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ABSTRACT: We disclose a novel Pd-catalyzed assembly of fluoren-9-ones by
merging of C−H activation and difluorocarbene transfer. ClCF2COONa served as
a difluorocarbene precursor to be harnessed as a carbonyl source in this
transformation. The current protocol enables us to afford fluoren-9-ones in high
yields with excellent functional group compatibility, which also represents the first
example of using difluorocarbene as a coupling partner in transition-metal-
catalyzed C−H activation.

Sodium chlorodifluoroacetate (ClCF2COONa) has loomed
as a promising reagent in organic synthesis, which can be

incubated into difluorocarbene via C−Cl and C−C bond
cleavage.1 There are three cases for further utilization of the in
situ generated difluorocarbene: (1) as the difluoromethyl
reagent; (2) as the C1 synthon; and (3) as the carbonyl source.
With respect to previous applications of sodium chlorodi-
fluoroacetate, nucleophiles or amine derivatives are a
prerequisite for the triumphant transformations of
ClCF2COONa. To our knowledge, the utilization of electro-
philes or nonamine derivatives to react with ClCF2COONa is
still far from being supplemented. Especially, the treatment of
ClCF2COONa as an efficient coupling partner in transition-
metal-catalyzed C−H activation has never been documented
heretofore.
During the past years, a vast array of strategies have been

developed for difluorocarbene transfer reactions. In sharp
contrast to the nonfluorinated carbene complex, the catalytic
formation of the metalCF2 complex and the application of
carbon nucleophiles to transfer the difluorocarbene still remain
as long-standing challenges in organic chemistry.2 In this
regard, Zhang’s group disclosed an unprecedented Pd-
catalyzed difluoromethylation of aryl boronic acids with
bromodifluoroacetate (Scheme 1a), in which (Ln)PdCF2
was formed as the crucial intermediate.3 Soon afterward, Xiao
and co-workers also demonstrated an outstanding Pd-catalyzed
transfer of difluorocarbene using Ph3P

+CF2CO2
−(PDFA) as

the difluorocarbene source (Scheme 1a).4 In 2017, Zhang’s
group once again successfully developed a Pd-catalyzed
ClCF2H-triggered formation of difluoromethylated arenes
(Scheme 1a).5 Recently, the same group described a
preeminent difluorocarbene transfer reaction by using diethyl
bromodifluoromethylphosphonate as a difluorocarbene pre-
cursor, in which four types of fluoroalkylated arenes were
achieved in a controllable catalytic way (Scheme 1b).6 Due to
our persistent interest in the transformations of halogenated
difluoro compounds,7 herein we report an effective method-

ology by merging of C−H activation and difluorocarbene
transfer to access fluoren-9-ones8 (Scheme 1c). In this process,
difluorocarbene acts as a carbonyl source and simultaneously
forms two C(sp2)−C(sp2) bonds, which also represents the
first example using difluorocarbene as a coupling partner in
transition-metal-catalyzed C−H activation.
We selected 2-iodobiphenyl (1a) and sodium chlorodi-

fluoroacetate (2) as benchmark substrates to initiate our
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Scheme 1. Pd-Catalyzed Transfer of Difluorocarbene
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research. Despondingly, when the reaction was conducted in
the presence of Pd(OAc)2 by using Na2CO3 as base, a stagnant
reaction was observed (Table 1, entry 1). To our delight, 9H-

fluoren-9-one 3a was achieved in 13% yield when triphenyl-
phosphine served as the additive. Since the ligand could
significantly enhance the reaction efficiency, we then
investigated a suite of different phosphine ligands (Table 1,
entries 2−6). Among the ligands inspected, tricyclohexylphos-
phine displayed the best catalytic partner, in which the desired
3a could be isolated in 73% yield (Table 1, entry 6).
Subsequently, a battery of bases were examined (Table 1,
entries 7−10). K3PO4, NaOAc, and Et3N were proved to be
inefficient or even ineffective. On the contrary, K2CO3 turned
out to be the optimum accelerant to deliver the 9H-fluoren-9-
one 3a in 87% yield (Table 1, entry 7). The augment of the
amount of K2CO3 was beneficial to this difluorocarbene
transfer reaction, and the yield of 3a could be increased to 98%
(Table 1, entry 11). As a follow-up optimization, we also
screened a range of solvents, and the results showed that DMF
was still the optimal reaction medium (Table 1, entries 12−
15). When the loading of catalyst was reduced, an inferior yield
of 3a was obtained (Table 1, entry 16). When the model
reaction was conducted under air atmosphere, the yield of 9H-
fluoren-9-one 3a was sharply decreased to 37% (Table 1, entry
17). The control experiment indicated that Pd(OAc)2 was
indispensable for this transformation (Table 1, entry 18).
With the optimized reaction conditions in hand, the

substrate scope of this novel Pd-catalyzed assembly of
fluoren-9-ones was then investigated (Scheme 2). The
electronic effect of the substituents installed on 2-iodinebi-

phenyls had no evident distinctions. Regardless of the 2-
iodinebiphenyls bearing the electron-withdrawing or electron-
donating groups on the aromatic ring, the 2-iodinebiphenyls
can almost be converted equivalently, enabling the formation
of the corresponding substituted fluorenones in excellent yields
(3a−3t). The structure of 3a was definitely confirmed by X-ray
single-crystal diffraction. It should be noted that a succession
of sensitive functional groups, such as chlorine, formyl, ketone,
ester, TMS, and vinyl, were well amenable to this Pd-catalyzed
C−H activation, which makes the further structural elaboration
of the fluoren-9-ones readily available. In addition to para-
substituted 2-iodinebiphenyls, meta- and ortho-substituted 2-
iodinebiphenyls were also compatible in this Pd-catalyzed
difluorocarbene transfer reaction. The targeted products (3m−
3o) were obtained in 93%−99% yields. A range of 2-
iodinebiphenyls with different substituents installed on the
ring of iodobenzene were also certified to be good candidates
to assemble the fluorenones (3p−3t) in 93%−98% yields.
Gladly, the subjection of fused 2-iodinebiaryls to this

Table 1. Optimization of the Reaction Conditions

entrya ligand base solvent yieldb

1 -- Na2CO3 DMF trace
2 PPh3 Na2CO3 DMF 13%
3 p-OMe(C6H4)3P Na2CO3 DMF 34%
4 p-F(C6H4)3P Na2CO3 DMF 10%
5 dppe Na2CO3 DMF trace
6 PCy3 Na2CO3 DMF 73%
7 PCy3 K2CO3 DMF 87%
8 PCy3 K3PO4 DMF 69%
9 PCy3 NaOAc DMF trace
10 PCy3 Et3N DMF n.r.
11c PCy3 K2CO3 DMF 98%
12 PCy3 K2CO3 CH3CN 81%
13 PCy3 K2CO3 1,4-dioxane <10%
14 PCy3 K2CO3 CHCl3 trace
15 PCy3 K2CO3 toluene n.r.
16d PCy3 K2CO3 DMF 87%
17e PCy3 K2CO3 DMF 38%
18f PCy3 K2CO3 DMF n.r.

aReaction conditions: 0.2 mmol of 1a, 0.4 mmol of 2, 10 mol % of
Pd(OAc)2, 20 mol % of ligand, 2 equiv of base, 2 mL of solvent, at N2
for 8 h under 90 °C. bIsolated yield. c3.0 equiv of K2CO3.

d5 mol % of
Pd(OAc)2 + 10 mol % of PCy3.

eAir atmosphere. fWithout Pd(OAc)2.

Scheme 2. Substrate Scope with Respect to 2-
Iodobiphenylsa

aAll reactions unless otherwise stated were carried out with 1 (0.2
mmol), 2 (0.4 mmol), Pd(OAc)2 (10 mol %), PCy3 (20 mol %), and
K2CO3 (3.0 equiv) in DMF (2 mL) under N2 at 90 °C for 8 h.
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transformation was also successful, and the expected products
3u and 3v could be isolated in 63% and 95% yields,
respectively. Aside from fused rings, heteroaromatic 2-
iodinebiaryls (2u−2z) could be smoothly engaged in this
Pd-catalyzed C−H activation as well, rendering the desired
fluorenones 3u−3z in moderate to excellent yields.
In order to showcase the practicability of this Pd-catalyzed

assembly of fluorenones, we executed the large-scale synthesis
and further synthetic manipulations. When the reaction was
scaled up to 5 mmol, the targeted 3a was achieved in 70% yield
without loss of the efficiency (Scheme 3a). As a versatile

synthon, fluorenones can be transformed into a variety of
functionalized organic molecules (Scheme 3b). Fluoren-9-one
3a could be easily converted into 9H-fluoren-9-ol 5 and 9-
methyl-9H-fluoren-9-ol 6 in 95% and 88% yields, respec-
tively.9,10 In addition, 3a could also be reduced into 9H-
fluorene 7 in high yield using the hypophosphorous acid−
iodine reducing system.11 According to the reported literature,
9H-fluoren-9-amine 8, 9H-fluorene-9-thione 9, and 6H-benzo-
[c]chromen-6-one 10 could be readily acquired from 3a in one
or two steps as well.12−14

In order to gain further insight into the mechanism for this
Pd-catalyzed C−H activation by merging of difluorocarbene
transfer, we conducted the control experiments and labeling
experiments. When 2-iodo-1,1′-biphenyl 2a was replaced by 2-
bromo-1,1′-biphenyl 4a, the yield of 3a was sharply decreased
to 31%, indicating that the reactivity of iodobenzenes is much
higher than that of bromobenzenes in this transformation
(Scheme 4a). To notarize the origination of the carbonyl
oxygen atom of the targeted 9H-fluoren-9-one, an isotope
labeling experiment was executed. When 20 equiv of H2

18O
was added to the reaction, 55% of 18O-labeled product 3a was
detected by GC-MS (Scheme 4b). This result showed that the
oxygen atom in the desired product should originate from the
water in the reaction system, which facilitated the hydrolysis of
difluorocarbene.
Based on the existing literature and our previous work,1,7,8,15

we proposed a possible mechanism for this Pd-catalyzed

construction of fluorenones. As showcased in Scheme 5, first,
oxidative addition of 1 gives rise to the formation of aryl

palladium species A, which subsequently undergoes C−H
bond activation to render the intermediate B. With the
assistance of base, difluorocarbene is generated from the
sodium difluorochloroacetate in situ, which is then captured by
metal palladium to deliver the intermediate C. The hydrolysis
of intermediate C produces the palladium complex D. The
active species D goes through the migration insertion to
provide the six-membered palladacycle E. Finally, intermediate
E suffers from reductive elimination to furnish the desired
product 3.
In summary, we have successfully established an efficacious

Pd-catalyzed difluorocarbene transfer for the construction of
fluoren-9-ones. In the current process, difluorocarbene acts as a
carbonyl source and simultaneously forms two C(sp2)−C(sp2)
bonds, which also represents the first example using
difluorocarbene as a coupling reagent in C−H activation. A
vast array of functionalized fluoren-9-ones were achieved in
high yields via C−H activation with wide substrate scope. This
methodology is readily scaled up for the construction of
fluoren-9-ones without loss of efficiency. Further applications
of this synthetic strategy by merging of C−H activation and
difluorocarbene transfer are underway in our group.

Scheme 3. Larger Synthesis and Synthetic Applications

Scheme 4. Control Experiment and Labeling Experiment

Scheme 5. Primary Mechanism Studies
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