}H_{4} \qquad CH_{3} \qquad 80 \qquad 0.52 \qquad 164-166 \qquad Calcd: 350.1119 \\ M + H1', Found: 35 \\ 3.36 \qquad 3-CC_{6}H_{4} \qquad 3-MeOCOC_{6}H_{4} \qquad CH_{3} \qquad 70 \qquad 0.34 \qquad 170-172 \qquad Calcd: 340.0573 \\ M + H1', Found: 35 \\ 3.39 \qquad c-naphthyl \qquad C_{4}H_{5} \qquad CH_{3} \qquad F0 \qquad 0.34 \qquad 170-172 \qquad Calcd: 340.01119 \\ M + H1', Found: 35 \\ 3.39 \qquad c-CL_{6}H_{4} \qquad 3-MeOCOC_{6}H_{4} \qquad CH_{3} \qquad 70 \qquad 0.34 \qquad 170-172 \qquad Calcd: 310.1378 \\ M + H1', Found: 36 \\ 3.37 \qquad 3-CCL_{6}H_{4} \qquad 3-MeOCOC_{6}H_{4} \qquad CH_{3} \qquad 70 \qquad 0.34 \qquad 170-172 \qquad Calcd: 340.0457 \\ M + H1', Found: 36 \\ 3.39 \qquad 3-CL_{6}H_{4} \qquad 3-MeOCOC_{6}H_{4} \qquad CH_{3} \qquad 61 \qquad 0.33 \qquad 166-168 \qquad Calcd: 350.0573 \\ M + H1', Found: 36 \\ 3.39 \qquad c-CL_{6}H_{4} \qquad 3-MeOCOC_{6}H_{4} \qquad CH_{3} \qquad 70 \qquad 0.34 \qquad 170-172 \qquad Calcd: 310.1378 \\ M + H1', Found: 37 \\ 3.36 \qquad -CL_{6}H_{4} \qquad 3-MeOCOC_{6}H_{4} \qquad CH_{3} \qquad 70 \qquad 0.34 \qquad 170-172 \qquad Cal$	3.22	$3-CH_3C_6H_4$		(CH_3)	80	0.54	230-232	Calcd: 234.1005 [M + H] · Found: 234.1078
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3.23	$3-CH_3C_6H_4$	C_6H_5	$(CH_3)_2CH$	40	0.50	220-222	Calcd: $324.1534 [M + H]^+$. Found: 324.1524
3.25 3 -CH ₃ C ₆ H ₄ C ₆ H ₅ CH ₅ CH ₂ 72 0.33 202–204 Calcd: 310 .1377 [M + H] ⁻ . Found: 31 3.26 3 -ClC ₆ H ₄ CH ₅ OC CH ₃ 68 0.49 194–196 Calcd: 328 .0382 [M + H] ⁻ . Found: 29 3.28 3 -ClC ₆ H ₄ COOH CH ₃ 52 0.30 166–168 Calcd: 298 .0417 [M + H] ⁻ . Found: 29 3.29 3 -ClC ₆ H ₄ CH ₅ OC CH ₅ CH ₃ 82 0.53 240–242 Calcd: 310 .1378 [M + H] ⁻ . Found: 31 3.31 3 -ClC ₆ H ₄ C ₄ H ₅ C ₄ H ₅ CH ₃ 80 0.53 184–186 Calcd: 298 .0417 [M + H] ⁻ . Found: 31 3.32 3 -ClC ₆ H ₄ C ₄ H ₅ C ₄ H ₅ CH ₃ 80 0.53 184–186 Calcd: 321 .1171 [M + H] ⁺ . Found: 31 3.32 3 -ClC ₆ H ₄ 3 -CNC ₆ H ₄ CH ₅ 4 3 -CNC ₆ H ₄ CH ₅ CH ₃ 80 0.53 168–170 Calcd: 321 .0174 [M + H] ⁻ . Found: 32 3.33 3 -MeC ₆ H ₄ 3 -CNC ₆ H ₄ CH ₃ 88 0.53 160–162 Calcd: 321 .1174 [M + H] ⁺ . Found: 32 3.34 3-ClC ₆ H ₄ 3 -MeOCOC ₆ H ₄ CH ₃ 80 0.52 164–166 Calcd: 321 .1174 [M + H] ⁺ . Found: 35 3.36 3 -ClC ₆ H ₄ 3 -MOCOC ₆ H ₄ CH ₃ 70 0.34 170–172 Calcd: 334 .0730 [M + H] ⁺ . Found: 35 3.37 3 -CH ₅ C ₆ H ₄ 3 -MOCOC ₆ H ₄ CH ₃ 71 0.33 166–166 Calcd: 332 .1176 [M + H] ⁺ . Found: 35 3.39 a-cnaphthyl CaH ₅ CH ₅ CH ₃ 58 0.50 180–188 Calcd: 330 .1138 [M + H] ⁺ . Found: 35 3.40 4-CH ₅ SC ₆ H ₄ 3 -NH ₂ COC ₆ H ₄ CH ₃ 58 0.50 180–182 Calcd: 330 .073 [M + H] ⁺ . Found: 35 3.40 4-CH ₅ SC ₆ H ₄ 3 -NH ₂ COC ₆ H ₄ CH ₃ 58 0.48 215–217 Calcd: 320 .0242 [M + H] ⁺ . Found: 35 3.40 4-CH ₅ SC ₆ H ₄ C ₆ H ₅ CH ₃ 58 0.48 215–217 Calcd: 328 .0242 [M + H] ⁺ . Found: 31 3.40 4-CH ₅ SC ₆ H ₄ C ₆ H ₅ CH ₃ 58 0.48 165–167 Calcd: 338 .0259 [M + H] ⁺ . Found: 36 7.04 3 -ClC ₆ H ₄ 3 -BC ₆ H ₅ CH ₃ 66 0.83 188–170 Calcd: 380 .059 [M + H] ⁺ . Found: 26 7.05 C ₆ H ₅ C ₆ H ₅ CH ₅ CH ₃ 86 0.84 165–167 Calcd: 326 .0298 [M + H] ⁺ . Found: 36 7.06 C ₆ H ₅ CH ₆ H ₅ CH ₃ 70 71 46–148 Calcd: 320 .0298 [M + H] ⁺ . Found: 27 7.16 3 -CH ₅ CH ₄ CH ₃ CH ₅ CH ₃ 79 0 ,76 178–180 Calcd: 38 .1867 [M +	3.24	$3-CIC_6H_4$	C_6H_5	CH ₃ CH ₂	68	0.52	116-118	Calcd: $330.0831 \text{ [M + H]}^+$. Found: 330.0833
3.26 $3-Clc_{BH_4}$ C_{BH_5} C_{BH_5} 56 0.57 $178-180$ Calcd: 284.0817 $M+H^+$ Found: 37 3.28 $3-Clc_{BH_4}$ COOH CH_3 52 0.30 $166-168$ Calcd: 284.0261 $M+H^+$ Found: 28 3.29 $3-Clc_{BH_4}$ CH_3 CH_3COO 75 0.45 $160-162$ Calcd: 280.017 $M+H^+$ Found: 28 3.31 $3-CH_3Ce_{BH_4}$ C_{BH_5} CH_3 80 0.53 $168-170$ Calcd: 310.1378 $M+H^+$ Found: 31 3.31 $3-CH_3Ce_{BH_4}$ $3-CNC_6H_4$ CH_3 84 0.53 $168-170$ Calcd: 312.1174 $M+H^+$ Found: 31 3.33 $3-MC_2G_4H_4$ $3-CNC_6H_4$ $H=3$ 80 52 $164-166$ Calcd: 321.1174 $M+H^+$ Found: 35 3.34 $3-Clc_2H_4$ $3-MeCOCc_4H_4$ CH_3 70 0.34 $170-172$ Calcd: 350.073 $M+H^+$ Found: 35 3.36 $3-Clc_2H_4$ $3-MeCOCc_4H_4$ CH_3 70 3.5	3.25	$3-CH_3C_6H_4$	C_6H_5	CH_3CH_2	72	0.53	202-204	Calcd: $310.1377 [M + H]^+$. Found: 310.1375
3.27 3 -ClC ₄ H ₄ CH ₃ OCO CH ₃ 68 0.49 194-196 Calcd: 298.0417 [M + H] ⁺ , Found: 28 3.29 3 -ClC ₄ H ₄ CH ₃ CH ₃ OCO T5 0.45 160-162 Calcd: 298.0417 [M + H] ⁺ , Found: 28 3.29 3 -ClC ₄ H ₄ CH ₃ CH ₃ CH ₃ OCO 75 0.45 160-162 Calcd: 298.0417 [M + H] ⁺ , Found: 31 3 -CH ₃ O ₆ H ₄ C ₄ H ₅ CH ₃ 82 0.53 240-242 Calcd: 310.1378 [M + H] ⁺ , Found: 31 3 -CH ₃ O ₆ C ₄ H ₄ C ₄ H ₅ CH ₃ 80 0.53 184-186 Calcd: 284.0261 [M + H] ⁺ , Found: 31 3 -CH ₃ O ₆ C ₄ H ₄ 3-CNC ₆ H ₄ CH ₅ 84 0.53 168-170 Calcd: 341.0628 [M + H] ⁺ , Found: 31 3 -CH ₃ O ₆ C ₄ H ₄ 3-CNC ₆ H ₄ CH ₃ 80 0.53 168-170 Calcd: 341.0628 [M + H] ⁺ , Found: 32 3 -ClC ₄ H ₄ 3-CNC ₆ H ₄ CH ₃ 80 0.54 170-172 Calcd: 374.0730 [M + H] ⁺ , Found: 37 3 -S5 3-ClC ₆ C ₄ H ₄ 3-MeOCOC ₆ H ₄ CH ₃ 70 0.54 170-172 Calcd: 370.0573 [M + H] ⁺ , Found: 36 3 -37 3-CH ₃ C ₄ H ₄ 3-MeOCOC ₆ H ₄ CH ₃ 70 0.54 170-172 Calcd: 360.0573 [M + H] ⁺ , Found: 36 3 -37 3-CH ₃ C ₄ H ₄ 3-MeOCOC ₆ H ₄ CH ₃ 70 0.55 164-166 Calcd: 0.571, [M + H] ⁺ , Found: 37 3 -35 3-3 CH ₅ C ₄ H ₄ 3-MeOCOC ₆ H ₄ CH ₃ 71 0.56 194-196 Calcd: 332.1143 [M + H] ⁺ , Found: 33 3 -60 CH ₄ H ₄ C ₄ H ₅ CH ₃ 58 0.50 180-182 Calcd: 310.1378 [M + H] ⁺ , Found: 33 3 -0 CH ₄ H ₄ C ₄ H ₄ C ₄ H ₅ CH ₃ 58 0.50 180-182 Calcd: 310.1378 [M + H] ⁺ , Found: 32 3 -245 Calcd, 340.1119 [M + H] ⁺ , Found: 32 3 -245 Calcd, 44 - CH ₃ C ₆ H ₄ CH ₃ 58 0.61 22-225 Calcd: 296.1221 [M + H] ⁺ , Found: 32 3 -245 Calcd, 44 - CH ₅ CH ₄ CH ₃ 58 0.62 223-225 Calcd: 296.1221 [M + H] ⁺ , Found: 28 7.02 3 3-ClC ₆ H ₄ C ₄ H ₅ CH ₃ 66 0.83 168-170 Calcd: 318.056 [M + H] ⁺ , Found: 28 7.02 3 3-ClC ₆ H ₄ CH ₃ 3-ClC ₆ H ₄ CH ₃ 67 0.76 176-178 Calcd: 284.0945 [M + H] ⁺ , Found: 28 7.05 CAH ₅ CH ₄ CH ₃ CH ₅ Calcd: 220.7948 [M + H] ⁺ , Found: 27 7.0 3-ClC ₆ H ₄ CH ₃ CH ₅	3.26	$3-CIC_6H_4$	C_6H_5	C_6H_5	56	0.57	178-180	Calcd: $378.0832 [M + H]^+$. Found: 378.0863
3.28 3 -ClC ₆ H ₄ COOH CH ₃ 52 0.30 166-168 Calct 284.0261 [M + H] ⁺ , Found: 28 (3) 3 CH ₃ -5-CH ₃ C ₆ H ₃ C ₆ H ₅ CH ₃ 82 0.53 240-242 Calct 29.80417 [M + H] ⁺ , Found: 11 (3.1) 3.31 3 -CH ₃ O ₆ H ₄ C ₆ H ₅ CH ₃ (CH ₃ 80 0.53 168-170 Calct 312.1171 [M + H] ⁺ , Found: 31 (3.33 3 -MeC ₆ H ₄ 3 -CNC ₆ H ₄ (CH ₃ 84 0.53 168-170 Calct 312.1171 [M + H] ⁺ , Found: 31 (3.33 3 -MeC ₆ H ₄ 3 -CNC ₆ H ₄ (CH ₃ 84 0.53 168-170 Calct 314.10628 [M + H] ⁺ , Found: 31 (3.35 3 -CH ₃ C ₆ H ₄ 3 -MeCOC ₆ H ₄ (CH ₃ 88 0.52 164-166 Calct 324.17730 [M + H] ⁺ , Found: 37 (3.35 3 -CH ₃ C ₆ H ₄ 3 -MeOCOC ₆ H ₄ (CH ₃ 80 0.52 164-166 Calct 374.1776 [M + H]⁺, Found: 37 (3.35 3-CH₃C₆H₄ 3-MeOCOC₆H₄ (CH₃ 70 0.34 170-172 Calct 340.0119 [M + H]⁺, Found: 35 3.36 3-ClC₆H₄ 3-MeOCOC₆H₄ (CH₃ 70 0.34 170-172 Calct 360.0573 [M + H]⁺, Found: 35 3.39 c-naphthyl Co₆H₅ CH₃ (CH₃ 47 0.56 194-166 Calct 354.1276 [M + H]⁺, Found: 35 3.39 a-naphthyl C₆H₅ CH₃ CH₃ 5 8 0.50 180-182 Calct 310.1119 [M + H]⁺, Found: 31 3.41 4-CH₅CC₆H₄ C₆H₅ CH₃ CH₃ 5 0.62 223-216 Calct 320.11378 [M + H]⁺, Found: 31 3.41 4-CH₅CC₆H₄ C₆H₅ CH₃ 5 0.62 223-225 Calct 296.1221 [M + H]⁺, Found: 31 3.41 4-CH₅C₆H₄ C₆H₅ CH₃ 6 0.62 223-225 Calct 284.0945 [M + H]⁺, Found: 31 7.04 3-ClC₆H₄ 3-BrC₆H₄ CH₃ 5 0.76 179-180 Calct 310.565 [M + H]⁺, Found: 31 7.04 3-ClC₆H₄ 3-BrC₆H₄ CH₃ 6 0.83 168-170 Calct 284.0945 [M + H]⁺, Found: 31 7.04 3-ClC₆H₄ 3-BrC₆H₄ CH₃ 6 0.83 168-167 Calct 284.0945 [M + H]⁺, Found: 31 7.04 3-ClC₆H₄ 5-CH₅ CH₅ CH₃ 8 0.62 215-217 Calct 328.0942 [M + H]⁺, Found: 31 7.04 3-ClC₆H₄ 5-CH₅ CH₅ 6-CH₅ 6-CH₅ 6-CH₅ 6-CH₅ 7.04 1+], Found: 31 7.04 3-ClC₆H₄ 7.05 CaH₅ C+H₅ CH-16 1.06 Calct 2-284.0945 [M + H]⁺, Found: 20 7.05 CaH₅ C-144 3-ClC₆H₄ C-147 C-147 Calct 1.081.119 C-147 C	3.27	$3-ClC_6H_4$	CH ₃ OCO	CH_3	68	0.49	194-196	Calcd: 298.0417 $[M + H]^+$. Found: 298.0421
3.29 $3-ClC_{8}H_4$ CH ₃ CH ₃ OCO 75 0.45 160-162 Calcd: 298.0417 [M + H] ⁺ , Found: 29. 3.30 $3-ClC_{9}H_5$ CH ₃ C ₆ H ₄ C ₈ H ₅ CH ₃ 82 0.53 240-242 Calcd: 310.1378 [M + H] ⁺ , Found: 31. 3.31 $3-CH_3OC_{6}H_4$ C ₆ H ₅ CH ₃ 84 0.53 168-170 Calcd: 31.1174 [M + H] ⁺ , Found: 31. 3.32 $3-ClC_{8}H_4$ $3-CNC_{8}H_4$ CH ₃ 84 0.53 168-170 Calcd: 31.1174 [M + H] ⁺ , Found: 31. 3.33 $3-MeC_{6}H_4$ $3-CNC_{6}H_4$ CH ₃ 84 0.53 160-162 Calcd: 32.1174 [M + H] ⁺ , Found: 32. 3.34 $3-ClC_{6}H_4$ $3-MeOCOC_{6}H_4$ CH ₃ 90 0.54 170-172 Calcd: 374.0730 [M + H] ⁺ , Found: 35. 3.35 $3-ClC_{8}H_4$ $3-MeOCOC_{6}H_4$ CH ₃ 70 0.34 170-172 Calcd: 340.1276 [M + H] ⁺ , Found: 35. 3.36 $3-ClC_{8}H_4$ $3-HOCOC_{6}H_4$ CH ₃ 70 0.34 170-172 Calcd: 340.1119 [M + H] ⁺ , Found: 35. 3.36 $3-ClC_{6}H_4$ $3-HOCOC_{6}H_4$ CH ₃ 71 0.35 164-166 Calcd: 330.0733 [M + H] ⁺ , Found: 35. 3.39 α -naphthyl CoH ₄ CH ₃ 77 0.56 194-196 Calcd: 330.1378 [M + H] ⁺ , Found: 35. 3.40 $4-CH_3CH_2C_{6}H_4$ C ₆ H ₅ CH ₃ 78 0.50 180-182 Calcd: 330.1378 [M + H] ⁺ , Found: 31. 3.41 $4-CH_3SC_{6}H_4$ C ₆ H ₅ CH ₃ 59 0.48 215-217 Calcd: 328.0942 [M + H] ⁺ , Found: 32. 3.42 Calch, CH ₃ C ₆ H ₄ C ₆ H ₅ CH ₃ 59 0.48 215-217 Calcd: 310.1378 [M + H] ⁺ , Found: 32. 3.42 Calch, CH ₃ C ₆ H ₄ C ₆ H ₅ CH ₃ 50 0.62 223-225 Calcd: 296.1221 [M + H] ⁺ , Found: 32. 3.42 Calch, CH ₃ CalcH ₄ CalH ₄ CH ₃ 61 0.83 164-166 Calcd: 318.0959 [M + H] ⁺ , Found: 32. 7.02 $3-ClC_{6}H_4$ CalH ₄ CalH ₄ CH ₃ 67 0.76 179-180 Calcd: 318.0565 [M + H] ⁺ , Found: 24. 7.05 CalH ₄ CalH ₄ Ch ₄ CH ₃ CH ₃ 67 0.76 176-176 Calcd: 20.1344 [M + H] ⁺ , Found: 24. 7.06 Calds 314.0654 [M + H] ⁺ , Found: 31. 7.07 $3-ClC_{6}H_4$ CH ₃ CH ₃ 67 0.76 176-178 Calcd: 220.798 [M + H] ⁺ , Found: 27. 7.18 $3-CH_{6}C_{4}H_{4}$ CH ₃ CH ₃ 67 0.76 176-178 Calcd: 220.1344 [M + H] ⁺ , Found: 27. 7.18 $3-CH_{6}C_{4}H_{4}$ CH ₃ CH ₃ 67 0.76 176-178 Calcd: 278.1657 [M + H] ⁺ , Found: 27. 7.19 $3-ClC_{6}H_4$ CH ₃ CH ₃ 67 0.76	3.28	$3-CIC_6H_4$	СООН	CH ₃	52	0.30	166 - 168	Calcd: $284.0261 [M + H]^+$. Found: 284.0261
3.30 3 -CH ₃ 5 -CH ₂ C ₆ H ₄ C ₆ H ₅ C H ₃ 82 0.53 240–242 Calcd: 310.1378 [M + H] ⁺ , Found: 31 3.31 3 -CH ₃ 5 -CH ₂ C ₆ H ₄ C ₆ H ₅ C H ₃ 84 0.53 184–186 Calcd: 312.1171 [M + H] ⁺ , Found: 31 3.32 3 -ClC ₆ H ₄ 3 -CNC ₆ H ₄ C H ₃ 88 0.53 168–170 Calcd: 312.1171 [M + H] ⁺ , Found: 31 3.33 3 -MeC ₆ H ₄ 3 -CNC ₆ H ₄ C H ₃ 88 0.53 168–170 Calcd: 312.1171 [M + H] ⁺ , Found: 32 3.34 3 -ClC ₆ H ₄ 3 -MeOCOC ₆ H ₄ C H ₃ 90 0.54 170–172 Calcd: 374.0730 [M + H] ⁺ , Found: 37 3.35 3 -CH ₂ C ₆ H ₄ 3 -MeOCOC ₆ H ₄ C H ₃ 90 0.54 170–172 Calcd: 340.1179 [M + H] ⁺ , Found: 37 3.36 3 -ClC ₆ H ₄ 3 -MeOCOC ₆ H ₄ C H ₃ 70 0.34 170–172 Calcd: 340.1179 [M + H] ⁺ , Found: 34 3.38 3 -ClC ₆ H ₄ 3 -MOCOC ₆ H ₄ C H ₃ 71 0.33 166–168 Calcd: 359.0733 [M + H] ⁺ , Found: 33 3.40 4 -CH ₃ CH ₂ C ₆ H ₄ C ₆ H ₅ C H ₃ 77 0.56 194–196 Calcd: 359.0733 [M + H] ⁺ , Found: 31 3.41 4 -CH ₃ SC ₆ H ₄ C ₆ H ₅ C H ₃ 58 0.50 180–182 Calcd: 310.11378 [M + H] ⁺ , Found: 31 3.41 4 -CH ₃ SC ₆ H ₄ C ₆ H ₅ C H ₃ 58 0.50 180–182 Calcd: 310.1378 [M + H] ⁺ , Found: 31 3.41 4 -CH ₃ SC ₆ H ₄ C ₆ H ₅ C H ₃ 58 0.50 180–182 Calcd: 310.01378 [M + H] ⁺ , Found: 31 3.42 4 -CH ₃ SC ₆ H ₄ C ₆ H ₅ C H ₃ 58 0.62 223–227 Calcd: 328.0494 [M + H] ⁺ , Found: 29 7.01 3 -ClC ₆ H ₄ C ₆ H ₅ C H ₃ 66 0.83 168–170 Calcd: 348.0454 [M + H] ⁺ , Found: 31 7.04 3 -ClC ₆ H ₄ 3 -BrC ₆ H ₄ C H ₃ 52 0.85 168–166 Calcd: 362.0059 [M + H] ⁺ , Found: 31 7.04 3 -ClC ₆ H ₄ 6 -H ₅ C H ₃ 66 0.84 165–167 Calcd: 248.0954 [M + H] ⁺ , Found: 31 7.04 3 -ClC ₆ H ₄ C ₆ H ₅ C H ₃ 67 0.76 176–178 Calcd: 248.0954 [M + H] ⁺ , Found: 28 7.05 C ₆ H ₅ C H ₄ C ₆ H ₅ C H ₃ 67 0.76 176–178 Calcd: 248.0594 [M + H] ⁺ , Found: 27 7.16 3 -ClC ₆ H ₄ C ₆ H ₅ C H ₃ 67 0.76 176–178 Calcd: 248.0594 [M + H] ⁺ , Found: 27 7.16 7.16 7.16 1.6 +H ₄ 1.6 +H ₅ C H ₃ 67 0.76 176–178 Calcd: 248.150 [M +	3.29	3-CIC ₆ H ₄	CH ₃	CH ₃ OCO	75	0.45	160 - 162	Calcd: 298.0417 $[M + H]^+$. Found: 298.0410
3.31 3 -CH ₃ OC ₆ H ₄ C ₆ H ₅ CH ₃ CH ₃ 80 0.53 184 -186 Calcd: 312 .1171 [M + H] ⁺ , Found: 34 3.32 3 -ClC ₆ H ₄ 3 -CNC ₆ H ₄ CH ₃ 84 0.53 168 -170 Calcd: 311 .0128 [M + H] ⁺ , Found: 34 3.33 3 -MeC ₆ H ₄ 3 -CNC ₆ H ₄ CH ₃ 90 0.54 170 -172 Calcd: 374 .0730 [M + H] ⁺ , Found: 37 3.34 3 -ClC ₈ H ₄ 3 -MeOCOC ₆ H ₄ CH ₃ 90 0.52 164 -166 Calcd: 354 .1276 [M + H] ⁺ , Found: 37 3.35 3 -ClC ₈ H ₄ 3 -MeOCOC ₆ H ₄ CH ₃ 70 0.34 170 -172 Calcd: 374 .0730 [M + H] ⁺ , Found: 35 3.36 3 -ClC ₈ H ₄ 3 -HOCOC ₆ H ₄ CH ₃ 70 0.34 170 -172 Calcd: 360 .0573 [M + H] ⁺ , Found: 36 3.37 3 -CH ₂ C ₈ H ₄ 3 -HOCOC ₆ H ₄ CH ₃ 71 0.56 194 -196 Calcd: 330 .1119 [M + H] ⁺ , Found: 38 3.40 4-CH ₃ ClC ₈ C ₆ H ₄ C ₆ H ₅ CH ₃ 47 0.56 194 -196 Calcd: 332 .1143 [M + H] ⁺ , Found: 33 3.40 4-CH ₃ ClC ₆ CH ₄ C ₆ H ₅ CH ₃ 58 0.50 180 -182 Calcd: 310 .1378 [M + H] ⁺ , Found: 33 3.40 4-CH ₃ ClC ₆ CH ₄ C ₆ H ₅ CH ₃ 58 0.62 233 -225 Calcd: 296 .1221 [M + H] ⁺ , Found: 32 3.428 C ₆ H ₅ CH ₃ CH ₅ CH ₃ 88 0.82 216-218 Calcd: 284 .0945 [M + H] ⁺ , Found: 29 7.01 3 -ClC ₆ H ₄ 3 -BrC ₆ H ₄ CH ₃ 52 0.85 164 -166 Calcd: 318 .0565 [M + H] ⁺ , Found: 29 7.02 3 -ClC ₆ H ₄ 3 -BrC ₆ H ₄ CH ₃ 66 0.83 168 -170 Calcd: 284 .0945 [M + H] ⁺ , Found: 29 7.03 3 -ClC ₆ H ₄ CH ₃ CH ₃ 86 0.84 165 -167 Calcd: 284 .0945 [M + H] ⁺ , Found: 20 7.06 C ₆ H ₅ CH ₃ 86 0.48 165 -167 Calcd: 281 .0504 [M + H] ⁺ , Found: 22 7.06 3 -ClC ₆ H ₄ CH ₃ CH ₃ CH ₃ 86 0.78 144 -146 Calcd: 222 .0798 [M + H] ⁺ , Found: 22 7.08 3 -ClC ₆ H ₄ CH ₃ CH ₃ 86 0.78 144 -146 Calcd: 222 .0798 [M + H] ⁺ , Found: 22 7.13 3 -ClC ₆ H ₄ C ₆ H ₅ CH ₃ 76 77 76 77 166 -178 Calcd: 281 .1557 [M + H] ⁺ , Found: 22 7.14 3 -ClC ₆ H ₄ C ₆ H ₅ CH ₃ 76 7 77 166 -178 Calcd: 281 .1557 [M + H] ⁺ , Found: 27 7.15 3 -ClC ₆ H ₄ CH ₃ CH ₃ 86 0.78 144 -146 Calcd: 222 .0798 [M + H] ⁺ , Found:	3.30	$3-CH_3-5-CH_3C_6H_3$	C_6H_5	CH_3	82	0.53	240 - 242	Calcd: $310.1378 [M + H]^+$. Found: 310.1394
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3.31	$3-CH_3OC_6H_4$	C_6H_5	CH_3	80	0.53	184 - 186	Calcd: $312.1171 [M + H]^+$. Found: 312.1188
3.33 $3 - MeC_{6}H_{4}$ $3 - CNC_{6}H_{4}$ CH_{3} 88 0.53 $160 - 162$ Calcd: 321.1174 $[M + H]^+$, Found: 37 3.34 $3 - CIC_{6}H_{4}$ $3 - MeCOCO_{6}H_{4}$ CH_{3} 90 0.54 $170 - 172$ Calcd: 374.0730 $[M + H]^+$, Found: 37 3.35 $3 - CH_{3}C_{6}H_{4}$ $3 - MeCOCO_{6}H_{4}$ CH_{3} 90 0.52 $164 - 166$ Calcd: 354.1276 $[M + H]^+$, Found: 36 3.36 $3 - CH_{2}C_{6}H_{4}$ $3 - MeCOCO_{6}H_{4}$ CH_{3} 70 0.34 $170 - 172$ Calcd: 360.0573 $[M + H]^+$, Found: 36 3.37 $3 - CH_{2}C_{6}H_{4}$ $3 - NH_{2}COC_{6}H_{4}$ CH_{3} 71 0.35 $164 - 166$ Calcd: 359.0733 $[M + H]^+$, Found: 31 3.39 $0 - naphthyl$ $C_{6}H_{5}$ CH_{3} 47 0.56 $194 - 196$ Calcd: 352.0733 $[M + H]^+$, Found: 31 3.40 $4 - CH_{3}CH_{2}C_{6}H_{4}$ $C_{6}H_{5}$ CH_{3} 58 0.50 $180 - 182$ Calcd: 310.178 $[M + H]^+$, Found: 31 3.40 $4 - CH_{3}CH_{2}C_{6}H_{4}$ $C_{6}H_{5}$ CH_{3} 58 0.48 $215 - 217$ Calcd: 328.0942 $[M + H]^+$, Found: 31 3.42 $4 - CH_{3}CH_{2}C_{6}H_{4}$ $C_{6}H_{5}$ CH_{3} 56 0.62 $223 - 225$ Calcd: 296.1221 $[M + H]^+$, Found: 32 3.42 $3 - CIC_{6}H_{4}$ $C_{6}H_{5}$ CH_{3} 56 0.68 $216 - 218$ Calcd: 318.0945 $[M + H]^+$, Found: 28 7.02 $3 - CIC_{6}H_{4}$ $3 - BrC_{6}H_{4}$ CH_{3} 52 0.85 $164 - 166$ Calcd: 362.0059 $[M + H]^+$, Found: 28 7.03 $3 - CIC_{6}H_{4}$ $3 - BrC_{6}H_{4}$ CH_{3} 52 0.85 $164 - 166$ Calcd: 280.1954 $[M + H]^+$, Found: 24 7.04 $3 - CIC_{6}H_{4}$ $-(CH_{2})_{4} - 76$ 0.76 $179 - 180$ Calcd: 248.0954 $[M + H]^+$, Found: 24 7.05 $C_{6}H_{5}$ CH_{3} CH_{3} 86 0.78 $144 - 146$ Calcd: 220.1344 $[M + H]^+$, Found: 27 7.06 $3 - CIC_{6}H_{4}$ CH_{3} CH_{3} 86 0.78 $144 - 146$ Calcd: 220.1344 $[M + H]^+$, Found: 27 7.06 $3 - CIC_{6}H_{4}$ CH_{3} CH_{3} 86 0.78 $144 - 146$ Calcd: 220.1344 $[M + H]^+$, Found: 27 7.16 $3 - CIC_{6}H_{4}$ CH_{3} CH_{3} 77 0.68 $138 - 138 - 140$ Calcd: 278.1657 $[M + H]^+$, Found: 27 7.13 $3 - CIC_{6$	3.32	$3-ClC_6H_4$	$3-CNC_6H_4$	CH_3	84	0.53	168 - 170	Calcd: $341.0628 [M + H]^+$. Found: 341.0675
3.34 $3-\text{ClC}_{6}\text{H}_4$ $3-\text{Me}\text{COC}_{6}\text{H}_4$ CH_3 90 0.54 170-172 Calcd: 374.0730 [M + H] ⁺ , Found: 37 3.35 3 -CH}_3C_6H_4 3 -Me COC_6H_4 CH}_3 70 0.34 170-172 Calcd: 354.1276 [M + H] ⁺ , Found: 36 3.37 3 -CH}_3C_6H_4 3 -HOCCC}_6H_4 CH}_3 70 0.34 170-172 Calcd: 360.0573 [M + H] ⁺ , Found: 36 3.37 3 -CH}_6C_H_4 3 -HOCCC}_6H_4 CH}_3 71 0.35 164-166 Calcd: 350.0733 [M + H] ⁺ , Found: 37 3.340 4 -CH}_3C_6H_4 C _6H_5 CH}_3 47 0.56 194-196 Calcd: 350.0733 [M + H] ⁺ , Found: 33 3.40 4 -CH}_3C_6H_4 C_6H_5 CH}_3 59 0.48 215-217 Calcd: 320.01378 [M + H] ⁺ , Found: 31 3.40 4 -CH}_3C_6H_4 C_6H_5 CH}_3 59 0.48 215-217 Calcd: 328.0942 [M + H] ⁺ , Found: 31 3.42 6 -Ch}_3C_6H_4 C_6H_5 CH}_3 56 0.62 223-225 Calcd: 296.1221 [M + H] ⁺ , Found: 29 7.01 3 -CIC}_6H_4 C_6H_5 CH}_3 56 0.62 223-225 Calcd: 296.1221 [M + H] ⁺ , Found: 29 7.01 3 -CIC}_6H_4 C _6H_5 CH}_3 60 0.83 164-166 Calcd: 322.095 [M + H] ⁺ , Found: 29 7.01 3 -CIC}_6H_4 3 -CIC}_6H_4 CH}_3 66 0.83 168-170 Calcd: 310.1378 [M + H] ⁺ , Found: 31 7.04 3 -CIC}_6H_4 3 -CIC}_6H_4 CH}_3 66 0.83 164-166 Calcd: 322.0059 [M + H] ⁺ , Found: 24 7.05 C6H_5 CH}_4 CH _3 CH _3 67 0.76 179-180 Calcd: 284.0945 [M + H] ⁺ , Found: 21 7.06 C _6H_5 CH}_3 CH _3 CH _3 CH _3 CH _4 CH _4 CH _3 CH _3 86 0.77 146-148 Calcd: 220.1344 [M + H] ⁺ , Found: 22 7.06 C _6H_4 CH}_3 CH _3 86 0.77 146-148 Calcd: 220.1344 [M + H] ⁺ , Found: 22 7.06 C _6H_4 C _6H_5 CH _3 79 0.76 179-180 Calcd: 220.1344 [M + H] ⁺ , Found: 22 7.08 3 -CH}_3C_6H_4 CH _3 CH _3 79 0.76 179-180 Calcd: 220.1344 [M + H] ⁺ , Found: 22 7.06 C _6H_4 C _6H_5 CH _3 79 0.76 179-180 Calcd: 220.1344 [M + H] ⁺ , Found: 22 7.06 C _6H_4 C _6H_5 CH _3 79 0.76 179-180 Calcd: 228.1657 [M + H] ⁺ , Found: 27 7.16 3 -CH}_3C_6H_4 C _6H_5 CH _3 	3.33	$3-MeC_6H_4$	$3-CNC_6H_4$	CH_3	88	0.53	160 - 162	Calcd: $321.1174 [M + H]^+$. Found: 321.1152
3.35 $3-CH_3C_6H_4$ $3-MeOCOC_6H_4$ CH_3 R_1 CH_3 R_1 R_2 R_1	3.34	$3-ClC_6H_4$	3-MeOCOC ₆ H ₄	CH_3	90	0.54	170 - 172	Calcd: 374.0730 [M + H] ⁺ . Found: 374.0757
3.36 $3-\text{Cl}_{G}\text{H}_4$ 3 -HOCOC ₆ H ₄ CH ₃ 70 0 .34 170-172 Calcd: 360.0573 [M + H] ⁺ . Found: 36 3.37 3 -CH ₃ C ₆ H ₄ 3 -HOCOC ₆ H ₄ CH ₃ 61 0 .33 166-168 Calcd: 340.1119 [M + H] ⁺ . Found: 35 3.39 c -naphthyl C ₆ H ₅ CH ₃ 71 0 .56 194-196 Calcd: 350.0733 [M + H] ⁺ . Found: 33 3.40 4 -CH ₃ CH ₂ C ₆ H ₄ C ₆ H ₅ CH ₃ 58 0 .50 180-182 Calcd: 332.1143 [M + H] ⁺ . Found: 31 3.41 4 -CH ₃ CH ₂ C ₆ H ₄ C ₆ H ₅ CH ₃ 59 0 .48 215-217 Calcd: 328.0942 [M + H] ⁺ . Found: 32 3.42 ⁸ C ₆ H ₅ , CH ₃ C ₆ H ₅ CH ₃ 56 0 .62 223-225 Calcd: 296.1221 [M + H] ⁺ . Found: 29 7.01 3 -ClC ₆ H ₄ C ₆ H ₅ CH ₃ 56 0 .62 223-225 Calcd: 280.092 [M + H] ⁺ . Found: 32 3.42 ⁸ C ₆ H ₅ , CH ₄ 3 -BrC ₆ H ₄ CH ₃ 52 0 .85 164-166 Calcd: 320.059 [M + H] ⁺ . Found: 31 7.02 3 -ClC ₆ H ₄ 3 -BrC ₆ H ₄ CH ₃ 52 0 .85 164-166 Calcd: 320.059 [M + H] ⁺ . Found: 31 7.04 3 -ClC ₆ H ₄ 3 -BrC ₆ H ₄ CH ₃ 52 0 .85 164-166 Calcd: 340.045 [M + H] ⁺ . Found: 31 7.04 3 -ClC ₆ H ₄ 3 -ClC ₆ H ₄ CH ₃ 66 0 .83 168-170 Calcd: 248.0954 [M + H] ⁺ . Found: 25 7.06 C ₆ H ₅ CH ₃ CH ₃ 86 0 .76 179-180 Calcd: 248.0954 [M + H] ⁺ . Found: 22 7.06 C ₆ H ₅ CH ₃ CH ₃ 86 0 .78 144-146 Calcd: 320.1344 [M + H] ⁺ . Found: 22 7.08 3 -CH ₃ C ₆ H ₄ CH ₃ CH ₃ 86 0 .78 144-146 Calcd: 220.1344 [M + H] ⁺ . Found: 20 7.09 3 -CH ₃ C ₆ H ₄ CH ₃ CH ₃ 79 0 .76 153-155 Calcd: 220.1344 [M + H] ⁺ . Found: 20 7.10 4 -FC ₆ H ₄ C ₆ H ₅ CH ₃ 79 0 .76 153-155 Calcd: 268.1250 [M + H] ⁺ . Found: 26 7.11 3 -CH ₃ C ₆ H ₄ C ₆ H ₅ CH ₃ 79 0 .76 153-155 Calcd: 268.1250 [M + H] ⁺ . Found: 27 7.12 3 -ClC ₆ H ₄ 3 -ClC ₆ H ₄ CH ₃ 79 0 .76 153-155 Calcd: 280.1450 [M + H] ⁺ . Found: 27 7.13 3 -CH ₃ -G ₆ H ₄ 3 -CNC ₆ H ₄ CH ₃ 79 0 .76 153-156 Calcd: 278.1657 [M + H] ⁺ . Found: 27 7.14 3 -CH ₃ C ₆ H ₄ 3 -CNC ₆ H ₄ CH ₃ 79 0 .76 153-156 Calcd: 278.1657 [M + H] ⁺ . Found: 28 7.15 3 -ClC ₆ H ₄ 3	3.35	$3-CH_3C_6H_4$	$3-MeOCOC_6H_4$	CH_3	80	0.52	164 - 166	Calcd: $354.1276 [M + H]^+$. Found: 354.1305
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	3.36	$3-CIC_6H_4$	$3-HOCOC_6H_4$	CH_3	70	0.34	170 - 172	Calcd: $360.0573 [M + H]^+$. Found: 360.0608
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	3.37	$3-CH_3C_6H_4$	$3-HOCOC_6H_4$	CH_3	61	0.33	166 - 168	Calcd: 340.1119 [M + H] ⁺ . Found: 340.1147
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	3.38	$3-CIC_6H_4$	$3-NH_2COC_6H_4$	CH_3	73	0.35	164 - 166	Calcd: $359.0733 [M + H]^+$. Found: 359.0702
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	3.39	α-naphthyl	C_6H_5	CH_3	47	0.56	194 - 196	Calcd: $332.1143 [M + H]^+$. Found: 332.1224
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3.40	$4-CH_3CH_2C_6H_4$	C_6H_5	CH_3	58	0.50	180 - 182	Calcd: $310.1378 [M + H]^+$. Found: 310.1361
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.41	$4-CH_3SC_6H_4$	C_6H_5	CH_3	59	0.48	215 - 217	Calcd: $328.0942 [M + H]^+$. Found: 328.0928
7.01 $3-ClC_6H_4$ C_6H_5 CH_3 88 0.82 $216-218$ $Calcd: 284.0945$ $[M + H]^+$. Found: 287.02 $3-ClC_6H_4$ $3-BrC_6H_4$ CH_3 52 0.85 $164-166$ $Calcd: 362.0059$ $[M + H]^+$. Found: 317.03 $3-ClC_6H_4$ $3-ClC_6H_4$ CH_3 66 0.83 $168-170$ $Calcd: 248.0954$ $[M + H]^+$. Found: 31:7.04 $3-ClC_6H_4$ $-(CH_2)_4 76$ 0.76 $179-180$ $Calcd: 248.0954$ $[M + H]^+$. Found: 247.05 C_6H_5 C_6H_5 CH_3 86 0.84 $165-167$ $Calcd: 210.1344$ $[M + H]^+$. Found: 257.06 C_6H_5 CH_3 CH_3 82 0.77 $146-148$ $Calcd: 222.0798$ $[M + H]^+$. Found: 267.08 $3-ClC_6H_4$ CH_3 CH_3 86 0.78 $144-146$ $Calcd: 202.1344$ $[M + H]^+$. Found: 267.10 $4-FC_6H_4$ CH_5 CH_3 75 0.84 $159-160$ $Calcd: 264.1500$ $[M + H]^+$. Found: 267.10 $4-FC_6H_4$ C_6H_5 CH_3 79 0.76 $153-155$ $Calcd: 278.1657$ $[M + H]^+$. Found: 277.11 $3-ClC_6H_4$ C_6H_5 CH_3 81 0.85 $138-140$ $Calcd: 278.1657$ $[M + H]^+$. Found: 277.12 $3-ClC_6H_4$ C_6H_5 CH_3 68 0.84 $156-158$ $Calcd: 278.1657$ $[M + H]^+$. Found: 277.13 $3-ClC_6H_4$ C_6H_5 CH_3 68 0.84 <	3.42 ⁸	$C_6H_{5,}CH_3$	C_6H_5	CH_3	56	0.62	223 - 225	Calcd: 296.1221 [M + H] ⁺ . Found: 296.1205
7.02 $3-\text{ClC}_6\text{H}_4$ $3-\text{BrC}_6\text{H}_4$ $C\text{H}_3$ 52 0.85 $164-166$ Calcd: 362.0059 $[M + H]^+$. Found: 36 7.03 $3-\text{ClC}_6\text{H}_4$ $3-\text{ClC}_6\text{H}_4$ $C\text{H}_3$ 66 0.83 $168-170$ Calcd: 318.0565 $[M + H]^+$. Found: 31.70 7.04 $3-\text{ClC}_6\text{H}_4$ $-(\text{CH}_2)_4 76$ 0.76 $179-180$ Calcd: 248.0954 $[M + H]^+$. Found: 24.75 7.05 $C_6\text{H}_5$ $C\text{H}_3$ $C\text{H}_3$ 67 0.76 $176-178$ Calcd: 250.1344 $[M + H]^+$. Found: 25.76 7.06 $C_6\text{H}_5$ $C\text{H}_3$ $C\text{H}_3$ 67 0.76 $176-178$ Calcd: 222.0798 $[M + H]^+$. Found: 22.708 7.07 $3-\text{ClC}_6\text{H}_4$ $C\text{H}_3$ $C\text{H}_3$ 82 0.77 $146-148$ Calcd: 222.0798 $[M + H]^+$. Found: 22.708 7.09 $3-\text{CH}_3\text{C}_6\text{H}_4$ $C\text{H}_3$ $C\text{H}_3$ 86 0.78 $144-146$ Calcd: 202.1344 $[M + H]^+$. Found: 20.77 7.09 $3-\text{CH}_3\text{C}_6\text{H}_4$ $C_6\text{H}_5$ $C\text{H}_3$ 79 0.76 $153-155$ Calcd: 264.1500 $[M + H]^+$. Found: 26.77 7.10 $4-\text{F}_6\text{H}_4$ $C_6\text{H}_5$ $C\text{H}_3$ 79 0.76 $153-155$ Calcd: 278.1657 $[M + H]^+$. Found: 27.71 7.12 $3-\text{CH}_3\text{C}_6\text{H}_4$ $C_6\text{H}_5$ $C\text{H}_3$ 81 0.85 $138-140$ Calcd:	7.01	$3-ClC_6H_4$	C_6H_5	CH_3	88	0.82	216 - 218	Calcd: 284.0945 [M + H] ⁺ . Found: 284.0955
7.03 $3-\text{ClC}_6\text{H}_4$ $3-\text{ClC}_6\text{H}_4$ $C\text{H}_3$ 66 0.83 $168-170$ $Calcd:$ 318.0565 $[M + H]^+$. Found: 31.704 7.04 $3-\text{ClC}_6\text{H}_4$ $-(\text{CH}_2)_4-$ 76 0.76 $179-180$ $Calcd:$ 248.0954 $[M + H]^+$. Found: 24.704 7.05 $C_6\text{H}_5$ $C_6\text{H}_5$ CH_3 86 0.84 $165-167$ $Calcd:$ 250.1344 $[M + H]^+$. Found: 24.704 7.06 $C_6\text{H}_5$ CH_3 CH_3 67 0.76 $176-178$ $Calcd:$ 250.1344 $[M + H]^+$. Found: 25.704 7.07 $3-\text{Cl}_6\text{H}_4$ CH_3 CH_3 86 0.78 $144-148$ $Calcd:$ 220.798 $[M + H]^+$. Found: 20.709 7.08 $3-\text{CH}_3\text{C}_6\text{H}_4$ CH_3 CH_3 86 0.78 $144-146$ $Calcd:$ 220.798 $[M + H]^+$. Found: 20.709 7.09 $3-\text{CH}_3\text{C}_6\text{H}_4$ $C_6\text{H}_5$ CH_3 75 0.84 $159-160$ $Calcd:$ 20.1344 $[M + H]^+$. Found: 20.709 7.10 $4-\text{FC}_6\text{H}_4$ $C_6\text{H}_5$ CH_3 79 0.76 $153-155$ $Calcd:$ 268.1250 $[M + H]^+$. Found: 27.714 7.12 $3-\text{CH}_3\text{C}_6\text{H}_4$ $C_6\text{H}_5$ CH_3 81 0.85 $138-140$ $Calcd:$ 278.1657 $[M + H]^+$. Found: 27.714 7.13 $3-\text{CH}_3-6\text{H}_4$ $C_6\text{H}_5$ CH_3 66 0.86 $154-156$ $Calcd:$ 278.1657 $[M + H]^+$. Found: 27.714 7.14 $3-CH$	7.02	$3-ClC_6H_4$	3-BrC ₆ H ₄	CH_3	52	0.85	164 - 166	Calcd: 362.0059 [M + H] ⁺ . Found: 362.0062
7.04 $3-\text{ClC}_6\text{H}_4$ $-(\text{CH}_2)_4-$ 76 0.76 $179-180$ Calcd: 248.0954 $[\text{M} + \text{H}]^+$, Found: 24 7.05 $C_6\text{H}_5$ $C_6\text{H}_5$ $C\text{H}_3$ $C\text{H}_3$ 86 0.84 $165-167$ Calcd: 250.1344 $[\text{M} + \text{H}]^+$. Found: 25 7.06 $C_6\text{H}_5$ $C\text{H}_3$ $C\text{H}_3$ 67 0.76 $176-178$ Calcd: 250.1344 $[\text{M} + \text{H}]^+$. Found: 25 7.07 $3-\text{Cl}_6\text{H}_4$ $C\text{H}_3$ $C\text{H}_3$ 82 0.77 $146-148$ Calcd: 222.0798 $[\text{M} + \text{H}]^+$. Found: 22 7.08 $3-\text{CH}_3\text{C}_6\text{H}_4$ $C\text{H}_3$ $C\text{H}_3$ 86 0.78 $144-146$ Calcd: 202.1344 $[\text{M} + \text{H}]^+$. Found: 26 7.09 $3-\text{CH}_3\text{C}_6\text{H}_4$ $C_6\text{H}_5$ $C\text{H}_3$ 75 0.84 $159-160$ Calcd: 264.1500 $[\text{M} + \text{H}]^+$. Found: 26 7.10 $4-\text{FC}_6\text{H}_4$ $C_6\text{H}_5$ $C\text{H}_3$ 79 0.76 $153-155$ Calcd: 268.1250 $[\text{M} + \text{H}]^+$. Found: 27 7.13 $3-\text{CH}_3\text{C}_6\text{H}_4$ $C_6\text{H}_5$ $C\text{H}_3$ 81 0.85 $138-140$ Calcd: 278.1657 $[\text{M} + \text{H}]^+$. Found: 27 7.13 $3-\text{CH}_3\text{C}_6\text{H}_4$ $C_6\text{H}_5$ $C\text{H}_3$ 66 0.86 $154-156$ Calcd: 280.1450 $[\text{M} + \text{H}]^+$. Found: 27 7.13 $3-\text{CH}_3\text{C}_6\text{H}_4$ $C_6\text{H}_5$ $C\text{H}_3$ 66 0.84 $156-158$ Calcd: 280.1450 $[\text{M} + \text{H}]^+$. Found: 27 7.14 $3-\text{CH}_3\text{C}_6\text{H}_4$	7.03	$3-ClC_6H_4$	3-ClC ₆ H ₄	CH_3	66	0.83	168 - 170	Calcd: 318.0565 $[M + H]^+$. Found: 318.0616
7.05 C_6H_5 C_6H_5 CH_3 86 0.84 $165-167$ $Calct:$ 250.1344 $[M + H]^+$. Found: 250.1344 7.06 C_6H_5 CH_3 CH_3 CH_3 67 0.76 $176-178$ $Calct:$ 188.1188 $[M + H]^+$. Found: 18 7.07 $3-ClC_6H_4$ CH_3 CH_3 82 0.77 $146-148$ $Calct:$ 222.0798 $[M + H]^+$. Found: 22 7.08 $3-CH_3C_6H_4$ CH_3 CH_3 86 0.78 $144-146$ $Calct:$ 202.1344 $[M + H]^+$. Found: 20 7.09 $3-CH_3C_6H_4$ C_6H_5 CH_3 75 0.84 $159-160$ $Calct:$ 264.1500 $[M + H]^+$. Found: 26 7.10 $4-FC_6H_4$ C_6H_5 CH_3 79 0.76 $153-155$ $Calct:$ 268.1250 $[M + H]^+$. Found: 27 7.11 $3-CH_3C_6H_4$ C_6H_5 CH_3CH_2 81 0.85 $158-160$ $Calct:$ 278.1657 $[M + H]^+$. Found: 27 7.12 $3-ClC_6H_4$ C_6H_5 CH_3 81 0.85 $138-140$ $Calct:$ 278.1657 $[M + H]^+$. Found: 27 7.13 $3-CH_3C_6H_4$ C_6H_5 CH_3 66 0.86 $154-156$ $Calct:$ 278.1657 $[M + H]^+$. Found: 27 7.14 $3-CH_3C_6H_4$ C_6H_5 CH_3 68 0.84 $156-158$ $Calct:$ 280.1450 $[M + H]^+$. Found: 28 7.15 $3-ClC_6H_4$ <	7.04	$3-ClC_6H_4$	$-(CH_2)$	4	76	0.76	179 - 180	Calcd: 248.0954 $[M + H]^+$. Found: 248.0953
7.06 C_6H_5 CH_3 CH_3 CH_3 67 0.76 $176-178$ Calcd: 188.1188 [M + H] ⁺ . Found: 187.07 $3-ClC_6H_4$ CH_3 CH_3 82 0.77 $146-148$ Calcd: 222.0798 [M + H] ⁺ . Found: 227.08 $3-CH_3C_6H_4$ CH_3 CH_3 86 0.78 $144-146$ Calcd: 202.1344 [M + H] ⁺ . Found: 207.09 $3-CH_3C_6H_4$ C_6H_5 CH_3 75 0.84 $159-160$ Calcd: 264.1500 [M + H] ⁺ . Found: 267.10 $4-FC_6H_4$ C_6H_5 CH_3 79 0.76 $153-155$ Calcd: 268.1250 [M + H] ⁺ . Found: 267.11 $3-CH_3C_6H_4$ C_6H_5 CH_3 79 0.76 $153-155$ Calcd: 278.1657 [M + H] ⁺ . Found: 277.12 $3-ClC_6H_4$ CH_3OCO CH_3 81 0.85 $138-140$ Calcd: 278.1657 [M + H] ⁺ . Found: 277.13 $3-CH_3C_6H_3$ C_6H_5 CH_3 66 0.86 $154-156$ Calcd: 278.1657 [M + H] ⁺ . Found: 277.14 $3-CH_3OC_6H_4$ CH_3 CH_3 68 0.84 $156-158$ Calcd: 278.1657 [M + H] ⁺ . Found: 277.14 $3-CH_3OC_6H_4$ C_6H_5 CH_3 68 0.84 $156-158$ Calcd: 278.1657 [M + H] ⁺ . Found: 277.15 $3-ClC_6H_4$ $3-CNC_6H_4$ CH_3 70 0.84 $138-140$ Calcd: 280.1450 [M + H] ⁺ . Found: 287.15 $3-ClC_6H_4$ $3-CNC_6H_4$ CH_3 70 0.84 $138-140$ Calcd: 280.1450 [M + H] ⁺ . Found: 32	7.05	C_6H_5	C_6H_5	CH_3	86	0.84	165 - 167	Calcd: 250.1344 $[M + H]^+$. Found: 250.1322
7.07 $3-ClC_6H_4$ CH_3 CH_3 82 0.77 $146-148$ $Calcd:$ 222.0798 $[M + H]^+$. Found: 22 7.08 $3-CH_3C_6H_4$ CH_3 CH_3 86 0.78 $144-146$ $Calcd:$ 202.1344 $[M + H]^+$. Found: 20 7.09 $3-CH_3C_6H_4$ C_6H_5 CH_3 75 0.84 $159-160$ $Calcd:$ 202.1344 $[M + H]^+$. Found: 20 7.09 $3-CH_3C_6H_4$ C_6H_5 CH_3 75 0.84 $159-160$ $Calcd:$ 202.1344 $[M + H]^+$. Found: 26 7.10 $4-FC_6H_4$ C_6H_5 CH_3 79 0.76 $153-155$ $Calcd:$ 268.1250 $[M + H]^+$. Found: 26 7.11 $3-CH_3C_6H_4$ C_6H_5 CH_3CH_2 81 0.85 $158-160$ $Calcd:$ 278.1657 $[M + H]^+$. Found: 27.7 7.12 $3-ClC_6H_4$ CH_3OCO CH_3 81 0.85 $138-140$ $Calcd:$ 278.1657 $[M + H]^+$. Found: 27.7 7.13 $3-CH_3-C_6H_3$ C_6H_5 CH_3 68 0.84 $156-158$ $Calcd:$ 278.1657 $[M + H]^+$. Found: 27.7 7.15 $3-ClC_6H_4$ G_6H_5 CH_3 68 0.84 $140-142$ $Calcd:$ 280.1450 $[M + H]^+$. Found: 28.7 7.16 $3-MeC_6H_4$ $3-CNC_6H_4$ CH_3 70 0.84 $138-140$ $Calcd:$ 289.1453 $[M + H]^+$. Found: 28.7 7.16 $3-MeC_6H_4$	7.06	C_6H_5	CH_3	CH_3	67	0.76	176 - 178	Calcd: 188.1188 [M + H] ⁺ . Found: 188.1153
7.08 $3-CH_3C_6H_4$ CH_3 CH_3 86 0.78 $144-146$ $Calcd: 202.1344$ $[M + H]^+$. Found: 207.09 $3-CH_3C_6H_4$ C_6H_5 CH_3 75 0.84 $159-160$ $Calcd: 264.1500$ $[M + H]^+$. Found: 267.10 $4-FC_6H_4$ C_6H_5 CH_3 79 0.76 $153-155$ $Calcd: 268.1250$ $[M + H]^+$. Found: 267.11 $3-CH_3C_6H_4$ C_6H_5 CH_3CH_2 81 0.85 $158-160$ $Calcd: 278.1657$ $[M + H]^+$. Found: 277.12 $3-ClC_6H_4$ CH_3OCO CH_3 81 0.85 $138-140$ $Calcd: 278.1657$ $[M + H]^+$. Found: 277.13 $3-CH_3-G_6H_3$ C_6H_5 CH_3 66 0.86 $154-156$ $Calcd: 278.1657$ $[M + H]^+$. Found: 277.13 $3-ClC_6H_4$ C_6H_5 CH_3 66 0.86 $154-156$ $Calcd: 278.1657$ $[M + H]^+$. Found: 277.14 $3-ClC_6H_4$ C_6H_5 CH_3 68 0.84 $156-158$ $Calcd: 280.1450$ $[M + H]^+$. Found: 287.15 $3-ClC_6H_4$ $3-CNC_6H_4$ CH_3 75 0.84 $140-142$ $Calcd: 280.1450$ $[M + H]^+$. Found: 287.17 $3-ClC_6H_4$ $3-CNC_6H_4$ CH_3 70 0.84 $138-140$ $Calcd: 289.1453$ $[M + H]^+$. Found: 287.17 $3-ClC_6H_4$ $3-NH_2COC_6H_4$ CH_3 70 0.66 $220-222$ $Calcd: 327.1013$ $[M + H]^+$. Found: 327.18 $3-MeC_6H_4$ $3-MeCCC_6$	7.07	$3-ClC_6H_4$	CH_3	CH_3	82	0.77	146 - 148	Calcd: 222.0798 [M + H] ⁺ . Found: 222.0793.
7.09 $3-CH_3C_6H_4$ C_6H_5 CH_3 75 0.84 $159-160$ $Calcd:$ 264.1500 $[M + H]^+$. Found: $266.7.10$ 7.10 $4-FC_6H_4$ C_6H_5 CH_3 79 0.76 $153-155$ $Calcd:$ 268.1250 $[M + H]^+$. Found: $266.7.11$ $3-CH_3C_6H_4$ C_6H_5 CH_3CH_2 81 0.85 $158-160$ $Calcd:$ 278.1657 $[M + H]^+$. Found: $276.7.13$ $3-CH_3C_6H_4$ CH_3OCO CH_3 81 0.85 $138-140$ $Calcd:$ 278.1657 $[M + H]^+$. Found: $276.7.13$ $3-CH_3-5-CH_3C_6H_3$ C_6H_5 CH_3 66 0.86 $154-156$ $Calcd:$ 278.1657 $[M + H]^+$. Found: $276.7.14$ $3-CH_3C_6H_4$ C_6H_5 CH_3 68 0.84 $156-158$ $Calcd:$ 278.1657 $[M + H]^+$. Found: $276.7.14$ $3-CH_3C_6H_4$ C_6H_5 CH_3 68 0.84 $156-158$ $Calcd:$ 280.1450 $[M + H]^+$. Found: $287.7.15$ 7.16 $3-CN_6H_4$ $3-CN_6H_4$ CH_3 75 0.84 $140-142$ $Calcd:$ 280.1450 $[M + H]^+$. Found: $287.7.16$ 7.17 $3-ClC_6H_4$ $3-CN_6H_4$ CH_3 70 0.84 $138-140$ $Calcd:$ 280.1453 $[M + H]^+$. Found: $287.7.1013$ 7.18 $3-MeC_6H_4$ $3-NH_2COC_6H_4$ CH_3 70 0.66 $220-222$ $Calcd:$ 327.1013 $[M + H]^+$. Found: $347.7.1013$ $[M + H]^+$. Found: </th <th>7.08</th> <th>$3-CH_3C_6H_4$</th> <th>CH_3</th> <th>CH_3</th> <th>86</th> <th>0.78</th> <th>144 - 146</th> <th>Calcd: 202.1344 [M + H]⁺. Found: 202.1356.</th>	7.08	$3-CH_3C_6H_4$	CH_3	CH_3	86	0.78	144 - 146	Calcd: 202.1344 [M + H] ⁺ . Found: 202.1356.
7.10 $4 \cdot FC_6H_4$ C_6H_5 CH_3 79 0.76 $153-155$ $Calcd: 268.1250 [M + H]^+$. Found: 267.11 $3 \cdot CH_3C_6H_4$ C_6H_5 CH_3CH_2 81 0.85 $158-160$ $Calcd: 278.1657 [M + H]^+$. Found: 277.12 $3 \cdot CL_6H_4$ CH_3OCO CH_3 81 0.85 $138-140$ $Calcd: 278.1657 [M + H]^+$. Found: 277.13 $3 \cdot CH_3 - 5 \cdot CH_3C_6H_3$ C_6H_5 CH_3 66 0.86 $154-156$ $Calcd: 278.1657 [M + H]^+$. Found: 277.14 $3 \cdot CH_3OC_6H_4$ C_6H_5 CH_3 68 0.84 $156-158$ $Calcd: 278.1657 [M + H]^+$. Found: 277.14 $3 \cdot CH_3OC_6H_4$ C_6H_5 CH_3 68 0.84 $156-158$ $Calcd: 280.1450 [M + H]^+$. Found: 287.15 $3 \cdot ClC_6H_4$ $3 \cdot CNC_6H_4$ CH_3 75 0.84 $140-142$ $Calcd: 280.1450 [M + H]^+$. Found: 287.16 $3 \cdot MeC_6H_4$ $3 - CNC_6H_4$ CH_3 70 0.84 $138-140$ $Calcd: 280.1453 [M + H]^+$. Found: 287.17 $3 \cdot ClC_6H_4$ $3 - NH_2COC_6H_4$ CH_3 70 0.84 $138-140$ $Calcd: 327.1013 [M + H]^+$. Found: 327.18 $3 \cdot MeC_6H_4$ $3 - MeCOCO_6H_4$ CH_3 70 0.66 $220-222$ $Calcd: 342.1009 [M + H]^+$. Found: 347.20 $3 - ClC_6H_4$ $3 - MeOCOC_6H_4$ CH_3 77 0.63 $176-178$ $Calcd: 328.0853 [M + H]^+$. Found: 32	7.09	$3-CH_3C_6H_4$	C_6H_5	CH_3	75	0.84	159 - 160	Calcd: 264.1500 [M + H] ⁺ . Found: 264.1536.
7.11 $3-CH_3C_6H_4$ C_6H_5 CH_3CH_2 81 0.85 $158-160$ $Calcd: 278.1657 [M + H]^+$. Found: 27.7.12 $3-ClC_6H_4$ CH_3OCO CH_3 81 0.85 $138-140$ $Calcd: 278.1657 [M + H]^+$. Found: 27.7.13 $3-CH_3-5-CH_3C_6H_3$ C_6H_5 CH_3 66 0.86 $154-156$ $Calcd: 278.1657 [M + H]^+$. Found: 27.7.14 $3-CH_3OC_6H_4$ C_6H_5 CH_3 66 0.84 $156-158$ $Calcd: 280.1450 [M + H]^+$. Found: 28.7.15 $3-ClC_6H_4$ $3-CNC_6H_4$ CH_3 75 0.84 $140-142$ $Calcd: 280.1450 [M + H]^+$. Found: 30.7.16 $3-MeC_6H_4$ $3-CNC_6H_4$ CH_3 70 0.84 $138-140$ $Calcd: 289.1453 [M + H]^+$. Found: 32.7.17 $3-ClC_6H_4$ $3-NH_2COC_6H_4$ CH_3 70 0.84 $138-140$ $Calcd: 289.1453 [M + H]^+$. Found: 32.7.18 $3-MeC_6H_4$ $3-NH_2COC_6H_4$ CH_3 70 0.66 $220-222$ $Calcd: 307.1556 [M + H]^+$. Found: 34.7.19 $3-ClC_6H_4$ $3-MeCOCC_6H_4$ CH_3 77 0.63 $172-174$ $Calcd: 328.0853 [M + H]^+$. Found: 34.7.20 $3-ClC_6H_4$ $3-HOCOCC_6H_4$ CH_3 77 0.63 $176-178$ $Calcd: 328.0853 [M + H]^+$. Found: 32.7.14 $3-ClC_6H_4$ $3-HOCOCC_6H_4$ CH_3 77 0.63 $176-178$ $Calcd: 328.0853 [M + H]^+$. Found: 32.	7.10	$4-FC_6H_4$	C ₆ H ₅	CH_3	79	0.76	153 - 155	Calcd: 268.1250 [M + H] ⁺ . Found: 268.1237
7.12 $3-ClC_6H_4$ CH_3OCO CH_3 81 0.85 $138-140$ $Calcd: 278.1657$ $[M + H]^+$. Found: 27.7.13 $3-CH_3-5-CH_3C_6H_3$ C_6H_5 CH_3 66 0.86 $154-156$ $Calcd: 278.1657$ $[M + H]^+$. Found: 27.7.14 $3-CH_3OC_6H_4$ C_6H_5 CH_3 68 0.84 $156-158$ $Calcd: 280.1450$ $[M + H]^+$. Found: 28.7.15 $3-ClC_6H_4$ $3-CNC_6H_4$ CH_3 75 0.84 $140-142$ $Calcd: 280.1450$ $[M + H]^+$. Found: 28.7.16 $3-MeC_6H_4$ $3-CNC_6H_4$ CH_3 70 0.84 $138-140$ $Calcd: 289.1453$ $[M + H]^+$. Found: 28.7.17 $3-ClC_6H_4$ $3-NH_2COC_6H_4$ CH_3 70 0.66 $220-222$ $Calcd: 327.1013$ $[M + H]^+$. Found: 32.7.18 $3-MeC_6H_4$ $3-NH_2COC_6H_4$ CH_3 70 0.66 $220-222$ $Calcd: 342.1009$ $[M + H]^+$. Found: 34.7.20 $3-ClC_6H_4$ $3-MeOCOC_6H_4$ CH_3 77 0.63 $176-178$ $Calcd: 328.0853$ $[M + H]^+$. Found: 32.	7.11	$3-CH_3C_6H_4$	C ₆ H ₅	CH ₃ CH ₂	81	0.85	158 - 160	Calcd: 278.1657 [M + H] ⁺ . Found: 278.1641
7.13 $3-CH_3-5-CH_3C_6H_3$ C_6H_5 CH_3 66 0.86 $154-156$ Calcd: 278.1657 $(M + H)^+$. Found: 274.1657 7.14 $3-CH_3OC_6H_4$ C_6H_5 CH_3 68 0.84 $156-158$ Calcd: 280.1450 $(M + H)^+$. Found: 284.1450 7.15 $3-ClC_6H_4$ $3-CNC_6H_4$ CH_3 75 0.84 $140-142$ Calcd: 280.1450 $(M + H)^+$. Found: 284.1450 7.16 $3-MeC_6H_4$ $3-CNC_6H_4$ CH_3 70 0.84 $138-140$ Calcd: 289.1453 $(M + H)^+$. Found: 284.1450 7.17 $3-ClC_6H_4$ $3-NH_2COC_6H_4$ CH_3 84 0.67 $228-230$ Calcd: 327.1013 $(M + H)^+$. Found: 324.1450 7.18 $3-MeC_6H_4$ $3-NH_2COC_6H_4$ CH_3 70 0.66 $220-222$ Calcd: 342.1009 $(M + H)^+$. Found: 34.1450 7.19 $3-ClC_6H_4$ $3-MeOCOC_6H_4$ CH_3 77 0.63 $176-178$ Calcd: 328.0853 $(M + H)^+$. Found: 32.1450 7.20 $3-ClC_6H_4$ $3-HOOCC_6H_4$ CH_3 77 0.63 $176-178$ Calcd: 328.0853 $(M + H)^+$. Found: 32.1450	7.12	3-ClC ₆ H ₄	CH ₃ OCO	CH_3	81	0.85	138 - 140	Calcd: 278.1657 [M + H] ⁺ . Found: 278.1641
7.14 $3-CH_3OC_6H_4$ C_6H_5 CH_3 68 0.84 $156-158$ Calcd: 280.1450 $(M + H)^+$. Found: 280.1450 7.15 $3-ClC_6H_4$ $3-CNC_6H_4$ CH_3 75 0.84 $140-142$ Calcd: 309.0907 $(M + H)^+$. Found: 300.0907 7.16 $3-MeC_6H_4$ $3-CNC_6H_4$ CH_3 70 0.84 $138-140$ Calcd: 289.1453 $(M + H)^+$. Found: 280.1450 7.17 $3-ClC_6H_4$ $3-NH_2COC_6H_4$ CH_3 84 0.67 $228-230$ Calcd: 327.1013 $(M + H)^+$. Found: 320.0907 7.18 $3-MeC_6H_4$ $3-NH_2COC_6H_4$ CH_3 70 0.66 $220-222$ Calcd: 307.1556 $(M + H)^+$. Found: 300.0907 7.19 $3-ClC_6H_4$ $3-MeOCOC_6H_4$ CH_3 65 0.800 $172-174$ Calcd: 342.1009 $(M + H)^+$. Found: 340.090 7.20 $3-ClC_6H_4$ $3-HOCOC_6H_4$ CH_3 77 $0.630.090$ $176-178$ Calcd: 328.0853 $(M + H)^+$. Found: 320.090	7.13	3-CH3-5-CH3C6H3	C ₆ H ₅	CH_3	66	0.86	154 - 156	Calcd: 278.1657 [M + H] ⁺ . Found: 278.1636.
7.15 $3-CNC_6H_4$ CH_3 75 0.84 $140-142$ $Calcd:$ 30.0907 $[M + H]^+$. Found: 30.0907 7.16 $3-MeC_6H_4$ $3-CNC_6H_4$ CH_3 70 0.84 $138-140$ $Calcd:$ 289.1453 $[M + H]^+$. Found: $288.0466666666666666666666666666666666666$	7.14	3-CH ₃ OC ₆ H ₄	C_6H_5	CH_3	68	0.84	156 - 158	Calcd: 280.1450 [M + H] ⁺ . Found: 280.1449.
7.16 $3-\text{CNC}_6\text{H}_4$ $C\text{H}_3$ 70 0.84 $138-140$ Calcd: 289.1453 $[\text{M} + \text{H}]^+$. Found: 28 7.17 $3-\text{CIC}_6\text{H}_4$ $3-\text{NH}_2\text{COC}_6\text{H}_4$ $C\text{H}_3$ 84 0.67 $228-230$ Calcd: 289.1453 $[\text{M} + \text{H}]^+$. Found: 28 7.18 $3-\text{MeC}_6\text{H}_4$ $3-\text{NH}_2\text{COC}_6\text{H}_4$ $C\text{H}_3$ 70 0.66 $220-222$ Calcd: 307.1556 $[\text{M} + \text{H}]^+$. Found: 30 7.19 $3-\text{CIC}_6\text{H}_4$ $3-\text{MeOCOC}_6\text{H}_4$ $C\text{H}_3$ 65 0.80 $172-174$ Calcd: 342.1009 $[\text{M} + \text{H}]^+$. Found: 34 7.20 $3-\text{CIC}_6\text{H}_4$ $3-\text{MOCOC}_6\text{H}_4$ $C\text{H}_3$ 77 0.63 $176-178$ Calcd: 328.0853 $[\text{M} + \text{H}]^+$. Found: 32	7.15	3-ClC ₆ H ₄	3-CNC ₆ H₄	CH ₃	75	0.84	140-142	Calcd: 309.0907 [M + H] ⁺ . Found: 309.0911
7.17 $3-ClC_6H_4$ $3-NH_2COC_6H_4$ CH_3 84 0.67 $228-230$ Calcd: 327.1013 $[M + H]^+$. Found: 32 7.18 $3-MeC_6H_4$ $3-NH_2COC_6H_4$ CH_3 70 0.66 $220-222$ Calcd: 307.1556 $[M + H]^+$. Found: 30 7.19 $3-ClC_6H_4$ $3-MeOCOC_6H_4$ CH_3 65 0.80 $172-174$ Calcd: 342.1009 $[M + H]^+$. Found: 34 7.20 $3-ClC_6H_4$ $3-HOCOC_6H_4$ CH_3 77 0.63 $176-178$ Calcd: 328.0853 $[M + H]^+$. Found: 32	7.16	3-MeC ₆ H ₄	3-CNC ₆ H₄	CH ₃	70	0.84	138-140	Calcd: 289.1453 [M + H] ⁺ . Found: 289.1456
7.18 $3-MeC_6H_4$ $3-NH_2COC_6H_4$ CH_3 70 0.66 $220-222$ Calcd: 307.1556 $(M + H)^+$. Found: 30 7.19 $3-ClC_6H_4$ $3-MeOCOC_6H_4$ CH_3 65 0.80 $172-174$ Calcd: 342.1009 $(M + H)^+$. Found: 34 7.20 $3-ClC_6H_4$ $3-HOCOC_6H_4$ CH_3 77 0.63 $176-178$ Calcd: 328.0853 $(M + H)^+$. Found: 32	7.17	3-ClC ₆ H ₄	3-NH2COC6H4	CH ₃	84	0.67	228-230	Calcd: 327.1013 [M + H] ⁺ . Found: 327.1017
7.19 $3-ClC_6H_4$ $3-MeOCOC_6H_4$ CH_3 65 0.80 $172-174$ $Calcd:$ 342.1009 $(M + H)^+$. Found: 34 7.20 $3-ClC_6H_4$ $3-HeOCOC_6H_4$ CH_3 77 0.63 $176-178$ $Calcd:$ 342.1009 $(M + H)^+$. Found: 34 7.20 $3-ClC_6H_4$ $3-HeOCOC_6H_4$ CH_3 77 0.63 $176-178$ $Calcd:$ 328.0853 $(M + H)^+$. Found: 32	7.18	3-MeC ₆ H ₄	3-NH ₂ COC ₆ H ₄	CH_3	70	0.66	220-222	Calcd: 307.1556 [M + H] ⁺ . Found: 307.1544
7.20 3-ClC ₆ H ₄ 3-HOCOC ₆ H ₄ CH ₃ 77 0.63 176-178 Calcd: 328.0853 [M + H] ⁺ . Found: 32.	7.19	3-ClC ₆ H ₄	3-MeOCOC ₆ H ₄	CH ₃	65	0.80	172 - 174	Calcd: 342.1009 [M + H] ⁺ . Found: 342.1015
	7.20	3-ClC ₆ H ₄	3-HOCOC ₆ H₄	CH_3	77	0.63	176-178	Calcd: 328.0853 [M + H] ⁺ . Found: 328.0854
7.21° C_6H_5 , CH_3 C_6H_5 CH_3 54 0.82 110-112 Calcd: 264.1501 [M + H] ⁺ . Found: 26	7.21 ⁸	C ₆ H ₅ , CH ₃	C ₆ H ₅	CH_3	54	0.82	110-112	Calcd: 264.1501 [M + H] ⁺ . Found: 264.1517

^{*a*} The results of elemental analyses (C, H, N) of all active compounds were within $\pm 0.4\%$ of the theoretical values. ^{*b*} Solvent system for *N*-aminoimidazoline-2-thiones **3**: CH₂Cl₂/MeOH, 99:1. Solvent system for *N*-aminoimidazoles **7**: CH₂Cl₂/MeOH, 9:1.

Table 2. Inhibition of Viral Replication in MT-4 Cells by *N*-Aminoimidazole Derivatives 3 and 7

			IC ₅₀ ^a (µM)			
		HIV-1				
compd	III _B	NL4.3	NNRTI(res) ^b	HIV-2 ROD	SIV mac251	СС ₅₀ (µМ) ^с
3.01	6.39 ± 0.94	8.99 ± 6.14	9.72 ± 4.99	8.11 ± 0.38	8.20 ± 4.62	66.65 ± 19.00
3.05	$\textbf{8.54} \pm \textbf{1.06}$	5.60 ± 4.81	3.00 ± 1.20	10.46 ± 6.71	1.75 ± 0.20	43.98 ± 20.60
3.07	5.00 ± 1.17	2.48 ± 0.91	1.86 ± 1.20	3.91 ± 0.65	1.22 ± 0.77	30.95 ± 11.93
3.39	5.55 ± 2.14	6.58 ± 4.80	11.89 ± 5.31	5.10 ± 3.77	4.68 ± 0.30	32.05 ± 9.17
7.01	1.59 ± 0.32	1.90 ± 0.60	1.73 ± 0.74	1.65 ± 1.55	2.15 ± 0.42	17.48 ± 7.58
7.02	0.38 ± 0.08 0.72 ± 0.50	1.30 ± 0.77 0.62 \pm 0.02	0.97 ± 0.14 0.28 \pm 0.28	0.91 ± 0.19 0.72 \pm 0.02	0.00 ± 0.23 0.21 \pm 0.12	10.41 ± 7.94 11.04 \pm 0.02
7.03	0.72 ± 0.39 0.30 ± 0.55	0.03 ± 0.03 3 54 \pm 0.81	0.30 ± 0.20	0.72 ± 0.03	0.31 ± 0.13 10.31 \pm 3.50	11.34 ± 3.33 55.58 \pm 18.68
3.13	9.30 ± 0.33 9.96 ± 1.61	452 ± 380	577 ± 0.28	> 44 94	272 ± 0.17	33.38 ± 10.08 44.94 ± 14.15
3.17	7.29 ± 1.53	11.25 ± 4.57	42.18 ± 2.39	>48.26	7.54 ± 1.59	48.26 ± 22.49
3.19	1.56 ± 0.61	2.17 ± 0.88	26.10 ± 3.96	>35.71	6.50 ± 4.60	88.25 ± 35.71
3.25	17.64 ± 13.02	12.80 ± 3.39	$\geq \! 53.55$	> 53.55	> 53.55	53.55 ± 28.73
3.30	1.03 ± 0.58	0.87 ± 0.52	>194.21	>194.21	>194.21	194.21 ± 132.79^{d}
3.31	4.78 ± 1.38	9.79 ± 0.22	>38.02	>38.02	>38.02	38.02 ± 5.34
7.05	≥11.67	20.98 ± 2.64	>52.18	>52.18	>52.18	52.18 ± 11.52
7.09	3.26 ± 0.91	5.20 ± 0.04	3.99 ± 0.04	>27.04	3.08 ± 0.41	27.04 ± 11.81
7.15	6.96 ± 2.00	8.91 ± 3.01	22.57 ± 5.05	>36.79	7.22 ± 0.027	36.79 ± 5.15
3.U2 3.02	>101.81	23.27 ± 8.49	>101.81	>101.81	$^{-101.01}$ 7 71 \pm 3 88	101.81 ± 32.84 40.80 ± 13.00
3.08	> 38 69	> 38 69	>38.69	>38.69	10.12 ± 3.66	40.80 ± 13.90 38.69 + 13.01
3.13	>44.29	10.85 ± 0.82	>44.29	>44.29	10.12 ± 11.00 10.88 ± 8.45	44.29 ± 14.34
3.18	>108.23	18.44 ± 9.39	≥ 43.42	>108.23	33.80 ± 20.36	108.23 ± 71.38
3.23	>42.63	≥ 42.63	>42.63	>42.63	>42.63	42.63 ± 16.79
3.24	9.06 ± 1.55	>38.96	>38.96	>38.96	3.88 ± 3.27	38.96 ± 15.86
3.32	$\geq \! 99.40$	41.96 ± 2.08	>99.40	>99.40	>99.40	99.40 ± 42.13
7.13	>20.44	10.99 ± 2.85	>20.44	>20.44	>20.44	20.44 ± 9.55
3.03	>220.13	>220.13	ND	>220.13	>220.13	220.13 ± 60.29
3.04	>134.41	>134.41	ND ND	>134.41	>134.41	134.41 ± 33.82
3.00 3.10	>33.24 >40.06	~ 33.24 >40.06	ND	> 10.06	>33.24 >40.06	33.24 ± 14.31 40.06 ± 27.07
3.10	> 126 42	> 126 42	ND	> 126 42	> 126 42	43.30 ± 27.07 126 42 + 40 14
3.12	>191.27	>191.27	ND	>191.27	>191.27	191.27 ± 72.25
3.16	>147.12	>147.12	ND	>147.12	>147.12	147.12 ± 78.80
3.20	>259.42	>259.42	ND	>259.42	>259.42	259.42 ± 25.69
3.21	>180.79	>180.79	ND	>180.79	>180.79	180.79 ± 29.78
3.22	>359.86	>359.86	ND	>359.86	>359.86	359.86 ± 77.44
3.26	> 36.31	>36.31	>36.31	> 36.31	>36.31	36.31 ± 14.87
3.27	> 190.31	> 190.31	ND	> 190.31	> 190.31	190.31 ± 41.98
3.28 2.90	~203.30	~ 203.30	ND	~203.30	~203.30	203.30 ± 41.94
3.23	>45.63	>45.60	ND	>45.63	>45.63	46.60 ± 26.14 45.63 + 36.45
3.34	>67.36	>67.36	ND	>67.36	>67.36	67.36 ± 59.70
3.36	>120.03	>120.03	ND	>120.03	>120.03	120.03 ± 40.10
3.37	>187.13	>187.13	ND	>187.13	>187.13	187.13 ± 45.74
3.38	>42.16	>42.16	ND	>42.16	>42.16	42.16 ± 12.49
3.40	>34.45	>34.45	ND	>34.45	>34.45	34.45 ± 2.37
3.41	> 53.04	>53.04	ND	> 53.04	>53.04	53.04 ± 14.87
7.04	>67.29	>67.29	>67.29	>67.29	>67.29	67.29 ± 16.95
7.00	>913.68	>213 68	ND	>913.68	>913 68	331.42 ± 33.09 213.68 + 55.17
7.08	>312 12	>312.12	ND	>312 12	> 312 12	312 12 + 29 36
7.10	> 30.82	> 30.82	ND	> 30.82	> 30.82	30.82 ± 9.39
7.11	>27.87	>27.87	ND	>27.87	>27.87	27.87 ± 13.45
7.12	>106.70	>106.70	ND	>106.70	>106.70	106.70 ± 70.83
7.14	>34.44	>34.44	ND	>34.44	>34.44	34.44 ± 10.81
7.16	>44.70	>44.70	ND	>44.70	>44.70	44.70 ± 9.68
7.17	>260.50	>260.50	ND	>260.50	>260.50	260.50 ± 62.76
7.18	>162.31	>162.31	ND ND	>162.31	>162.31	162.31 ± 56.76
7.19 7.90	≥33.13 >160.57	> 33.15 > 160 57	ND ND	>33.15 >160.57	> 33.15 > 160 57	33.13 ± 3.83 160 57 \pm 91 14
8.01	> 42.11	>42.11	ND	>42.11	> 42 11	42.11 + 17.19
8.02	> 39.66	>39.66	ND	>39.66	>39.66	39.66 ± 17.29
R89439 (α-APA)	0.014	0.006	>10	>10	>10	>10

 a 50% inhibitory concentration, or concentration required to inhibit the viral cytopathic effect by 50% in MT-4 cells. Data represent average values \pm SD for at least two independent experiments. b S0561945. c 50% cytotoxic concentration, or concentration that reduced the MT-4 cell viability by 50%. d Crystals observed at 16.15 μ M.

abolishment of the antiviral activity (8.01, 8.02 vs 3.01, 3.19). Comparison of the antiviral activity of a series of compounds bearing methyl, ethyl, propyl, or phenyl at position 4 of the imidazole moiety revealed that the

smaller the substituent, the more pronounced was the antiviral activity. The nature of the different substituents at position 5 of the imidazole ring suggested the need of an aromatic group with certain limitations to

Table 3. Inhibitory effects of *N*-Aminoimidazoles **3** and **7** on MSV-Induced Transformation of C3H/3T3 Embryo Murine Fibroblast in Vitro

compd	IC ₅₀ ^a (µM)	MIC ^b (µM)
3.01	38.0 ± 14.2	>63.3 (316.6)
3.02	>12.7	≥12.7
3.05	>10.1	>10.1 (50.7)
3.07	>11.4	>11.4 (57.1)
3.13	>64.6	>64.6 (323.2)
3.19	>67.7	>67.7 (338.5)
3.24	>12.13	>12.13 (60.63)
3.39	>12.07	>12.07 (60.35)
7.01	6.9 ± 3.8	>14.1 (70.5)
7.02	6.89 ± 1.10	>11.03 (55.15)
7.03	5.37 ± 1.04	≥12.6
7.09	13.37 ± 2.05	>15.2 (75.95)

^a 50% effective dose. ^b Minimal inhibitory concentration.

Chart 4. General Structural Requirements of the *N*-Aminoimidazole Derivatives **3** and **7**

its substitution pattern. Chloro or bromo being well accepted in the meta position, the same halogens introduced at the para position reduced the antiviral properties of the molecules.

The nature of the substitutions on the anilino substitutent at position 1 of the imidazole has serious repercussions on the antiviral activity of the N-aminoimidazoles and 2-thiones (NAIMs) 3 and 7. Not only do these substitutions influence the potency, more importantly they do influence the activity spectrum of the molecules. The most active molecules were found among meta-substituted anilino derivatives. The active molecules bearing a chlorine at position 3 of the anilino phenyl ring had a broader activity spectrum [HIV-1 (strains III_B and NL4.3), HIV-1 (NNRTI-resistant strain with mutations K103N, Y181C in the RT), HIV-2(ROD), SIV(mac251), and MSV(Moloney)]. The activity of these molecules is mainly due to a yet unidentified mode of action taking place immediately after the integration is finished. Replacement of the *m*-chloro on the aniline moiety by a methyl increases the NNRTI action of the molecules (see 3.01 vs 3.19).

Time of Intervention. A time of addition (TOA) experiment was carried out to investigate which step of the replicative cycle was inhibited by different Naminoimidazoles 3 and 7. Briefly, this experiment determines how long the addition of an anti-HIV compound can be postponed before losing its antiviral activity in the viral replication cycle. Virus was added at a high multiplicity of infection (moi = 0.5) to synchronize all steps of the viral replication. Reference compounds with a known mode of action were included. Dextran sulfate, a polyanion, is known to interfere with the binding of the virus to the cell. The nucleoside analogue AZT inhibits the reverse transcription process. L-708,906 is an established inhibitor of the strand transfer step of the integration process.¹⁰ Ritonavir is an inhibitor of the proteolytic cleavage.

Figure 1. Time of addition experiment. MT-4 cells were infected with HIV-1(IIIB) at a multiplicity of infection of 0.5, and the test compounds were added at different times post-infection. Viral p24 Ag production was determined at 31 h postinfection and is expressed as the log 10 of the p24 Ag content in pg/mL. Symbols: (\diamond) control; (\blacksquare) dextran sulfate; (\blacktriangle) AZT; (\blacklozenge) L-708,906; (*), 7.03; (\square) ritonavir.

Addition of these compounds can be delayed for 0, 4, 7, and 18–19 h (Figure 1). Addition of **3.19** or **7.03** can be postponed for up to 7 h postinfection, suggesting a possible interaction at the moment of integration. These results should be interpreted with care, not excluding the possibility of an interaction with earlier processes in the HIV replication cycle because TOA experiments only reveal the last step targeted by the inhibitor.

Reverse Transcriptase. Several compounds from the **3** and **7** series have been evaluated against recombinant HIV-1 reverse transcriptase). **3.19** was inhibiting at 125 μ M using polyrA.oligodT as the template primer and at 105 μ M when using polyrC.oligodG. This compound was, however, inactive against Maloney murine leukaemia virus RT using endogenous RNA as the template at 1000 μ M.

Because the in vitro inhibition of the HIV-1 RT activity was observed for **3.19** and typical NNRTIresistance mutations were observed when genotypically analyzing the HIV-1(III_B) strain selected in the presence of increasing concentrations of **3.19**, it is clear that **3.19** acts as an NNRTI in addition to its action at a later process in the viral replication cycle.

Inhibition of HIV-1 Production from Chronically Infected Cells. When **7.03** was evaluated for its influence on the production of virus from chronically HIV-1(NL4.3)-infected HUT-78 cells, we noticed an inhibitory effect. From TOA experiments, in vitro RT assays suggested the possibility of an action at the reverse transcription, integration, or later step in the replicative cycle of HIV. AZT, ritonavir, and L-708,906 were also included in the experiment. For molecules acting before the termination of the integration process, AZT and L-708,906, no inhibitory effect on release of virus could be observed (Figure 2).

As expected, for ritonavir an inhibition of the virus production was observed. **7.03** inhibited virus production up to the level of ritonavir. This fact reveals that although the unknown target of molecule **7.03** is situated around the moment of integration, it must coincide with a process taking place immediately after integration.

Figure 2. Percentage of virus (HIV-1 NL4.3) produced from chronically infected HUT78 cells in the presence of varying concentrations of compounds. After incubation for 44 h, virus p24 Ag production was determined. Symbols: (\blacktriangle) AZT; (\blacklozenge) L-708,906; (+) **3.19**; (*) **7.03**; (\square) ritonavir.

Conclusion

From a study to discover new NNRTIs with anti-HIV activity against clinically relevant mutants, a group of molecules with a new antiretroviral mode of action was identified. Although the exact molecular target remains to be resolved, the experiments clearly show that some of the *N*-aminoimidazole derivatives interfere with an (immediate) postintegrational event occurring after integration of the viral DNA into the host cell genome.

On the basis of a limited structure–activity relationship, it was possible to identify some structural requirements that confer antiretroviral activity via a new mode of action to these molecules.

Experimental Section

Materials and General Chemical Methods. NMR spectra were recorded on a Varian, Gemini 200 spectrometer (for ¹H (200 MHz) and ¹³C). ¹³C and ¹H are referenced to TMS. All NH and OH protons were assigned by exchange with D₂O. Exact mass measurements were performed on a quadrupole time-of-flight mass spectrometer (Q-Tof-2, Micromass, Manchester, U.K.) equipped with a standard electrospray ionization (ESI) interface. Samples were infused in a 2-propanol/water (1:1) mixture at 3 μ L/min. TLC was performed with TLC aluminum sheets (Merck, silica gel 60 F254), and silica (200–425 mesh) was used for column chromatography. Melting points (mp [°C]) were determined with a Büchi-SMP-20 capillary melting apparatus. For all reactions, analytical grade solvents were used.

Syntheses of 1-Amino-2,3-dihydro-1H-imidazole-2thiones 3. General Procedure. To a stirred solution of the α -haloketone **2** (2.5 mmol) in acetic acid (10 mL), potassium thiocyanate (0.37 g, 3.8 mmol) was added at ambient temperature. After 30 min the hydrazine 1 (2.5 mmol) or hydrazine hydrochloride was added. Following stirring for 4 h at 30 °C, the reaction mixture was evaluated by TLC ($CH_2Cl_2/MeOH =$ 99 :1). In case no product formation could be observed, the mixture was warmed to 80 °C for 2 h. After addition of water (30 mL), the precipitate was filtered off and washed with water. In general, recrystallization from methanol afforded pure products. Only in some cases, further purification by column chromatography (silica, $CH_2Cl_2/MeOH = 99$:1) was necessary. When N, \hat{N} -methylphenylhydrazine was used as a starting material, 2,3-dihydro-4-methyl-1-(N-methyl-N-phenylamino)-5-phenyl-1H-imidazole-2-thione 3.42 could be obtained in an analogous way.

Synthesis of 1-(3-Chlorophenylamino)-2,3-dihydro-4,5diphenyl-1*H*-imidazole-2-thione (3.26). A mixture of benzoine (1.0 g, 7.1 mmol), KSCN (0.68 g, 7.1 mmol), and 3-chlorophenylhydrazine-HCl (1.26 g, 7.1 mmol) was stirred in acetic acid (10 mL) for 2 days. The white precipitate formed was filtered off (0.4 g). Water (50 mL) was added, and the additional precipitate formed was likewise filtered off. Recrystallization from MeOH/water (1:1) yielded 1.5 g (56%) of **3.26**.

Conversion of Methoxycarbonyl Groups into the Free Acids. General Procedure. The corresponding methoxycarbonyl-substituted imidazoline-2-thione derivative (1.33 mmol) (**3.27**, **3.34**, **3.35**) was stirred in a 10% solution of NaOH (25 mL) for 6 h. After washing with CH₂Cl₂, the aqueous layer was acidified. The precipitate formed was filtered off and dried.

Synthesis of 5-(3-Carboxamidophenyl)-1-(3-chlorophenylamino)-2,3-dihydro-4-methyl-1*H*-imidazole-2thione (3.38). A mixture of the corresponding methoxycarbonyl-substituted imidazoline-2-thione 3.34 (1.33 mmol) was stirred in NH₃/MeOH fore 2 days. After removal of the solvent, the residue was recrystallized from MeOH/water (1:3) to yield 3.38 in 73% yield.

Preparation of 1-(3-Chlorophenylamino)-4-methyl-2methylsulfanyl-5-phenyl-1*H***-imidazole (8.01). A mixture of 1-(3-chlorophenylamino)-2,3-dihydro-4-methyl-5-phenyl-1***H***imidazoline-2-thione (3.01) (0.1 g, 0.37 mmol) and methyl iodide (1.19 g, 8.40 mmol) in dichloromethane (5 mL) was heated under reflux for 1 h. Excess of methyl iodide and solvent were removed in vacuo. Further purification was achieved by recrystallization from CH_2Cl_2/n-hexane, 1:1.**

Preparation of 2-Benzylsulfanyl-1-(3-chlorophenylamino)-4-methyl-5-phenyl-1*H***-imidazole (8.02).** A mixture of 1-(3-chlorophenylamino)-2,3-dihydro-4-methyl-5-phenyl-1*H*imidazoline-2-thione (**3.01**) (0.20 g, 0.62 mmol) and benzyl chloride (0.08 g, 0.62 mmol) in pyridine (5 mL) was heated under reflux for 3 h. After removal of the solvent, the crude product was purified by column chromatography (silica gel, ethyl acetate/hexane = 2:1.

Synthesis of 1-Arylamino-1*H***-imidazoles 7. General Procedure.** A suspension of the respective 1-amino-2,3dihydro-1*H*-imidazole-2-thione (**3**) (2 mmol) in glacial acetic acid (10 mL) was stirred in an ice bath. Upon dropwise addition of 30% hydrogen peroxide (1 mL, 9.76 mmol), the reaction mixture cleared up, resulting in a clear-brown solution. After stirring for another 15 min, the reaction mixture was made alkaline (pH 8–9) with 10% NaOH. The resulting precipitate was filtered off, washed with cold water, and recrystallized from water.

Experimental data concerning the syntheses of the starting hydrazines 1 and α -bromo compounds 2, the NMR data of all NAIMs (*N*-aminoimidazole-2-thiones 3, *N*-aminoimidazoles 7, and imidazole derivatives **8**–10), and elemental analyses are available as Supporting Information.

Reference Compounds. Dextran sulfate with an average molecular weight of 5000 was purchased from Sigma. AZT was synthesized as previously described.¹¹ Loviride (α -APA, R89439) was obtained from Janssen Research Foundation (Beerse, Belgium). The diketo acid L-708,906^{13a} was kindly provided by Drs. N. Neamati and T. R. Burke (NIH, Bethesda, MD). Ritonavir (ABT538) was kindly provided by J. M. Leonard, Abbott Laboratories (Abbott Park, IL).

Viruses and Cells. The origin of HIV-1(III_B) virus stock has been described.¹² The HIV-1(NL4.3) strain¹³ is a molecular clone obtained from the National Institutes of Health (Bethesda, MD). HIV-1 and HIV-2(ROD)¹⁴ stocks were obtained from the culture supernatant of HIV-1- or HIV-2infected MT-4 cells, respectively. Simian immunodeficiency virus, SIV(mac251), was originally isolated by Daniel et al.¹⁵ and was obtained from C. Bruck (Smith Kline-RIT, Rixensart, Belgium). SIV(mac251) stocks were prepared from the supernatant of SIV-infected MT-4 cells. ^16 S0561945 is an HIV-1($\dot{I}II_B)$ strain possessing the K103N and Y181C mutations in its reverse transcriptase gene, resulting in resistance toward nonnucleoside reverse transcriptase inhibitors. MSV was prepared from tumors induced following intramuscular inoculation of 3-day-old NMRI mice with MSV, as described previously.17

Antiviral Activity and Cytotoxicity Assays. The inhibitory effects of the *N*-aminoimidazole derivatives on HIV-1, HIV-2, and SIV replication were monitored by measuring the viability of MT-4 cells 5 days after infection.¹⁸ Cytotoxicity of the compounds was determined in parallel by measuring the viability of mock-infected cells on day 5. The number of viable cells was quantified semiautomatically by a tetrazolium-based colorimetric method using 3-(4,5-dimethylthiazolyl-2-yl)-2,5-diphenyltetrazolium (MTT), as described by Pauwels et al.²⁰

Peripheral blood mononuclear cells (PBMCs) from healthy donors were isolated by density centrifugation (Lymphoprep, Nycomed Pharma AS, Diagnostics, Oslo, Norway) and stimulated with phytohemagglutinin (PHA, 2 μ g/mL final concentration) (Sigma Chemical Co., Bornem, Belgium) for 3 days. The activated cells (PHA-stimulated blasts) were washed three times with PBS, and viral infections were done as described by the ACTG protocols.¹⁹ HIV-infected or mock-infected PHAstimulated blasts were cultured in the presence of 25 U/mL of IL-2 and varying concentrations of drugs. The supernatant was collected at day 7, and HIV-1 core antigen (p24 Ag) in the supernatant was analyzed by enzyme linked immunosorbent assay (ELISA) (NEN, Brussels, Belgium).

C3H/3T3 cells were seeded at 20 000 cells per milliliter into wells of tissue culture cluster plates (48 wells per plate). Following a 24 h incubation period, cell cultures were infected with 80 focus-forming units of MSV for 120 min, whereafter the culture medium was replaced by 1 mL of fresh medium containing appropriate concentrations of the test compound. After 6 days, transformation of the cells was examined microscopically.²⁰

Time-of-Addition Experiment. MT-4 cells were infected with HIV-1(III_B) at a multiplicity of infection (moi) of 0.5. The test compounds were added at different times after infection.²¹ Viral p24 Ag production was determined at 31 h postinfection by ELISA (NEN, Brussels, Belgium). The reference compounds were added at 100 times their 50% inhibitory concentration (IC₅₀) obtained in the MT-4/MTT assay.

Inhibition of HIV-1 Production from Chronically Infected Cells. Persistently infected (NL4.3) HUT-78 cells were washed three times in order to remove cell-free virus. The test compounds at the required concentrations were transferred into the cups of a 48-well plate. To each cup 200 000 cells were added (final volume of 1 mL). The cultures were allowed to grow for 44 h. The supernatant was collected, and viral p24 Ag production was determined by ELISA (NEN, Brussels, Belgium).

HIV-1 RT Assay. Poly(rC).oligo(dG) and [³H]dGTP and poly(rA).oligo(dT) and [³H]dTTP were used as a template primer and radiolabeled substrate, respectively. The final [³H]dGTP and [³H]dTTP concentrations in the reaction mixture were both 2.5 μ M.

Selection of 3.19- and 7.03-Resistant Virus Strains. HIV-1(III_B) was subjected to passages in MT-4 cells (4×10^5 cells/2 mL) in the presence of increasing concentrations of the compounds. Passages were performed every 3–4 days.

Determination of the Amino Acid Sequence of the 3.19- and 7.03-Resistant HIV-1 Strains RT. The procedures for the MT-4 cells infection with resistant HIV-1, preparation of the samples for the PCR assays, amplification of the proviral DNA, and sequencing of the 727-bp fragment covering amino acid residues 50–270 have been reported elsewhere.²²

HIV Integrase Assays. Wild type His-tagged recombinant HIV-1 integrase and the substrate and target DNA were as previously described.²³ The following high-performance-liquid-chromatography-purified deoxynucleotides were purchased from Amersham-Pharmacia Biotech: INT1, 5'-TGTG-GAAAATCTCTAGCAGT; INT2, 5'-ACTGCTAGAGATTTTCCACAC; T35, 5'-ACTATACCAGACAATAATTGTCTGGCTG-TACCGT; SK70, 5'-ACGGTACAGGCCAGACAATTATTGTCTGGGTATAGT. The oligodeoxynucleotides INT1 and INT2 correspond to the U5 end of the HIV-1 LTR. The 3'-processing, overall integration, and strand-transfer assay were slightly modified from published procedures. The final reaction mixture of the 3'-processing assays contained 20 mM HEPES, pH 7.5, 5 mM dithiothreitol, 10 mM MgCl₂, 75 mM NaCl, 5% (v/v) poly-(ethylene glycol) 8000, 15% dimethyl sulfoxide, 30 nM oligo-

deoxynucleotide substrate (INT1/INT2), and 230 nM His-tag IN in a volume of 10 μ L. Inhibitors were incubated briefly with the reaction components before the addition of IN. Reactions were started by addition of the enzyme. All the reactions were stopped by addition of formamide loading dye, and the products were separated in a 15% denaturating polyacryl-amide/urea gel. Autoradiography was performed by exposing the wet gel to X-ray film (CURIX RP1, Agfa). Quantification of the results was performed using the Cyclone (Canberra Packard, Zellik, Belgium).

To evaluate inhibition of 3'-processing, the reaction was allowed to proceed at 37 °C for 7 min. Inhibition of formation of the -2 band was determined. In the overall integration assay, the reaction was allowed to proceed for 60 min. Both inhibition of formation of the -2 band and DNA strand transfer products were scored. The DNA strand transfer was assayed in the following way. DNA substrate (INT1/INT2, 30 nM) was preincubated with 230 nM IN at 37 °C for 5 min to allow the cleavage reaction to occur. The composition of the reaction mixture was identical to that in the processing assay. After 5 min, 1 μ L of excess target DNA (SK70/T35, at a final concentration of 250 nM) was added with or without inhibitor and the samples were incubated at 37 °C for 1 h. The excess of unspecific target DNA competitively blocked further binding of IN to the viral substrate so that inhibition of DNA strand transfer in the preformed complexes can be monitored independently of DNA binding and 3'-processing.

Acknowledgment. We are grateful to Liesbet De Dier, Kristien Erven, Cindy Heens, Martine Michiels, Lizette van Berckelaer, and Bénédicte Van Maele for their excellent technical assistance. We thank Prof. Jef Rozenski for the mass spectrometry, and Carolien Bonroy, Sara Vijgen, and Ding Zhou for their assistance in the chemical synthesis. Elemental analyses were obtained from the "Microanalytical Labor, Fakultät für Chemie, Universität Konstanz". I. Lagoja is a research associate of the Rega Foundation. Results of this research are the subject of a patent application (Lagoja, I. M.; Pannecouque, C.; Van Aerschot, A.; Herdewijn, P.; De Clercq, E. Patent Application PCT/EPOI/02140, 24.02, 2001).

Supporting Information Available: Syntheses and NMR data of NAIM derivatives. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- De Clercq, E. Toward improved anti-HIV chemotherapy: Therapeutic strategies for intervention with HIV infections. J. Med. Chem. 1995, 38, 2491–2517.
- (a) Coffin, J. M. HIV population dynamics in vivo: implications for genetic variation, pathogenesis, and therapy. *Science* 1995, 267, 483–489. (b) Vandamme, A.-M.; Van Vaerenbergh, K.; De Clercq, E. Anti-human immunodeficiency virus drug combination strategies. *Antiviral Chem. Chemother.* 1998, *9*, 187–203.
 (3) Richman, D. D.; Havlir, D.; Corbeil, J.; Looney, D.; Ignacio, C.;
- (3) Richman, D. D.; Havlir, D.; Corbeil, J.; Looney, D.; Ignacio, C.; Spector, S. A.; Sullivan, J.; Cheeseman, S.; Barringer, K.; Pauletti, D.; Shih, C.-K.; Myers, M.; Griffin, J. Nevirapine resistance mutations of human immunodeficiency virus type 1 selected during therapy. J. Virol. 1994, 68, 1660–1666.
- (4) Fujiwara, T.; Šato, A.; El-Farrash, M.; Miki, S.; Abe, K.; Isaka, Y.; Kodama, M.; Wu, Y.; Chen, L. B.; Harada, H.; Sugimoto, H.; Hatanaka, M.; Hinuma, Y. S-1153 inhibits replication of known drug-resistant strains of human immunodeficiency virus type 1. *Antimicrob. Agents Chemother.* **1998**, *42*, 1340–1345.
 (5) Ren, J.; Nichols, C.; Bird, L. E.; Fujiwara, T.; Sugimoto, H.;
- (5) Ren, J.; Nichols, C.; Bird, L. E.; Fujiwara, T.; Sugimoto, H.; Stuart, D. I.; Stammers, D. K. Binding of the second generation non-nucleoside inhibitor S-1153 to HIV-1 reverse transcriptase involves extensive main chain hydrogen bonding. *J. Biol. Chem.* 2000, *275*, 14316–14320.
- (6) Schantl, J. G.; Lagoja, I. Direct synthetic approach to *N*-substituted 1-amino-2,3-dihydro-1*H*-imidazole-2-thiones. *Heterocycles* **1997**, *45*, 691–700.

- (7) Sitte, A.; Wessel, R.; Paul, H. Umwandlung von 1,3,4-Thiadiazolinen in 1,2,4-Triazole durch Dimroth-Umlagerung. *Monatsh. Chem.* **1975**, *106*, 1291–1296.
- (8) Schantl, J. G.; Lagoja, I. M. Oxidative Reduction of Cyclic Thiosemicarbazides: Conversion of 1-Arylamino-2,3-dihydro-1*H*imidazole-2-thiones into 1-Arylamino-1*H*-imidazoles. *Hetero*cycles **1998**, 48 (5), 929–938.
- (9) Dodd, D. S.; Kozikowski, Conversion of Alcohols to Protected Guanidines Using the Mitsunobu Protocol. *Tetrahedron Lett.* **1994**, 35 (7), 977–980.
- (10) (a) Hazuda, D. J.; Felock, P.; Witmer, M.; Wolfe, A.; Stillmock, K.; Grobler, J. A.; Espeseth, A.; Gabryelski, L.; Schleif, W.; Blau, C.; Miller, M. D. Inhibitors of strand transfer that prevent integration and inhibit HIV-1 replication in cells. *Science* 2000, 287, 646–650. (b) Pluymers, W.; Pais, G.; Van Maele, B.; Pannecouque, C.; Fikkert, V.; Burke, T.; De Clercq, E.; Witvrouw, M.; Neamati, N.; Debyser, Z. Inhibition of HIV-1 integrase activity and replication by a series of diketo derivatives. *Antimicrob. Agents Chemother.*, submitted.
- *microb. Agents Chemother.*, submitted.
 (11) Horwitz, J. P.; Chua, J.; Noel, M. Nucleoside V, the monomesylates of 1-(2'-deoxy-β-D-lyxyfuranosyl)thymine. *J. Org. Chem.* **1964**, *29*, 2076.
- (12) Popovic, M.; Sarngadharan, M. G.; Read, E.; Gallo, R. C. Detection, Isolation and Continuous Production of Cytopathic Retroviruses (HTLV-III) from patients with AIDS or pre-AIDS. *Science* **1984**, *224*, 497–500.
- (13) Adachi, A.; Gendelman, H.; Koenig, S.; Folks, T.; Willey, R.; Rabson, A.; Martin, M. Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone. J. Virol. 1986, 59, 284–291.
- (14) Barré-Sinoussi, F.; Chermann, J. C.; Nugeyre, M. T.; Chamaret, S.; Gruest, J.; Dauguet, C.; Axler-Blin, C.; Vézinet-Brun, F.; Rouzioux, C.; Rozenbaum, W.; Montagnier, L. Isolation of a T-Lymphotropic Retrovirus from a Patient at Risk for AIDS. *Science* 1983, 220, 868–871.
- (15) Daniel, M. D.; Letvin, N. L.; Sehgal, P. K.; Hunsmann, G.; Schmidt, D. K.; King, N. W.; Desrosiers, R. C. Long-term persistent infection of macaque monkeys with the simian immunodeficiency virus. *J. Gen. Virol.* **1987**, *68*, 3183–3189.
 (16) Harada, S.; Koyanagi, Y.; Yamamoto, N. Infection of HTLV-III/
- (16) Harada, S.; Koyanagi, Y.; Yamamoto, N. Infection of HTLV-III/ LAV in HTLV-I carrying cells MT-2 and MT-4: an application in a plaque assay. *Science* **1985**, *229*, 563–566.
- (17) De Clercq, E.; Merigan, T. C. Moloney sarcoma virus-induced tumors in mice: inhibition or stimulation by (polyrI):poly(rC). *Proc. Soc. Exp. Biol. Med.* **1971**, *137*, 590–594.

- (18) Pauwels, R.; Balzarini, J.; Baba, M.; Snoeck, R.; Schols, D.; Herdewijn, P.; Desmyter, J.; De Clercq, E. Rapid and Automated Tetrazolium-Based Colorimetric Assay for Detection of anti-HIV Compounds. J. Virol. Methods 1988, 20, 309–321.
- (19) Japour, A. J.; Mayers, D. L.; Johnson, V. A.; Kuritzkes, D. R.; Beckett, L. A.; Arduino, J. M.; Lane, J.; Black, R. J.; Reichelderfer, P. S.; D'Aquila, R. T.; Crumpacker, C. S. Standardized peripheral blood mononuclear cell culture assay for determination of drug susceptibilities of clinical human immunodeficiency virus type 1 isolates. The RV-43 Study Group, the AIDS Clinical Trials Group Virology Committee Resistance Working Group. *Antimicrob. Agents Chemother.* **1993**, *37*, 1095–1101.
- (20) Trials Group Virology Committee Resistance Working Group. *Antimicrob. Agents Chemother.* 1993, *37*, 1095–1101.
 (20) Balzarini, J.; Holý, A.; Jindrich, J.; Naesens, L.; Snoeck, R.; Schols, D.; De Clercq, E. Differential antiherpesvrius and antiretrovirus effects of the (*S*) and (*R*) enantiomers of acyclic nucleoside phosphonates: potent and selective in vitro and in vivo antiretrovirus activities of (*R*)-9-52-phosphonomethoxy-propyl)-2,6-diaminopurine. *Antimicrob. Agents Chemother.* 1993, *37*, 332–338.
- (21) Pauwels, R.; Andries, K.; Desmyter, J.; Schols, D.; Kukla, M. J.; Breslin, H. J.; Raeymaeckers, A.; Van Gelder, J.; Woestenborghs, R.; Heykants, J. Potent and selective inhibition of HIV-1 replication by a novel series of TIBO derivatives. *Nature* **1990**, *343*, 470–474.
- (22) (a) Balzarini, J.; Karlsson, A.; Pérez-Pérez, M.-J.; Vrang, L.; Walbers, J.; Zhang, H.; Öberg, B.; Vandamme, A.-M.; Camarasa, M.-J.; De Clercq, E. HIV-1-specific reverse transcriptase inhibitors show differential activity against HIV-1 mutant strains containing different amino acids substitutions in the reverse transcriptase. *Virology* **1993**, *192*, 246–253. (b) Balzarini, J.; Karlsson, A.; De Clercq, E. Human immunodeficiency virus type 1 drug resistance patterns with different 1-(2-hydroxyethoxy)methyl-6-(phenylthio)thymine derivatives. *Mol. Pharmacol.* **1993**, *44*, 694–701.
- (23) (a) Cherepanov, P.; Esté, J. A.; Rando, R. F.; Ojwang, J. O.; Reekmans, G.; Steinfeld, R.; David, G.; De Clercq, E.; Debyser, Z. Mode of action of G-quartets with the integrase of human immunodeficiency virus type 1. *Mol. Pharmacol.* **1997**, *52*, 771– 780. (b) Debyser, Z.; Cherepanov, P.; Pluymers, W.; De Clercq, E. Assays for the evaluation of HIV-1 integrase inhibitors. In *Methods in Molecular Biology. Nucleases.* Humana Press: Clifton, NJ, 2001.

JM0211117