Synthesis and in vitro enzyme activity of peptide derivatives of bacterial cell wall biosynthesis inhibitors

Russell J. Cox,* Helen Jenkins, James A. Schouten, Rosie A. Stentiford and
Katrina J. Wareing

School of Chemistry, University of Bristol, Cantock's Close, Clifton, Bristol, UK BS8 1TS
Received (in Cambridge, UK) 5th April 2000, Accepted 3rd May 2000
Published on the Web 9th June 2000

The enzyme diaminopimelate aminotransferase (DAP-AT) is a good potential target for the design of novel antibacterial agents. We have synthesised a series of peptide hydrazines based on the structure of the natural substrate of DAP-AT. These compounds show varied inhibition properties in vitro vs. DAP-AT from E. coli as well as moderate antimicrobial activity vs. E. coli. Examination of the kinetics of inhibition reveals that hydrazine, as well as the substituted hydrazino-peptides, shows two-phase slow-binding inhibition. Possible mechanisms for inhibition are discussed.

Introduction

Interest in novel antimicrobial compounds has increased recently as the problem of antibiotic-resistant pathogens has become more prevalent. ${ }^{1}$ Resistance to almost all commercially available antibacterial drugs has been observed in both 'wild type' and laboratory strains of disease-causing bacteria. Worryingly, resistance is building up in bacteria which can cause major human epidemics, such as Mycobacterium tuberculosis, the causative agent of TB. ${ }^{2}$ Resistance has emerged for a number of reasons. Many antimicrobial drugs are, or are closely related to, natural products. Many of these compounds are produced through fermentation of strains of bacteria and fungi. In order that these antibiotic producing organisms do not kill themselves they utilise a variety of mechanisms to ameliorate the action of the antibiotics. These resistance mechanisms are genetically encoded and under appropriate conditions resistance genes can propagate through the environment. The spread of resistance mechanisms often negates treatment by entire classes of antimicrobial compounds. Under these circumstances the development of novel classes of antimicrobial compounds is required.

We have been studying specific enzymes involved in bacterial cell wall biosynthesis as potential targets for new classes of antimicrobial compounds. In particular the biosynthesis of L-lysine $\mathbf{1}$ in bacteria (Scheme 1) has interested us because
of the central role of L-lysine and its precursors, meso- and LL-diaminopimelic acid (DAP, 2), as key cross-linking elements in the strength-bearing peptidoglycan layer of the prokaryote cell wall. ${ }^{3-5}$ The biosynthesis of the peptidoglycan structure is the target for successful antimicrobial drug classes including the penicillins and other β-lactams and the vancomycins and other glycopeptides. ${ }^{6}$ Of course, L-lysine itself is also crucial to bacterial growth and development because of its requirement for protein synthesis. The biosynthesis of L-lysine, however, does not appear to be a target for existing naturally occurring compounds and resistance mechanisms may be absent. An additional attractive feature of this pathway is that it is absent from mammals (where L-lysine is obtained solely through the diet) and specific enzyme inhibitors could avoid mammalian side effects.

We have developed a series of compounds designed to inhibit a key enzyme in the bacterial L-lysine biosynthetic pathway. The hydrazines $\mathbf{3}$ and $\mathbf{4}$ are very potent, slow-binding inhibitors of the enzyme LL- N-succinyldiaminopimelate aminotransferase (DAP-AT) from E. coli (Scheme 1). ${ }^{7,8}$ The most potent of them, 3, possesses a K_{I}^{*} of 22 nM and is an extremely effective in vitro inhibitor of L-lysine biosynthesis. Other related compounds, where the N-succinyl group has been replaced by, for example, $\mathrm{N}-\mathrm{Cbz}$ (e.g. 4), are also potent inhibitors of DAP-AT. On complex growth media (which contain L-lysine and DAP isomers) 3 shows very little activity vs. E. coli, but on minimal growth

L-lysine 1

Steps

meso-DAP 2

Scheme 1 Later steps during the biosynthesis of L-lysine by E. coli.

media (containing only glucose and salts) the antibiotic activity is more evident. Despite their efficacy vs. lysine biosynthesis in vitro, these compounds do not show particularly effective antibiotic properties when compared with commercial antibiotics such as carbenicillin or tetracycline. This difference between in vitro and in vivo potency could be due to poor transport of the compounds through the bacterial cell wall.

Many bacteria possess general peptide transport systems embedded into their cell walls. ${ }^{9,10}$ These have sometimes been exploited in drug design as potential entry routes into the cell. For example, the alanine racemase (and thus peptidoglycan biosynthesis) inhibitors β-chloroalanine ${ }^{11}$ and (1 -aminoethyl)phosphonic acid ${ }^{12}$ are both much more effective antimicrobial agents when coupled to other amino acids to form peptides. These peptides are efficiently imported into bacterial cells and then cleaved by peptidases to reveal the active compounds. In order to attempt to overcome possible transport problems of the DAP-AT inhibitors we decided to exploit the apparently lax substrate specificity of DAP-AT for the N-acyl side-chain. ${ }^{7}$ We therefore set out to make analogues of $\mathbf{3}$ and $\mathbf{4}$ bearing peptidic side-chains. Most similar to the natural N-succinyl group is the amino acid aspartic acid and we decided to synthesise both possible (i.e. α-linked $\mathbf{5 a}$ and β-linked $\mathbf{5 b}$) isomers. As aromatic side-chains are also tolerated by DAP-AT we also undertook to examine the phenylalanyl dipeptide 6 .

The use of alanylalanyl dipeptides as transport agents has also been reported. For example, alanylalanyl dipeptides of sulfanilic acid are up to 207 times more potent than sulfanilic acid itself as antimicrobial agents. Alanylalanyl peptides of 6 -aminopenicillanic acid have also been shown to be up to 100 times more potent than the free β-lactam vs. Bacillus subtilis and 10 times more potent vs. E. coli. ${ }^{13}$ In the case of L-lysine biosynthesis, alanylalanine peptides have also proven successful. The weak L-THDP (L-tetrahydrodipicolinate) succinyl transferase inhibitor $\mathrm{L}-\alpha$-aminopimelate shows no antibacterial activity, but when it was included in alanyl and alanylalanyl dipeptides and depsipeptides, good antibacterial activity was observed with minimum inhibitory concentrations (MICs) of $1-16 \mu \mathrm{~g} \mathrm{ml}^{-1}$ against a range of Gram-negative bacteria. ${ }^{14} \mathrm{We}$ therefore also set out to examine the alanylalanyl tripeptides 7 .
All of these compounds have the potential to be potent in vivo inhibitors of DAP-AT. However, in other systems, notably that of (1-aminoethyl)phosphonic acid, cleavage of the peptide occurs after penetration into the cell. For the hydrazino peptides 5-7 described here, this process would release N-amino-

DAP 8, a known inhibitor of the final L-lysine pathway enzyme meso-DAP decarboxylase. ${ }^{15}$ Thus the peptide hydrazines described here have the potential to block lysine biosynthesis at two points in the pathway.

Results and discussion

Synthesis

The carbonyl ene reaction is a convenient method for the production of the C_{7} DAP skeleton (Scheme 2). ${ }^{16}$ The reac-

Scheme 2 Reagents and conditions: i, $\mathrm{SnCl}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78 \longrightarrow 0{ }^{\circ} \mathrm{C}$; ii, $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, 10 \% \mathrm{CHCl}_{3}-\mathrm{MeOH}$.
tion between enantiomerically pure protected L-allylglycine 9 and methyl glyoxylate, in the presence of SnCl_{4}, conveniently gives the protected aminopimelate skeleton $\mathbf{1 0}$. When the N -protecting group is Cbz , hydrogenation then affords the fully saturated amino alcohol $\mathbf{1 1}$ bearing an l-configured α-amino ester. This compound is a key precursor to the DAP-AT substrates. We have already shown that the amino alcohol $\mathbf{1 1}$ can be selectively N-acylated by appropriate acyl chlorides. ${ }^{7}$

For the synthesis of the peptides 5-7 we required protected phenylalanine, aspartates and alanylalanine. Both regioisomers of L-aspartic acid benzyl ester 12a and 12b are commercially available, as is L-ala-L-ala 16. N-Acetylation was easily achieved for all of the precursors, by treatment with acetic anhydride, although isolation and purification of N -acetylalanylalanine 17a was complicated by its high water solubility. We also synthesised Fmoc-alanylalanine 17b which was much less water soluble (Scheme 3). ${ }^{17}$

We initially concentrated on the phenylalanyl dipeptide series (Scheme 4). Selective N-coupling with the pimelate skeleton 11 was achieved using standard peptide-coupling methodology (DCC, HOBt) in good yield to give 18. Oxidation of the ε-alcohol was achieved using the Dess-Martin periodinane, ${ }^{18,19}$ in good yield, and the fully protected peptide ketone 19 was readily purified. Final deprotection of 19 was easily achieved using exactly two equivalents of $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}$ in wateracetonitrile to afford the analytically pure dilithium salt $\mathbf{2 0}$ (Scheme 4).
The α - and β-linked aspartate skeletons, 21a and 21b respectively, were also assembled using peptide-coupling reagents (Scheme 5). Dess-Martin oxidation of 21a smoothly gave the protected ketone 22a. In an attempted deprotection, this α-linked aspartate was then subjected to hydrogenation, followed by LiOH hydrolysis using exactly 3.0 equivalents of $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}$. This procedure did afford the trilithium salt as expected, but also caused evident ε-ketone reduction affording the alcohol 23a (Scheme 5). In order to avoid using hydrogen-
ation conditions for final deprotection, the benzyl esters of the aspartyl peptide alcohols, 21a and 21b, were exchanged for methyl esters prior to Dess-Martin oxidation. Thus hydrogenation, followed by treatment with an excess of diazomethane, exchanged the esters in high yield giving trimethyl esters 24a and $\mathbf{2 4 b}$. Following oxidation of the ε-alcohols to ε-ketones, $\mathbf{2 5 a}$ and $\mathbf{2 5 b}$, full deprotection was achieved with exactly 3.0 equivalents of $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}$ to afford the trilithium salts 26a and 26b.

Scheme 3 Reagents and conditions: i, $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{NaHCO}_{3}$ (aq); ii, Fmoc$\mathrm{OSu},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}, \mathrm{NaHCO}_{3}$.

The protected dipeptides described above were relatively simple to purify, but in the case of the N-acetylalanylalanyl tripeptide 27a, high water solubility and difficulties with column chromatography drastically reduced the yield of purified product and the synthesis was abandoned at this stage. The Fmoc-protected tripeptide 27b was obtained in high yield after column chromatography, however, presumably because of its increased hydrophobicity. Conversion of 27b to the ketone 28 was also straightforward (Scheme 6). The previously successful LiOH deprotection strategy was then applied to the Fmocprotected tripeptide 28. Initial treatment of $\mathbf{2 8}$ with exactly 2.0 equivalents of $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}$ left some residual methyl esters as judged by the ${ }^{1} \mathrm{H}$ NMR spectrum. Analysis of the hydrolysis product by HPLC and electrospray mass spectroscopy (ESMS) indicated some Fmoc cleavage under the basic conditions. Sufficient $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}$ was therefore added to the deprotection reaction to cause full methyl ester hydrolysis. Removal of solvent afforded a mixture of peptides 29a and 29b with and without Fmoc protection.

The use of piperidine to fully cleave the Fmoc protection was then attempted. Analysis by HPLC indicated this to be very rapid, with complete substrate consumption in less than 15 min . However, after removal of solvent and excess piperidine, analysis of the product indicated formation of a majority of the piperidinyl enamine $\mathbf{3 1}$ in addition to the desired ketone $\mathbf{3 0}$. In principle enamine $\mathbf{3 1}$ should be easily hydrolysed in aqueous acid, but we found that even prolonged treatment in aq. trifluoroacetic acid (TFA) caused little hydrolysis to 30. In order to avoid enamine formation we utilised the nonnucleophilic N-methylmorpholine as the basic deprotection agent. Deprotection of the mixture of 29a and 29b was significantly slower than with piperidine, with reaction in 50% aq. N-methylmorpholine requiring at least 24 h for complete deprotection. However, after removal of reagents and solvent, and purification by semi-preparative HPLC, the tripeptide 30 was obtained in pure form.

The hydrazines 5-7 were simply obtained from their corresponding ketones by treatment with an excess of hydrazine in the presence of NaCNBH_{3}. At pH 5.0 this reaction is selective for hydrazone reduction and causes little reduction of ketones. Purification of the resulting hydrazino peptides was achieved by ion-exchange chromatography. Characterisation of the hygroscopic products was difficult due to their production in small ($\approx 10 \mathrm{mg}$) quantities. However, an extremely useful characteris-

Scheme 4 Reagents and conditions: i, 15, DCC, $\mathrm{HOBt}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; ii, Dess-Martin periodinane, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; iii, 2.0 equiv. $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}$, aq. CH CN ; iv, $\mathrm{NH}_{2} \mathrm{NH}_{2}, \mathrm{MeOH}, \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ (to pH 5.0), NaCNBH_{3}.

Scheme 5 Reagents and conditions: i, 13a or 13b, EDCI, $\mathrm{HOBt}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; ii Dess-Martin periodinane, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; iii, $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}$; iv, 3.0 equiv. $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}$, aq. $\mathrm{CH}_{3} \mathrm{CN}$; v, excess of ethereal $\mathrm{CH}_{2} \mathrm{~N}_{2}$; vi, $\mathrm{NH}_{2} \mathrm{NH}_{2}, \mathrm{MeOH}, \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ (to pH 5.0), NaCNBH_{3}.

Scheme 6 Reagents and conditions: i, 17, EDCI, $\mathrm{HOBt}, \mathrm{CH}_{2} \mathrm{Cl}_{3}$; ii, Dess-Martin periodinane, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; iii, ≈ 3.0 equiv. $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}$, aq. $\mathrm{CH}_{3} \mathrm{CN}$; iv, piperidine, DMF; v, N-methylmorpholine, water; vi, 10% aq. $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$; vii, $\mathrm{NH}_{2} \mathrm{NH}_{2}, \mathrm{MeOH}, \mathrm{CF}_{3} \mathrm{CO} 2 \mathrm{H}$ (to pH 5.5), NaCNBH_{3}.
ation technique is ESMS. Not only can this analytical method detect microgram quantities of the peptides, but dissolution of the sample in a mixture of $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{D}_{2} \mathrm{O}$ allows statistical deuterium exchange into NH, OH and activated CH positions. Since the deuteriated compounds can be resolved and counted this technique gives a useful double-check of the expected structure. For example, in negative-ion mode, the ES spectrum of a sample of peptide ketone 30 dissolved in $30 \% \mathrm{D}_{2} \mathrm{O}$ in $\mathrm{H}_{2} \mathrm{O}$ (Fig. 1) clearly shows the expected envelope of masses for exchange of up to 4 of the available 5 labile protons above the

Exact Mass (M) : 343.15

Fig. 1 The electrospray ionisation mass spectrum of $\mathbf{3 0}$ after incubation in $30 \% \mathrm{D}_{2} \mathrm{O}$ in $\mathrm{H}_{2} \mathrm{O}$, (negative-ion mode).
parent anion. The pattern is mirrored for lithium-exchanged anions at 6 and $12 \mathrm{~m} / \mathrm{z}$ units lower.

Substrate activity

DAP-AT is a pyridoxal phosphate (PLP) dependent enzyme. DAP-AT was isolated from E. coli $\mathrm{DH} 5 \alpha$ by a procedure involving rapid sonication of whole cells, cation and anion chromatography and ultrafiltration. The enzyme fraction obtained showed high activity with the natural substrate 32 with no detectable background activity in the absence of substrate. In the standard assay DAP-AT, in its pyridoxamine phosphate (PMP) form, converts the natural substrate $32(\approx 1 \mathrm{mM})$ to the ε-L-amine 33 (Scheme 7). This generates the PLP form of the enzyme which then reacts in the reverse direction with an excess of L-glutamate $34(10.0 \mathrm{mM})$ to generate α-ketoglutarate 35 . A coupling enzyme, glutamate dehydrogenase (GDH), then converts the α-ketoglutarate 35 rapidly back to L-glutamate 34 with the consumption of ammonium ions and NADPH. The fall in NADPH concentration is conveniently monitored at 340 nm in order to obtain rate data.

In the standard activity assay all of the synthetic peptide ketones were turned over by the enzyme. Apparent MichaelisMenten kinetic parameters were measured for each substrate by measuring the rate of NADPH consumption with increasing substrate concentration (Table 1). When compared with the natural substrate 32, all of the peptides are clearly somewhat poorer substrates of DAP-AT in terms of their turnover number ($k_{\text {cat }}$). Interestingly, K_{M}-values for the substrate analogues are remarkably similar to that for the natural substrate, in the range $1-5 \mathrm{mM}$, the major difference in activity being the maximal rate of reaction. In terms of specificity $\left(k_{\mathrm{cat}} / K_{\mathrm{M}}\right)$, it is clear that the bulky alanylalanyl peptide $\mathbf{3 0}$ is the poorest substrate, with the phenylalanyl peptide also being a very poor substrate. Of the two aspartyl peptides the α-linked dipeptide appears

PMP PLP

$\mathrm{NADPH}+\mathrm{NH}_{4} \mathrm{Cl} \quad \mathrm{NADP}^{+} \mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O}$

Scheme 7 Assay system for DAP-AT. GDH = glutamate dehydrogenase.

Table 1 Michaelis-Menten kinetic values for DAP-AT substrates

Substrate $\mathrm{R}=\left(\mathrm{CH}_{2}\right)_{3} \mathrm{COCO}_{2} \mathrm{H}$	 32				
$K_{\mathrm{M}}^{\mathrm{app}} / \mathrm{mM}^{a, b}$	2.25	< 1	1.91	4.69	2.63
$k_{\text {cat }} / \mathrm{s}^{-1 b}$	164	<2.1	20.3	43.2	1.5
$k_{\mathrm{cat}} / K_{\mathrm{M}}^{\mathrm{app} / \mathrm{s}^{-1} \mathrm{mM}^{-1} .}$	72.9	<2.1	10.6	9.2	0.53
\% Natural substrate	100	< 0.8	14.5	12.6	0.008
${ }^{a}$ At 10 mM L-glutamate. ${ }^{\text {b }} \pm 10 \%$.					

marginally the better of the two. The dependence of substrate specificity on side-chain bulk has previously been observed; for example, Boc-protected DAP analogues are also very poor substrates of DAP-AT. ${ }^{7}$

Inhibition activity

The succinyl-DAP hydrazine $\mathbf{3}$ is a very potent slow binding inhibitor of DAP-AT. ${ }^{7}$ Previous kinetic studies have shown that it appears to inhibit via a two-step mechanism involving an initial binding event followed by a second event which, although reversible, is very slow in the reverse direction Although not proven, it is likely that the hydrazine nucleophile of the inhibitor forms a hydrazone with the PLP form of the cofactor in the enzyme active site. It is not clear whether the 'slow reverse' second step of the inhibition process is an 'opening' of the active site or simply the slow, enzyme-catalysed hydrolysis of the hydrazone.

In either event the hydrazino peptides synthesized in this study were also expected to act as slow-binding inhibitors of DAP-AT. Slow-binding inhibition is characterised by timedependent, but reversible inhibition. The process has been extensively studied and described by Morrison and Walsh. ${ }^{20}$ For the two-step process observed for the hydrazine $\mathbf{3}$ (Table 2) this manifests itself as a decrease in rate for the initial reaction in the first seconds to minutes of reaction. This could easily be interpreted as simple reversible competitive inhibition were it
not for a second, slower process, manifesting itself over minutes to hours, leading to much more substantial inhibition.
In order to test for slow-binding inhibition the peptide hydrazines were added to reactions containing all assay components including the substrate, and the effect of the inhibitor was monitored over time. Initially little inhibition was observed, but over time the effect became more pronounced until equilibrium was reached. This process was repeated for increasing inhibitor concentrations for each of $\mathbf{5 a}, \mathbf{5 b}, \mathbf{6}$ and 7. Data analysis for this type of inhibition is relatively complex, but analysis of multiple progress of inhibition curves (e.g. Fig. 2 A) does allow estimation of a number of kinetic parameters. Each progress-of-inhibition data-set was directly fitted to the integrated rate equation described by Morrison and Walsh (e.g. Fig. 2A for inhibition by $\mathbf{5 b}$). ${ }^{21,22}$ This gave precise figures for the initial rates of reaction as well as the final equilibrium rates of reaction at each inhibitor concentration tested. Plotting the reciprocal of the rate $v s$. the inhibitor concentration (e.g. Fig. 2B for inhibition by $\mathbf{5 b}$) then allowed estimation of K_{I} (i.e. the inhibition constant for the initial process) \dagger as well as the overall inhibition constant K_{I}^{*} in the usual way (Table 2). ${ }^{23}$

[^0]Table 2 Inhibition kinetic values obtained for peptide hydrazines

Inhibitor $\mathrm{R}=$
$\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}\left(\mathrm{NHNH}_{2}\right)$ a
${ }^{a}$ At 10 mM L-glutamate. ${ }^{b} \pm 10 \%$.

Fig. 2 A, Experimental progress-of-inhibition data obtained for inhibition of DAP-AT by $\mathbf{5 b}$ at the indicated concentrations (dots) and best-fit curve to the integrated rate equation of Morrison and Walsh (curve) ${ }^{20} \mathbf{B}$, Replots of the reciprocal of the 'initial' (i.e. first few seconds) and equilibrium (i.e. after $c a .30 \mathrm{~min}$) rates v s. $\mathbf{5 b}$ concentration from panel $\mathbf{A} ;{ }^{20} \mathbf{C}$, Regeneration of activity of fully inhibited (by the indicated compounds) DAP-AT upon 100 -fold dilution. ${ }^{20}$

In further experiments DAP-AT was incubated with an excess of each potential inhibitor in the absence of substrates. This inhibited enzyme was then added to a standard assay solution and the rate at which reaction proceeded was monitored (Fig. 2C for data for 3, 5a and 6). In these experiments very low or zero initial enzyme activity was observed, indicative of full enzyme inhibition, but over time the rate of enzyme reaction increased as the inhibitors diffused out of the active site. Conditions were chosen such that the final inhibitor concentration in the activity assay was low enough not to cause significant inhibition. Under these conditions the reaction is essentially irreversible and the rate constant k_{6} can be easily estimated. Already knowing K_{I} and K_{I}^{*}, the rate constant k_{5} can then be also calculated (Table 2). ${ }^{20}$

All of the peptide hydrazines synthesised here show inhibitory activity vs. DAP-AT. However, the most potent of them, the β-aspartyl peptide $\mathbf{5 b}$, shows inhibitory activity around 30 -fold lower than the N-succinyl-DAP hydrazine 3 . The α-aspartyl inhibitor 5 a is somewhat worse at $1 / 40$ th the potency of $\mathbf{3}$, while the phenylalanyl 6 and alanylalanyl 7 peptides show poor inhibition in the $\mu \mathrm{M}$ range. Hydrazine itself also inhibits DAP-AT, but with an overall K_{I}^{*} of $7.7 \mu \mathrm{M}$. All of the inhibitors, including hydrazine, showed two-phase inhibition kinetics, indicative of slow-binding inhibition. However, close examination of the individual kinetic constants for the inhibition processes shows why the succinyl- and Cbz-based inhibitors are
most potent. It is clear that for these two compounds the initial inhibition (specific inhibition constant K_{I}) favours formation of the presumed EI complex when compared to the other compounds. This may be indicative of favourable molecular recognition events and binding interactions during the early phase of inhibition for 3 and 4, compared with poorer binding and/or disfavourable steric interactions for 5-7. For example, 7, with the bulkiest N-acyl side-chain, shows the poorest inhibition constant.

During the second phase of inhibition the succinyl 3 and Cbz 4 compounds again show the most favourable kinetic behaviour. Consideration of the equilibrium constants for this process shows that for $\mathbf{3}$ and $\mathbf{4}$ the EI* state is highly favoured (e.g. $K_{5 / 6}=k_{5} / k_{6}=195$ for 3), while for the other compounds this value falls to ≈ 10. Hydrazine itself shows a very similar value.

It is possible to speculate as to the physical meanings of the two processes occurring during inhibition (Scheme 8). It is obvious that an initial step must be recognition and binding of the inhibitor by DAP-AT. This fits well with the properties of the various inhibitors as discussed above. The second phase of inhibition presumably involves hydrazone formation, the reverse process being hydrazone hydrolysis. In other PLPdependent aminotransferases significant closure of the active site has been observed during reaction and it may be that the second equilibrium process is the formation of a tightly bound inhibitor in a 'closed' active site. ${ }^{24}$ The $K_{5 / 6}$ value for hydrazine inhibition is remarkably similar to that of the other 'poor' inhibitors. As hydrazine is likely to form a hydrazone with PLP in the enzyme active site, without specific interactions with other parts of the active site, it may be that the observed $K_{5 / 6}$ equilibrium constant of ≈ 10 represents simple hydrazone formation for all of the poorer inhibitors. A further active-siteclosure event could then account for the enhanced binding of the better inhibitors. Overall this model would give an equilibrium constant for hydrazone formation of $\approx 7-10$, with a further contribution of a factor of $\approx 10-20$ for full active-site closure. The closure of the active site then affects the off rate $\left(k_{6}\right)$, significantly impeding hydrazone hydrolysis for the better inhibitors 3 and 4. The α - and β-aspartyl peptides, 5a and $\mathbf{5 b}$, show intermediate behaviour, perhaps representing cases involving partial active-site closure.

Antimicrobial activity

In order to test the antimicrobial activity of the hydrazino peptides a simple assay system was devised in which small disks of filter paper soaked in varying concentrations of the inhibitors was placed on an agar surface on which E. coli cells were growing. After 24 h the radius of the inhibition zone around the filter paper disk was measured. This system was tested with a number of commercial antibiotics as well as with the synthetic ketones, the synthetic hydrazines, and hydrazine itself. The results are shown in Table 3. As expected the commercial antibiotics show significant growth-inhibition zones on both nutrient and minimal media. The peptide ketones show minimal growth inhibition. The peptide hydrazines with the best in vitro inhibition characteristics with respect to DAP-AT also show marked antimicrobial activity, but only on minimal media. The L-Agar nutrient media used contains hydrolysed protein extract, and presumably contains significant L-lysine which overcomes the effects of DAP-AT inhibition. Hydrazine itself shows very good antimicrobial activity, because it presumably inhibits all PLP-dependent enzymes. It should be remembered, however, that due to its low molecular mass, the hydrazine molar concentration in these assays is around 10 -fold higher than the peptides at equivalent mass loadings.

Our initial idea that poor cell-penetration properties could be the cause of the low in vivo potency of these DAP-AT inhibitors would not appear to be supported by the results with the ala-ala-tripeptide hydrazine 7 . This compound would be

Table 3 Antimicrobial activity of potential DAP-AT inhibitors vs. E. coli DH5a

Inhibitor	Radius of inhibition zone/ $/ \mathrm{mm}^{\text {a }}$							
	Inhibitor per disk/ug L-Agar				Inhibitor per disk/ug M9-Minimal Agar			
	300	30	3	0.3	300	30	3	0.3
$N \mathrm{Ac}-\alpha$-Asp-AP-NHNH25 5	1	0	0	0	10	5	0	0
$N \mathrm{Ac}-\beta$-Asp-AP-NHNH2 $5 \mathbf{5}$	0	0	0	0	9	2.5	0	0
$N \mathrm{Ac}$-Phe-AP-NHNH ${ }_{2} 6$	1	0	0	0	6	0	0	0
Succ-AP-NHNH2 3	1	0	0	0	13	8	0	0
Ala-Ala-AP-NHNH27	0	0	0	0	0	0	0	0
$\mathrm{NH}_{2} \mathrm{NH}_{2}$					15	10	0	0
$N \mathrm{Ac}$ - α-Asp-AP-O 26 a	0	0	0	0	1	0	0	0
$N A c-\beta$-Asp-AP-O 26b	0	0	0	0	1	0	0	0
$N A c-P h e-A P-O 20$	0	0	0	0	1	0	0	0
Ala-Ala-AP-O 30	0	0	0	0	1	0	0	0
Tetracycline	13	10	7	2.5	17	10	8	2
Chloroamphenicol	13	10	3.5	0	17	12	6	3
Carbenicillin	13	8	4.5	0	12	7	4	2
Water	0	0	0	0	0	0	0	0

${ }^{a}$ Radius of inhibition zone minus radius of filter disc $(2.5 \mathrm{~mm})$. The results are averages of four separate experiments.

Enzyme + Inhibitor
Michaelis Complex

Active site Closure
Hydrazone
Scheme 8 A possible role for active-site closure and hydrazone formation during inhibition of DAP-AT by hydrazines 3-7.
expected to be more efficiently transported than the other DAPAT inhibitors described here. However, no significant growth inhibition of E. coli could be observed for this compound. It is
conceivable that the low in vivo potency of this compound is simply due to its poor inhibition of DAP-AT. We also hoped that enzyme-catalysed hydrolysis of the synthetic peptide
hydrazines could lead to the generation of the known mesoDAP decarboxylase inhibitor N-amino-DAP in vivo. ${ }^{15}$ However, it would appear that even if this compound is being formed it is not in sufficient concentration to cause lethal inhibition of meso-DAP-decarboxylase. Recently Blanchard and Ledwidge have determined that the $\arg \mathrm{D}$ encoded $\alpha-N$-acetylornithine aminotransferase (NAcO-AT) can also process the DAP-AT substrate 32. ${ }^{25}$ It may be that the poor general in vivo potency of DAP-AT inhibitors is due to NAcO-AT activity substituting for DAP-AT.
It is clear from the results presented here that N-acyl sidechain bulk has a detrimental effect on both in vitro and in vivo inhibition of DAP-AT by hydrazino peptides. Further work on the design and synthesis of potential irreversible inhibitors of DAP-AT and the in vivo effects of NAcO-AT will be reported in the near future.

Experimental

General

All reagents and solvents were obtained from the SigmaAldrich chemical company and were of ACS grade and not further purified unless otherwise stated. All anhydrous solvents were purchased from Fluka and were transferred under dried N_{2} gas. NMR spectra were obtained using JEOL Λ-300, Δ - 270 and $\Delta-400$ spectrometers operating at 300,270 and 400 MHz $\left({ }^{1} \mathrm{H}\right)$ and $75.5,67.9$ and $100.7 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$ respectively. Chemical shifts are quoted in ppm relative to TMS. Coupling constants (J) are quoted in Hz. IR spectra were obtained using a PerkinElmer 1600 FTIR spectrometer, using KBr discs for solids and thin films between NaCl plates for oils. Mps were obtained using a Reichert hot-stage apparatus equipped with microscope and Comark digital thermometer, and are uncorrected. Mass spectra were obtained in the indicated mode using a VG analytical autospec instrument (EI, CI, FAB, accurate mass) or Fisons VG Quattro spectrometer (ESMS). Optical rotations were obtained using a Perkin-Elmer 141 polarimeter using a 1 dm cell of 1 ml capacity. $[a]_{\mathrm{D}}$-Values are given in units of $10^{-1} \mathrm{deg} \mathrm{cm}{ }^{2}$ g^{-1}. Flash chromatography was performed according to the method of Still ${ }^{26}$ or using an improvised automatic system comprising a nitrogen constant pressure head, column packed with Merck silica gel $60(0.040-0.063 \mathrm{~mm})$, Gilson Holochrome UV detector set at 254 nm , and an LKB fraction collector. TLC analysis was performed using Merck glass-backed 0.2 mm silica plates (F254) developed with phosphomolybdic acid when necessary. DAP-AT was purified from E. coli $\mathrm{DH} 5 \alpha$ by previously described methods. ${ }^{7,8}$ Enzyme-assay methods have been reported elsewhere. ${ }^{7,8}$ For enzyme assays the UV spectrophotometer used was a Pharmacia LKB ultrospec III, equipped with a water-heated cell holder. All assays were performed at $37^{\circ} \mathrm{C}$.

Peptide nomenclature

All residues are L-configured unless otherwise stated; sequence runs from N to C termini; amino acids are denoted by standard three letter abbreviations, $\mathrm{AP}=\alpha$-aminopimelic acid; bracketed carboxylic group protection is at non-alpha position. The AP skeleton is labelled α to ε, the α-carbon bearing the amido group and the ε-carbon bearing the oxygen functionality.

HPLC Methods

All HPLC was carried out using a Beckman System Gold 126 pump module equipped with a Beckman 507 autosampler and Beckman 168 diode array UV spectrophotometer detector detecting at 218 and 254 nm . Solvents were: A, 0.05% trifluoroacetic acid (TFA) in degassed, deionised water; B, 0.045% TFA in HPLC-grade acetonitrile (Rathburn). Method 1: 4.6×250 mm Rainin Dynamax $60 \AA \mathrm{C}_{18}$ column equipped with C_{18}
guard eluted at $1 \mathrm{ml} \mathrm{min}{ }^{-1}, 0-5 \mathrm{~min} 0 \% \mathrm{~B}, 5-35 \mathrm{~min} 0-70 \%$ B, $35-37 \mathrm{~min} 70-100 \%$ B, $37-39 \mathrm{~min} 100 \%$ B, $39-41 \mathrm{~min} 100 \%$ B to 0% B; method 2: $10 \times 250 \mathrm{~mm}$ Chromapak spherisorb C_{18} column eluted at $4 \mathrm{ml} \mathrm{min}^{-1}, 0-5 \mathrm{~min} 0 \% \mathrm{~B}, 5-15 \mathrm{~min}$ $0-100 \%$ B, $15-17 \mathrm{~min} 100 \%$ B, $17-19 \mathrm{~min} 100-0 \%$ B. For semi-preparative scale purifications fractions were collected manually.

Ac-Phe-OH $15{ }^{27}$

A stirred solution of L-phenylalanine $\mathbf{1 4}(2.0 \mathrm{~g}, 12.1 \mathrm{mmol})$ in aq. $\mathrm{KOH}(10 \mathrm{M} ; 10 \mathrm{ml})$ was treated with acetic anhydride (2.47 $\mathrm{g}, 24.2 \mathrm{mmol}$) in portions over a period of 30 min . The solution was acidified to pH 2 by addition of conc. HCl . The mixture was diluted with water (50 ml) and extracted into EtOAc ($3 \times 100 \mathrm{ml}$). The combined organic extracts were evaporated in vacuo, and the solid residue was recrystallised from EtOAc to afford the product as colourless crystals ($820 \mathrm{mg}, 32 \%$): mp $168.0-169.5^{\circ} \mathrm{C}$ (lit. ${ }^{28} 170-171{ }^{\circ} \mathrm{C}$); $\delta_{\mathrm{H}}\left(300.40 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 7.19-7.18 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), $5.77(1 \mathrm{H}, \mathrm{d}, J 6.1, \mathrm{NH}), 4.86-4.70(1 \mathrm{H}$, $\mathrm{m}, \alpha \mathrm{H}), 3.18(1 \mathrm{H}, \mathrm{dd}, J 5.7,14.1, \beta \mathrm{CH}), 3.07(1 \mathrm{H}, \mathrm{dd}, J 14.1$, $6.4, \beta \mathrm{CH}), 1.93\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ; m / z(\mathrm{CI}) 207\left(\mathrm{M}^{+}, 17 \%\right), 208$ $\left(\mathrm{MH}^{+}, 100\right)$.

Ac-Asp(OBn)-OH 13a ${ }^{29}$

To a stirred solution of $\mathrm{H}-\mathrm{Asp}(\mathrm{OBn}) \mathrm{OH}$ 12a (NovaBiochem, $1.0 \mathrm{~g}, 4.48 \mathrm{mmol})$ in saturated aq. $\mathrm{NaHCO}_{3}(20 \mathrm{ml})$, was added acetic anhydride ($548 \mathrm{mg}, 550 \mu \mathrm{~mol}$). After 2 h a second portion of acetic anhydride ($23 \mathrm{mg}, 225 \mu \mathrm{~mol}$) was added and the mixture was stirred for 60 min . The mixture was acidified to pH 2 with conc. aq. HCl and extracted into $\mathrm{EtOAc}(3 \times 20 \mathrm{ml})$. The solvent was removed in vacuo to afford the product as colourless crystals ($1.1 \mathrm{~g}, 93 \%$); $\delta_{\mathrm{H}}\left(300.4 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.39-7.30(5 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}), 6.77(1 \mathrm{H}, \mathrm{d}, J 7.90, \mathrm{NH}), 5.13\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2}\right), 4.93-4.84$ $(1 \mathrm{H}, \mathrm{m}, \alpha \mathrm{CH}), 3.11(1 \mathrm{H}, \mathrm{dd}, J 17.4,4.4, \beta \mathrm{CH}), 2.92(1 \mathrm{H}, \mathrm{dd}$, $J 17.4,4.6, \beta \mathrm{CH}), 2.02\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ; m / z(\mathrm{EI}) 265\left(\mathrm{M}^{+}, 52 \%\right)$; m / z (CI) $266\left(\mathrm{MH}^{+}, 71 \%\right)$ (Found: $[\mathrm{MH}]^{+}, 266.10322$. $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{NO}_{5}$ requires m/z, 266.10285) (Calc. for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{5}$ requires C, $58.86 ; \mathrm{H}, 5.70$; N, 5.28. Found: C, $58.65 ; \mathrm{H}, 5.52$; N, 5.31\%).

Ac-Asp(OH)-OBn 13b ${ }^{29}$

To a stirred solution of $\mathrm{H}-\mathrm{Asp}(\mathrm{OH})-\mathrm{OBn} \cdot \mathrm{HCl} \mathbf{1 2 b}$ (NovaBiochem) $(1.5 \mathrm{~g}, 6.7 \mathrm{mmol})$ in saturated aq. $\mathrm{NaHCO}_{3}(15 \mathrm{ml})$ was added acetic anhydride ($7.0 \mathrm{ml}, 1.2$ equiv.). After 45 min the reaction mixture was acidified (conc. aq. HCl) and extracted into $\mathrm{EtOAc}(2 \times 50 \mathrm{ml})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{ml})$. The combined dried $\left(\mathrm{MgSO}_{4}\right)$ solvents were removed in vacuo, to yield 13b as a clear oil ($1.54 \mathrm{~g}, 86 \%$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3436,2928,1740,1664$, $1460 ; \delta_{\mathrm{H}}\left(300.4 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.36(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 6.61(1 \mathrm{H}, \mathrm{d}$, $J 8.1, \mathrm{NH}), 5.20\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 4.90(1 \mathrm{H}, \mathrm{m}, \alpha \mathrm{H}), 3.22(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\left.\mathrm{CO}_{2} \mathrm{H}\right), 3.09(1 \mathrm{H}, \mathrm{dd}, J 8.1,4.4, \beta \mathrm{H}), 2.93(1 \mathrm{H}, \mathrm{dd}, J 8.1,4.4$, $\beta \mathrm{H}), 2.05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(75.45 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 174.1\left(\mathrm{CO}_{2} \mathrm{H}\right)$, $170.6\left(\mathrm{CO}_{2} \mathrm{Bn}\right), 170.3(\mathrm{CONH}), 135.0(\mathrm{Ph}), 128.7(\mathrm{Ph}), 128.6$ $(\mathrm{Ph}), 128.3(\mathrm{Ph}), 67.8\left(\mathrm{OCH}_{2}\right), 48.6(\alpha \mathrm{CH}), 35.9\left(\mathrm{\beta CH}_{2}\right)$, $23.0\left(\mathrm{CH}_{3}\right)$; $m / z(\mathrm{CI}) 266\left(\mathrm{MH}^{+}\right)$(Found: $[\mathrm{MH}]^{+}, 266.10270$. $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{NO}_{5}$ requires m / z, 266.10285).

Ac-Ala-Ala-OH hemihydrate $17 \mathrm{a}^{30}$

To a stirred solution of H-Ala-Ala-OH 16 (Sigma, $1.028 \mathrm{~g}, 5.1$ mmol) in saturated aq. $\mathrm{NaHCO}_{3}(9 \mathrm{ml})$ was added acetic anhydride ($730 \mu \mathrm{l}, 1.2$ equiv., 6.12 mmol) dropwise over a period of 60 min . After a further 60 min more acetic anhydride ($365 \mu \mathrm{l}, 0.6$ equiv., 3.06 mmol) was added dropwise over a period of 30 min . After a further 60 min the reaction mixture was neutralised (dil. aq. HCl) and applied to the H^{+}-form of a column of Dowex AG50 WX8 cation-exchange resin. The acidic eluent was concentrated in vacuo, and the white solid product dissolved in acetone and the solution filtered. Evaporation of
the filtrate afforded the target compound as a hemihydrate; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3387,3350,3307,3279,3068,2996,1705,1655$; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 4.70\left(1 \mathrm{H}, \mathrm{q}, J 7.3, \mathrm{CHCH}_{3}\right), 4.63(1 \mathrm{H}, \mathrm{q}$, $\left.J 7.3, \mathrm{CHCH}_{3}\right), 2.36\left(3 \mathrm{H}, \mathrm{s}, J 7.3, \mathrm{CH}_{3} \mathrm{CO}\right), 1.77(3 \mathrm{H}, \mathrm{d}, J 7.4$, CH_{3}), $1.72\left(3 \mathrm{H}, \mathrm{d}, J 7.3, \mathrm{CH}_{3}\right) ; m / z\left(\mathrm{ES}^{-}\right) 201\left(\mathrm{M}^{-}\right) ; m / z\left(\mathrm{ES}^{+}\right.$, $\left.\mathrm{H}_{2} \mathrm{O}-\mathrm{D}_{2} \mathrm{O}\right) 203\left[(\mathrm{M}) \mathrm{H}^{+}, 10\right], 204\left[(\mathrm{M}-\mathrm{H}+\mathrm{D}) \mathrm{H}^{+}, 18\right], 205$ $\left[(\mathrm{M}-2 \mathrm{H}+2 \mathrm{D}) \mathrm{H}^{+}, 30\right], 206\left[(\mathrm{M}-3 \mathrm{H}+3 \mathrm{D}) \mathrm{H}^{+}, 25\right], 207$ $\left[(\mathrm{M}-3 \mathrm{H}+3 \mathrm{D}) \mathrm{D}^{+}, 20\right], 225\left[(\mathrm{M}) \mathrm{Na}^{+}, 40\right], 226[(\mathrm{M}-$ $\left.\mathrm{H}+\mathrm{D}) \mathrm{Na}^{+}, 95\right], 227\left[(\mathrm{M}-2 \mathrm{H}+2 \mathrm{D}) \mathrm{Na}^{+}, 100\right], 228[(\mathrm{M}-$ $3 \mathrm{H}+3 \mathrm{D}) \mathrm{Na}^{+}, 80$] [Calc. for $\left(\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 45.49$; H , 7.16; N, 13.26. Found: C, 45.56 ; H, 7.09 ; N, 13.06\%]; HPLC $\left(\right.$ Method 1) $t_{\mathrm{R}} 10.05 \mathrm{~min}$.

Fmoc-Ala-Ala-OH 17b

H-Ala-Ala-OH 16 (Sigma, $0.75 \mathrm{~g}, 4.68 \mathrm{mmol}$) and NaHCO_{3} $(0.39 \mathrm{~g}, 4.68 \mathrm{mmol})$ were dissolved in a mixture of acetone (9 $\mathrm{ml})$ and water (9 ml) with stirring at RT. After 5 min fluoren- 9 ylmethyl succinimidyl carbonate $(1.74 \mathrm{~g}, 5.15 \mathrm{mmol})$ was added and the suspension stirred for 14 h during which time a white precipitate formed. The mixture was diluted with water $(50 \mathrm{ml})$, acidified ($2 \mathrm{M} \mathrm{aq} . \mathrm{HCl}$) and extracted with $\mathrm{EtOAc}(3 \times 50 \mathrm{ml})$. The organic extracts were combined, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated in vacuo to afford the title compound $\mathbf{1 7 b}$ as a colourless solid ($1.72 \mathrm{~g}, 96 \%$); mp $>210{ }^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{3} \mathrm{OH}-\mathrm{CHCl}_{3}$); $[a]_{\mathrm{D}}^{24}$ $-14.6\left(c 1.0, \mathrm{CH}_{3} \mathrm{OH}\right) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3300,3062,2977,2933$, 1691, 1647, 1600, 1540, 1450, 1311, 1262, 1234; $\delta_{\mathrm{H}}(270 \mathrm{MHz}$; $\left.\mathrm{CD}_{3} \mathrm{OD}\right) 7.35(8 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 4.25(2 \mathrm{H}, \mathrm{m}, 2 \times \alpha \mathrm{CH}), 1.39$ $\left(3 \mathrm{H}, \mathrm{d}, J 3.0, \mathrm{CH}_{3}\right), 1.33\left(3 \mathrm{H}, \mathrm{d}, J 3.0, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}(75.45 \mathrm{MHz}$; DMSO- d_{6}) $174.3\left(\mathrm{CO}_{2} \mathrm{H}\right), 171.3(\mathrm{CONH}), 155.6\left(\mathrm{CO}_{2} \mathrm{NH}\right)$, $143.7(\mathrm{Ph}), 140.6(\mathrm{Ph}), 127.6(\mathrm{Ph}), 127.1(\mathrm{Ph}), 125.3(\mathrm{Ph}), 120.0$ $(\mathrm{Ph}), 65.6(\mathrm{Fmoc} \mathrm{CH}), 50.1(\alpha \mathrm{CH}), 48.9(\alpha \mathrm{CH}), 46.6\left(\mathrm{OCH}_{2}\right)$, $18.4\left(\mathrm{CH}_{3}\right), 18.1\left(\mathrm{CH}_{3}\right) ; m / z\left(\mathrm{ES}^{+}, \mathrm{D}_{2} \mathrm{O}-\mathrm{H}_{2} \mathrm{O}\right) 383\left[(\mathrm{MH})^{+}, 1 \%\right]$, $383\left[(\mathrm{MD})^{+}, 6\right], 384\left[(\mathrm{M}-\mathrm{H}+\mathrm{D}) \mathrm{D}^{+}, 15\right], 385[(\mathrm{M}-2 \mathrm{H}+$ 2D) $\left.\mathrm{D}^{+}, 12\right], 386\left[(\mathrm{M}-3 \mathrm{H}+3 \mathrm{D}) \mathrm{D}^{+}, 5\right], 405\left[(\mathrm{M}) \mathrm{Na}^{+}, 20\right], 406$ [(M - H + D) $\left.\mathrm{Na}^{+}, 55\right], 407$ [(M - 2H + 2D) $\left.\mathrm{Na}^{+}, 55\right], 408$ $\left[(\mathrm{M}-3 \mathrm{H}+3 \mathrm{D}) \mathrm{Na}^{+}, 25\right], 421\left[(\mathrm{M}) \mathrm{K}^{+}, 5\right], 422[(\mathrm{M}-\mathrm{H}+$ D) $\left.\mathrm{K}^{+}, 10\right], 423\left[(\mathrm{M}-2 \mathrm{H}+2 \mathrm{D}) \mathrm{K}^{+}, 100\right], 424[(\mathrm{M}-3 \mathrm{H}+$ 3D) $\left.\mathrm{K}^{+}, 40\right]$; HPLC (method 1) $t_{\mathrm{R}} 26 \mathrm{~min}$.

Ac-Phe-(ε-dL-hydroxy)AP(OCH_{3})- $\mathrm{OCH}_{3} \mathbf{1 8}$

A solution of H -(ε-Dl-hydroxy) $\mathrm{AP}\left(\mathrm{OCH}_{3}\right)-\mathrm{OCH}_{3} \cdot \mathrm{HCl} 11$ ($49.6 \mathrm{mg}, 194 \mu \mathrm{~mol}$), Ac-Phe-OH 15 ($60.8 \mathrm{mg}, 294 \mu \mathrm{~mol}$), DCC $(44 \mathrm{mg}, 213 \mu \mathrm{~mol})$, $\mathrm{HOBt}(2.62 \mathrm{mg}, 19.4 \mu \mathrm{~mol})$ and pyridine ($17.2 \mu \mathrm{l}, 213 \mu \mathrm{~mol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{ml})$ was stirred for 3 h . The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ and then washed with dil. $\mathrm{HCl}(2 \times 30 \mathrm{ml})$, followed by saturated aq. NaHCO_{3} $(2 \times 30 \mathrm{ml})$. The organic extract was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated in vacuo to give a white solid, which was purified by flash chromatography ($10 \% \mathrm{CH}_{3} \mathrm{CN}$ in EtOAc, $R_{\mathrm{f}} 0.11$) to afford 18 ($52.1 \mathrm{mg}, 66 \%$); $[\alpha]_{\mathrm{D}}^{24}-2.17$ ($c 4.60, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 3287, 3064, 2953, 2862, 1743, 1650, 1547, 1439, 1375; $\delta_{\mathrm{H}}(300.4$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.24(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 6.43(1 \mathrm{H}, \mathrm{d}, J 7.7, \mathrm{NH}), 6.20$ $(1 \mathrm{H}, \mathrm{d}, J 7.30, \mathrm{NH}), 4.65(1 \mathrm{H}, \mathrm{m}$, Phe $\alpha \mathrm{CH}), 4.48(1 \mathrm{H}, \mathrm{m}, ~ \mathrm{AP}$ $\alpha \mathrm{CH}), 4.08(1 \mathrm{H}, \mathrm{m}, \varepsilon \mathrm{CHOH}), 3.69\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.63(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 3.35(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.98\left(2 \mathrm{H}, \mathrm{m}\right.$, Phe $\left.\beta \mathrm{CH}_{2}\right), 1.89(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CH}_{3}\right), 1.75\left(4 \mathrm{H}, \mathrm{m}, \beta \mathrm{CH}_{2}+\delta \mathrm{CH}_{2}\right), 1.35\left(2 \mathrm{H}, \mathrm{m}, \gamma \mathrm{CH}_{2}\right)$; $\delta_{\mathrm{C}}\left(75.45 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 175.0\left(\mathrm{CO}_{2}\right), 172.0\left(\mathrm{CO}_{2}\right), 171.0$ (CONH), $170.0(\mathrm{CONH}), 137.0(\mathrm{Ph}), 129.2(\mathrm{Ph}), 128.6(\mathrm{Ph})$, $127.0(\mathrm{Ph}), 70.0(\varepsilon \mathrm{CH}), 54.5\left(\mathrm{OCH}_{3}\right), 52.4\left(\mathrm{OCH}_{3}\right), 52.3(\alpha \mathrm{CH})$, $49.2(\alpha \mathrm{CH}), 38.0\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 33.9\left(\mathrm{CH}_{2}\right), 25.6\left(\mathrm{CH}_{2}\right), 24.9\left(\mathrm{CH}_{2}\right)$, $23.1\left(\mathrm{CH}_{3}\right) ; m / z(\mathrm{EI}) 408\left(\mathrm{M}^{+}, 48 \%\right) ; m / z(\mathrm{CI}) 409\left(\mathrm{MH}^{+}, 84 \%\right)$ (Calc. for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{7}$: C, $58.81 ; \mathrm{H}, 6.91$; N, 6.86. Found: C, 58.64; H, 7.09; N, 6.77\%).

$\mathrm{Ac}-\mathrm{Asp}(\mathrm{OBn})$-(ε-dL-hydroxy) $\mathrm{AP}\left(\mathrm{OCH}_{3}\right)-\mathrm{OCH}_{3} 21 \mathrm{a}$

A solution of H -(ε-DL-hydroxy) $\mathrm{AP}\left(\mathrm{OCH}_{3}\right)-\mathrm{OCH}_{3} \cdot \mathrm{HCl} 11(143$ $\mathrm{mg}, 559.8 \mu \mathrm{~mol})$, $\mathrm{Ac}-\mathrm{Asp}(\mathrm{OBn})-\mathrm{OH}$ 13a $(222.5 \mathrm{mg}, 839.6$ $\mu \mathrm{mol})$, EDCI $(117.8 \mathrm{mg}, 615.7 \mu \mathrm{~mol})$, HOBt $(7.65 \mathrm{mg}, 55.9$
$\mu \mathrm{mol})$ and pyridine $(49.7 \mu \mathrm{l}, 615.7 \mu \mathrm{~mol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{ml})$ was stirred for 60 min . The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30$ $\mathrm{ml})$ and was washed with dil. aq. $\mathrm{HCl}(2 \times 30 \mathrm{ml})$, followed by saturated aq. $\mathrm{NaHCO}_{3}(2 \times 30 \mathrm{ml})$. The organic extract was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated in vacuo. The residue was purified by flash chromatography ($10 \% \mathrm{CH}_{3} \mathrm{CN}$ in EtOAc, $R_{\mathrm{f}} 0.19$) to afford 21a ($93 \mathrm{mg}, 36 \%$) as a viscous yellow oil; $[a]_{\mathrm{D}}^{24}-1.22$ (c 2.30, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $v_{\text {max }} / \mathrm{cm}^{-1} 3305.4,3065.7,3007.0,2956.4,1739.6$, 1657.3, 1536.8, 1455.4, 1438.4, 1412.3, 1376.4, 1261.0, 1214.4, $1172.9,1106.2,1016.4 ; \delta_{\mathrm{H}}\left(300.4 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.31-7.24(5 \mathrm{H}$, $\mathrm{m}, \mathrm{Ph}), 7.03(1 \mathrm{H}, \mathrm{d}, J 7.8, \mathrm{NH}), 6.86-6.70(1 \mathrm{H}, \mathrm{m}, \mathrm{NH}), 5.15-$ $5.02\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 4.84-4.77(1 \mathrm{H}, \mathrm{m}, \alpha \mathrm{CH}), 4.50-4.40(1 \mathrm{H}$, $\mathrm{m}, \alpha \mathrm{CH}), 4.14-4.07(1 \mathrm{H}, \mathrm{m}, \alpha \mathrm{CH}), 3.71\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.64$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 2.99-2.86(1 \mathrm{H}, \mathrm{m}, \mathrm{Asp} \beta \mathrm{CH}), 2.70-2.58(1 \mathrm{H}, \mathrm{m}$, Asp $\beta \mathrm{CH}), 1.96\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.25-1.80\left(6 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{2}\right)$; $\delta_{\mathrm{C}}\left(75.45 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 175.4,172.1,172.0,171.0,170.3,128.6$, $128.4,128.31,128.29,70.0,67.0,52.2,52.1,49.2,35.8,33.5$, 31.5, 23.1, 20.6, 20.4; m/z (EI) 466.1940 (M^{+}) (Calc. for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{9}: M, 466.1951$) (Calc. for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{9}$: C, 56.65 ; H, 6.48 ; N, 6.01. Found: C, $56.98 ; \mathrm{H}, 6.14 ; \mathrm{N}, 6.08 \%$).

Ac-Asp $\left(\mathrm{OCH}_{3}\right)$-(ε-dL-hydroxy)AP(OCH_{3})- $\mathrm{OCH}_{3} \mathbf{2 4 a}$

$\mathrm{Ac}-\mathrm{Asp}(\mathrm{OBn})-(\varepsilon$-dl-hydroxy $) \mathrm{AP}\left(\mathrm{OCH}_{3}\right)-\mathrm{OCH}_{3}$ 21a $(800 \mathrm{mg}$, 1.71 mmol) was dissolved in HPLC-grade methanol $(15 \mathrm{ml})$ and stirred under $\mathrm{H}_{2}(1 \mathrm{~atm})$ at RT in the presence of $10 \% \mathrm{Pd} / \mathrm{C}(100$ mg) for 16 h . After this time TLC analysis indicated complete consumption of the benzyl ester. The catalyst was removed by filtration through a bed of Celite and methanol was removed in vacuo to afford the carboxylic acid as a colourless solid (601 mg , 95%).

The solid was treated with an excess of an ethereal solution of diazomethane. ${ }^{31}$ Excess of diazomethane was destroyed by addition of glacial acetic acid, and solvent was removed in vacuo. Flash chromatography ($10 \% \mathrm{CH}_{3} \mathrm{CN}-90 \%$ EtOAc, R_{f} $0.15)$ yielded the trimethyl ester as a colourless solid $(480 \mathrm{mg}$, 71.9%); mp $97-100^{\circ} \mathrm{C} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.07(1 \mathrm{H}, \mathrm{d}, J 7.9$, $\mathrm{NH}), 6.91(1 \mathrm{H}, \mathrm{d}, J 8.0, \mathrm{NH}), 4.85(1 \mathrm{H}, \mathrm{m}, \alpha \mathrm{CH}), 4.55(1 \mathrm{H}$, ddd, $J 5.1,8.0,13.2, \alpha \mathrm{CH}), 4.18(1 \mathrm{H}, \mathrm{m}, \varepsilon \mathrm{CH}), 3.79(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 3.74\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OCH}_{3}\right), 2.99(1 \mathrm{H}, \mathrm{dd}, J 4.1,17.3$, Asp $\beta \mathrm{CH}), 2.65(1 \mathrm{H}, \mathrm{dd}, J 6.6,17.1, \mathrm{Asp} \beta \mathrm{CH}), 2.07\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $2.0-1.5\left(6 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{2}\right) ; \delta_{\mathrm{c}}\left(75.45 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 175.4\left(\mathrm{CO}_{2}\right)$, $172.8\left(\mathrm{CO}_{2}\right), 172.2\left(\mathrm{CO}_{2}\right), 170.5(\mathrm{CONH}), 170.3(\mathrm{CONH}), 77.2$ ($\operatorname{Asp} \beta \mathrm{CH}_{2}$), $70.0(\varepsilon \mathrm{CH}), 53.4(\alpha \mathrm{CH}), 52.6(\alpha \mathrm{CH}), 52.5\left(\mathrm{OCH}_{3}\right)$, $52.3\left(\mathrm{OCH}_{3}\right), 52.2\left(\mathrm{OCH}_{3}\right), 49.2\left(\mathrm{CH}_{2}\right), 35.5\left(\mathrm{CH}_{2}\right), 33.5$ $\left(\mathrm{CH}_{3} \mathrm{CO}\right), 23.2\left(\mathrm{CH}_{2}\right) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3423,2957,1732,1652$, 1547, 1440, 1374; m/z (EI) 390 (${ }^{+}, 30 \%$); m/z (CI) 391 (MH^{+}, 32%) (Calc. for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{9}$: C, 49.23; H, 6.71; N, 7.18. Found: C, 48.85 ; H, 6.68; N, 6.98\%).

Ac-Asp([ε-dL-hydroxy]AP[$\left.\left.\mathrm{OCH}_{3}\right]-\mathrm{OCH}_{3}\right)-\mathrm{OCH}_{3} \mathbf{2 4 b}$

To a stirred solution of $\mathrm{Ac}-\mathrm{Asp}(\mathrm{OH})-\mathrm{OBn} \mathbf{1 3 b}(2.76 \mathrm{~g}, 10.4$ mmol, 1.2 equiv.) in 30 ml dry THF under nitrogen were added $\operatorname{EDCI}(2.0 \mathrm{~g}, 10.4 \mathrm{mmol}, 1.2$ equiv.) in $\operatorname{DMF}(14 \mathrm{ml}), \mathrm{HOBt}(1.4$ $\mathrm{g}, 10.4 \mathrm{mmol}, 1.2$ equiv.) and pyridine ($0.77 \mathrm{ml}, 10.0 \mathrm{mmol}, 1.1$ equiv.). After 5 min a solution of amino alcohol $11(2.215 \mathrm{~g}, 8.7$ $\mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{ml})$ was added. After 2.5 h EtOAc (100 ml) was added and the reaction mixture washed successively with water $(2 \times 50 \mathrm{ml})$, aq. dilute $\mathrm{HCl}(1 \times 50 \mathrm{ml})$ and then saturated aq. $\mathrm{NaHCO}_{3}(1 \times 50 \mathrm{ml})$. The combined organic solvents were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated in vacuo to yield 21b as a slightly yellow gel $(4.2 \mathrm{~g}, 87 \%) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $8.30(1 \mathrm{H}, \mathrm{m}, \mathrm{NH}), 8.12(1 \mathrm{H}, \mathrm{m}, \mathrm{NH}), 7.23(5 \mathrm{H}, \mathrm{s}, \mathrm{Ph}), 5.24(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{OCH}_{2}\right), 4.93(1 \mathrm{H}, \mathrm{m}, \alpha \mathrm{CH}), 4.57(1 \mathrm{H}, \mathrm{m}, \alpha \mathrm{CH}), 4.26(1 \mathrm{H}$, $\mathrm{m}, \alpha \mathrm{CH}), 3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.70\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.01(2 \mathrm{H}, \mathrm{m}$, Asp $\beta \mathrm{CH}_{2}$), $2.15\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.86\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.72(2 \mathrm{H}, \mathrm{m}$, CH_{2}), $1.54\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$.
A solution of benzyl-protected ester $\mathbf{2 1 b}(4.2 \mathrm{~g}, 9.0 \mathrm{mmol})$ in HPLC-grade $\mathrm{CH}_{3} \mathrm{OH}(150 \mathrm{ml})$ and $\mathrm{CHCl}_{3}(10 \mathrm{ml})$ was stirred under an atmosphere of hydrogen gas with $10 \% \mathrm{Pd} / \mathrm{C}(100 \mathrm{mg})$.

After 36 h the reaction mixture was filtered through Celite and the solvent removed in vacuo to yield the carboxylic acid as a slightly yellow oil. This was dissolved in a $50: 50 \mathrm{mix}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ diethyl ether (10 ml), and methylated using freshly prepared diazomethane. ${ }^{31}$ Residual diazomethane was removed by adding a drop of acetic acid, and removal of solvent in vacuo yielded crude 24b as a yellow oil. Purification by flash chromatography ($15 \% \mathrm{CH}_{3} \mathrm{CN}-85 \% \mathrm{EtOAc}, R_{\mathrm{f}} 0.10$) yielded 24b as a slightly yellow oil ($0.960 \mathrm{~g}, 27 \%$); $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.00$ $(1 \mathrm{H}, \mathrm{d}, J 7.7, \mathrm{NH}), 6.72(1 \mathrm{H}, \mathrm{m}, \mathrm{NH}), 4.83(1 \mathrm{H}, \mathrm{m}, \alpha \mathrm{CH}), 4.52$ $(1 \mathrm{H}, \mathrm{m}, \alpha \mathrm{CH}), 4.18(1 \mathrm{H}, \mathrm{m}, \alpha \mathrm{CH}), 3.79\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.77$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.75\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.17(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.97$ ($1 \mathrm{H}, \mathrm{dd}, J 15.6, J 4.4$, Asp $\beta \mathrm{CH}$), 2.79 (1 H , dd, $J 15.6,4.4$, Asp $\beta \mathrm{CH}$), $2.05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.84\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.68(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2}\right), 1.47\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}\left(75.45 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right), 175.2\left(\mathrm{CO}_{2}\right)$, $172.6\left(\mathrm{CO}_{2}\right), 171.5\left(\mathrm{CO}_{2}\right), 170.4(\mathrm{CONH}), 170.2(\mathrm{CONH}), 70.0$ $(\varepsilon \mathrm{CH}), 52.7\left(\mathrm{OCH}_{3}\right), 52.5\left(\mathrm{OCH}_{3}\right), 52.0\left(\mathrm{OCH}_{3}\right), 52.0(\alpha \mathrm{CH})$, $49.0(\alpha \mathrm{CH}), 37.3\left(\mathrm{CH}_{2} \mathrm{CO}\right), 33.4\left(\mathrm{CH}_{2}\right)$, $31.6\left(\mathrm{CH}_{2}\right), 23.0$ $\left(\mathrm{CH}_{3} \mathrm{CO}\right), 20.8\left(\gamma \mathrm{CH}_{2}\right) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3362,3066.4,2955.8$, 2866.9, 1736.2, 1660.1; m/z (EI) $391.2\left(\mathrm{MH}^{+}, 28 \%\right)$; m / z (CI) $391\left(\mathrm{MH}^{+}\right)$[Calc. for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{9}\left(\mathrm{MH}^{+}\right)$, 391.1717. Found: $m / z, 391.1724]$.

Fmoc-Ala-Ala-(ε-DL-hydroxy) $\mathrm{AP}\left(\mathrm{OCH}_{3}\right)-\mathrm{OCH}_{3} \mathbf{2 7 b}$

Fmoc-Ala-Ala-OH 17b ($1.19 \mathrm{~g}, 3.12 \mathrm{mmol}$), EDCI (660 mg , 3.43 mmol) and HOBt ($452 \mathrm{mg}, 3.43 \mathrm{mmol}$) were dried under high vacuum for 90 min before being dissolved in anhydrous THF (20 ml). Pyridine ($280 \mu \mathrm{l}, 3.43 \mathrm{mmol}$) was added to the solution, which was stirred at RT for 15 min during which time a white suspension formed. The amino alcohol hydrochloride $11(400 \mathrm{mg}, 1.46 \mathrm{mmol})$ was added as a solution in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ and the reaction mixture stirred at RT for a further 16 h . Solvent was removed in vacuo and water $(150 \mathrm{ml})$ was added. The mixture was extracted with EtOAc ($3 \times 50 \mathrm{ml}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{ml})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated in vacuo. The crude product was purified by flash chromatography ($10 \% \mathrm{CH}_{3} \mathrm{CN}-90 \%$ EtOAc, $R_{\mathrm{f}} 0.38$) which yielded 27b as a fluffy colourless solid ($350 \mathrm{mg}, 39 \%$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3065,2953,1735,1650,1531$; $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$, two diastereomers) $7.4(8 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$, $6.2(1 \mathrm{H}, \mathrm{d}, J 6.2, \mathrm{NH}), 5.9\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 4.55(2 \mathrm{H}, \mathrm{m}, 2 \times$ $\left.\mathrm{CHCH}_{3}\right), 4.13(2 \mathrm{H}, \mathrm{m}, \alpha \mathrm{CH}+\varepsilon \mathrm{CH}), 3.68\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.66$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 1.70\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.38\left(6 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CHCH}_{3}\right)$, $1.45\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.36\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}\left(75.45 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $175.1\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 172.5\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 172.4(\mathrm{CONH}), 172.3$ (CONH), 156.2 (OCONH), $143.7(\mathrm{Ph}), 141.1(\mathrm{Ph}), 127.6(\mathrm{Ph})$, $126.9(\mathrm{Ph}), 125.0(\mathrm{Ph}), 119.8(\mathrm{Ph}), 70.1\left(\mathrm{OCH}_{2}\right), 66.9(\mathrm{Fmoc}$ $\mathrm{CH}), 52.2\left(\mathrm{OCH}_{3}\right), 52.0\left(\mathrm{OCH}_{3}\right), 50.4(\varepsilon \mathrm{CH}), 48.8(\alpha \mathrm{CH}), 46.9$ $(2 \times \mathrm{Ala} \alpha \mathrm{CH}), 33.4\left(\delta \mathrm{CH}_{2}\right), 31.4\left(\beta \mathrm{CH}_{2}\right), 20.6\left(\gamma \mathrm{CH}_{2}\right), 18.8$ $\left(\right.$ Ala $\left.\mathrm{CH}_{3}\right), 17.9(\mathrm{Ala} \mathrm{CH} 3) ; m / z\left(\mathrm{ES}^{+}\right) 622\left[(\mathrm{M}+\mathrm{K})^{+}, 15 \%\right]$, $606\left[(\mathrm{M}+\mathrm{Na})^{+}, 70\right], 584\left[(\mathrm{MH})^{+}, 51\right]$.

Ac-Phe-(ε-keto $) \mathrm{AP}\left(\mathrm{OCH}_{3}\right)-\mathrm{OCH}_{3} 19$

To a stirred solution of α-hydroxy ester $18(70 \mathrm{mg}, 170 \mu \mathrm{~mol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{ml})$ was added Dess-Martin periodinane ($72 \mathrm{mg}, 170 \mu \mathrm{~mol}$). After 90 min the solution was added to saturated aq. $\mathrm{NaHCO}_{3}(5 \mathrm{ml})$ containing $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(0.5 \mathrm{~g})$. The mixture was stirred vigorously for 5 min and then extracted into $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{ml})$. The dried $\left(\mathrm{MgSO}_{4}\right)$ extracts were evaporated in vacuo, and the residue was purified by flash chromatography ($10 \% \mathrm{CH}_{3} \mathrm{CN}$ in EtOAc, $R_{\mathrm{f}} 0.28$) to afford 19 as an oil $(60 \mathrm{mg}, 87 \%):[a]_{\mathrm{D}}^{24}+1.48\left(c \quad 6.10, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 3583.1, 3282.5, 3061.7, 2362.2, 1732.3, 1648.7, 1542.5, 1437.6, 1373.4, 1261.0, 1042.6, 746.1; $\delta_{\mathrm{H}}\left(300.40 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.25-$ $7.13(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 6.40(1 \mathrm{H}, \mathrm{d}, J 7.7, \mathrm{NH}), 6.10(1 \mathrm{H}, \mathrm{d}, J 7.9$, $\mathrm{NH}), 4.70(1 \mathrm{H}, \mathrm{m}, \alpha \mathrm{CH}), 4.48(1 \mathrm{H}, \mathrm{m}, \alpha \mathrm{CH}), 3.79(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 3.64\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.06\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.0\right.$, Phe $\left.\mathrm{BCH}_{2}\right), 2.85$ $\left(2 \mathrm{H}, \mathrm{t}, J 7.1, \delta \mathrm{CH}_{2}\right), 1.92(3 \mathrm{H}, \mathrm{s}), 1.84(1 \mathrm{H}, \mathrm{m}, \beta \mathrm{CH}), 1.66(1 \mathrm{H}$, $\mathrm{m}, \beta \mathrm{CH}), 1.60\left(2 \mathrm{H}, \mathrm{m}, \gamma \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}\left(75.45 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right), 194.0$
(CO), $173.0\left(\mathrm{CO}_{2}\right), 171.9\left(\mathrm{CO}_{2}\right), 171.0(\mathrm{CONH}), 152.0,136.4$ $(\mathrm{Ph}), 129.4(\mathrm{Ph}), 128.8(\mathrm{Ph}), 127.2(\mathrm{Ph}), 54.5\left(\mathrm{OCH}_{3}\right), 53.1$ $\left(\mathrm{OCH}_{3}\right), 52.6(\alpha \mathrm{CH}), 52.0(\alpha \mathrm{CH}), 38.6\left(\mathrm{CCH}_{2}\right), 38.2\left(\mathrm{CH}_{2} \mathrm{Ph}\right)$, $31.4\left(\mathrm{CH}_{2}\right), 23.3\left(\mathrm{CH}_{2}\right), 18.5\left(\gamma \mathrm{CH}_{2}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{EI}) 406\left(\mathrm{M}^{+}, 5 \%\right)$; (CI) $407\left(\mathrm{MH}^{+}, 90 \%\right)\left(\right.$ Calc. for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{7}$: C, 59.10; $\mathrm{H}, 6.45$; N, 6.89. Found: C, $58.73 ; \mathrm{H}, 6.68 ; \mathrm{N}, 6.64 \%)$.

Ac-Asp(OBn)-(ε-keto)AP(OCH_{3})- $\mathrm{OCH}_{3} \mathbf{2 2 a}$

To a stirred solution of $\mathrm{Ac}-\mathrm{Asp}(\mathrm{OBn})$-(ε-dL-hydroxy)-$\mathrm{AP}\left(\mathrm{OCH}_{3}\right)-\mathrm{OCH}_{3}$ 21a ($99.1 \mathrm{mg}, 212.7 \mu \mathrm{~mol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \mathrm{ml})$ was added Dess-Martin periodinane $(90.2 \mathrm{mg}, 212.7$ $\mu \mathrm{mol})$. After 3 h the solution was added to saturated aq. $\mathrm{NaHCO}_{3}(5 \mathrm{ml})$ containing $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(0.5 \mathrm{~g})$. The mixture was stirred vigorously for 5 min and then extracted into $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 20 \mathrm{ml})$. The dried $\left(\mathrm{MgSO}_{4}\right)$ organic extracts were evaporated in vacuo, and the residue was purified by flash chromatography ($10 \% \mathrm{CH}_{3} \mathrm{CN}$ in EtOAc, $R_{\mathrm{f}} 0.33$) to afford compound 22a as an oil ($31 \mathrm{mg}, 67 \%$); $[a]_{\mathrm{D}}^{24}-1.36$ (c $2.95, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3307,3064,2954,1731,1658,1537,1437$, 1377, 1262, 1173, 1047; $\delta_{\mathrm{H}}\left(300.40 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.38(5 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}), 7.13(1 \mathrm{H}, \mathrm{d}, J 8.10, \mathrm{NH}), 6.82(1 \mathrm{H}, \mathrm{d}, J 7.9, \mathrm{NH}), 5.18(1 \mathrm{H}$, d, $J 12.3, \mathrm{Bn} \mathrm{CH}), 5.12(1 \mathrm{H}, \mathrm{d}, J 12.3, \mathrm{Bn} \mathrm{CH}), 4.87(1 \mathrm{H}, \mathrm{m}$, $\alpha \mathrm{CH}), 4.53(1 \mathrm{H}, \mathrm{m}, \alpha \mathrm{CH}), 3.87\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.73(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 3.02(1 \mathrm{H}, \mathrm{dd}, J 4.3,17.1, \operatorname{Asp} \beta \mathrm{CH}), 2.87(2 \mathrm{H}, \mathrm{t}, J 7.2$, $\left.\delta \mathrm{CH}_{2}\right), 2.69(1 \mathrm{H}, \mathrm{dd}, J 6.8,17.0$, Asp $\beta \mathrm{CH}), 2.04\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $1.88\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.65\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right) ; \delta_{\mathrm{c}}(75.45 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 193.3(\mathrm{CO}), 172.0\left(\mathrm{CO}_{2}\right), 171.9\left(\mathrm{CO}_{2}\right), 170.4(\mathrm{CONH})$, $170.3(\mathrm{CONH}), 161.2\left(\mathrm{CO}_{2}\right), 135.3(\mathrm{Ph}), 128.6(\mathrm{Ph}), 128.4(\mathrm{Ph})$, $128.2(\mathrm{Ph}), 67.0\left(\mathrm{OCH}_{2}\right), 54.0\left(\mathrm{OCH}_{3}\right), 53.0\left(\mathrm{OCH}_{3}\right), 52.0$ $(\alpha \mathrm{CH}), 49.0(\alpha \mathrm{CH}), 38.4\left(\mathrm{CH}_{2} \mathrm{CO}\right)$, $35.7\left(\mathrm{CH}_{2} \mathrm{CO}\right), 31.0$ $\left(\mathrm{KCH}_{2}\right), 23.1\left(\gamma \mathrm{CH}_{2}\right), 18.4\left(\mathrm{CH}_{3}\right) ; m / z(\mathrm{EI}) 464\left(\mathrm{MH}^{+}, 78 \%\right)$.

$\mathrm{Ac}-\mathrm{Asp}\left(\mathrm{OCH}_{3}\right)$ - ε-keto $) \mathrm{AP}\left(\mathrm{OCH}_{3}\right)-\mathrm{OCH}_{3} \mathbf{2 5 a}$

A solution of Ac-Asp $\left(\mathrm{OCH}_{3}\right)$-(ε-DL-hydroxy) $\mathrm{AP}\left(\mathrm{OCH}_{3}\right)-\mathrm{OCH}_{3}$ 24a ($316.3 \mathrm{mg}, 811 \mu \mathrm{~mol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ was stirred at RT under dry N_{2}. Dess-Martin periodinane (413 mg , 1.2 equiv.) was added and the reaction mixture stirred for 1 h . A further 50 mg of periodinane was added and stirring was continued for 20 min . After this time the mixture was poured into a vigorously stirred solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ in 1 M aq. $\mathrm{NaHCO}_{3}(20 \mathrm{ml})$. After 10 min the mixture was extracted into $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 25 \mathrm{ml})$, and the organic extracts were combined, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The residue was purified by flash chromatography ($15 \% \mathrm{CH}_{3} \mathrm{CN}$ in EtOAc, $R_{\mathrm{f}} 0.65$), yielding compound 25a as a colourless solid ($132.2 \mathrm{mg}, 42 \%$); mp $93-$ $102^{\circ} \mathrm{C} ;[a]_{\mathrm{D}}^{24}-4.2\left(c 2.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.17$ ($1 \mathrm{H}, \mathrm{d}, J 8.1$, AP NH), $6.91(1 \mathrm{H}, \mathrm{d}, J 8.1$, Asp NH), $4.86(1 \mathrm{H}$, ddd, $J 4.2,6.8,11.0$, Asp $\alpha \mathrm{CH}$), $4.54(1 \mathrm{H}, \mathrm{m}, \mathrm{AP} \alpha \mathrm{CH}), 3.87$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.74\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.72\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 2.98$ (1H, dd, J4.0, 17.0, Asp $\beta \mathrm{CH}$), 2.89 ($2 \mathrm{H}, \mathrm{t}, J 6.8, \mathrm{CH}_{2} \mathrm{CO}$), 2.65 ($1 \mathrm{H}, \mathrm{dd}, J 6.8,17.1$, Asp $\beta \mathrm{CH}$), $2.25(1 \mathrm{H}, \mathrm{m}, \mathrm{AP} \beta \mathrm{CH}), 2.07$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.90(1 \mathrm{H}, \mathrm{m}, \mathrm{AP} \beta \mathrm{CH}), 1.68\left(2 \mathrm{H}, \mathrm{m}, \gamma \mathrm{CH}_{2}\right)$; $\delta_{\mathrm{C}}\left(75.45 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 193.4(\mathrm{CO}), 172.6\left(\mathrm{CO}_{2}\right), 171.9\left(\mathrm{CO}_{2}\right)$, $170.5\left(\mathrm{CO}_{2}\right), 170.4(\mathrm{CONH}), 161.2(\mathrm{CONH}), 53.0\left(\mathrm{OCH}_{3}\right), 52.6$ $\left(\mathrm{OCH}_{3}\right), 52.2\left(\mathrm{OCH}_{3}\right), 52.0(\alpha \mathrm{CH}), 49.2(\alpha \mathrm{CH}), 38.5\left(\mathrm{CH}_{2}\right)$, $35.5\left(\mathrm{CH}_{2}\right)$, $31.1\left(\mathrm{CH}_{2}\right), 23.2\left(\mathrm{CH}_{3} \mathrm{CO}\right), 18.5\left(\mathrm{CH}_{2}\right) ; v_{\text {max }}(\mathrm{KBr}) /$ $\mathrm{cm}^{-1} 3387,2960,1731,1656,1536,1440,1374,1280 ; m / z(E I)$ $389\left(\mathrm{MH}^{+}, 0.2 \%\right), 388\left(\mathrm{M}^{+}, 0.2\right) ; \mathrm{m} / \mathrm{z}(\mathrm{CI}) 389\left(\mathrm{MH}^{+}, 50 \%\right), 357$ $\left(\mathrm{MH}^{+}-\mathrm{CH}_{3} \mathrm{OH}, 22\right)$ (Calc. for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{9}: M, 388.1482$. Found: M^{+}, 388.1494) (Calc. for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{9}$: C, $49.48 ; \mathrm{H}$, 6.23 ; N, 7.21. Found: C, 48.96; H, 6.11; N, 7.03\%).

Ac-Asp([8-keto]AP[$\left.\mathrm{OCH}_{3}\right]-\mathrm{OCH}_{3}$)- $\mathrm{OCH}_{3} \mathbf{2 5 b}$

To a stirred solution of $\mathrm{Ac}-\mathrm{Asp}\left([\varepsilon\right.$-DL-hydroxy $] \mathrm{AP}\left[\mathrm{OCH}_{3}\right]-$ $\left.\mathrm{OCH}_{3}\right)-\mathrm{OCH}_{3} \mathbf{2 4 b}(720 \mathrm{mg}, 1.9 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ was added Dess-Martin periodinane ($1.22 \mathrm{~g}, 2.9 \mathrm{mmol}, 1.6$ equiv.). After one hour the reaction mixture was poured onto aq. sodium thiosulfate (10 g) in water (100 ml) and stirred
vigorously for 10 min , before extraction into $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50$ $\mathrm{ml})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed in vacuo to yield crude $\mathbf{2 5 b}(0.593 \mathrm{~g})$ as a yellow oil. Purification by flash chromatography $\left(15 \% \mathrm{CH}_{3} \mathrm{CN}-\right.$ $85 \% \mathrm{EtOAc}, R_{\mathrm{f}} 0.26$) yielded compound 26b as a slightly yellow oil ($207 \mathrm{mg}, 29 \%$); $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 6.84(1 \mathrm{H}, \mathrm{d}, J 8.2$, $\mathrm{NH}), 6.37(1 \mathrm{H}, \mathrm{m}, \mathrm{NH}), 4.84(1 \mathrm{H}, \mathrm{m}, \alpha \mathrm{CH}), 4.55(1 \mathrm{H}, \mathrm{m}$, $\alpha \mathrm{CH}), 4.10\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.93\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.75(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 2.87\left(2 \mathrm{H}, \mathrm{m}, \operatorname{Asp} \beta \mathrm{CH}_{2}\right), 2.68\left(2 \mathrm{H}, \mathrm{m}, \mathrm{COCH}_{2}\right), 2.18$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}\right), 1.86\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.66\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$; $\delta_{\mathrm{C}}\left(75.45 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 200.0(\mathrm{CO}), 175.3\left(\mathrm{CO}_{2}\right), 170.6\left(\mathrm{CO}_{2}\right)$, $168.3\left(\mathrm{CO}_{2}\right), 160.2(\mathrm{CONH}), 157.4(\mathrm{CONH}), 53.8\left(\mathrm{CH}_{2} \mathrm{CO}\right)$, $52.8\left(\mathrm{OCH}_{3}\right), 52.6\left(\mathrm{OCH}_{3}\right), 52.4\left(\mathrm{OCH}_{3}\right), 51.2(\alpha \mathrm{CH}), 49.6$ $(\alpha \mathrm{CH}), 46.2\left(\mathrm{CH}_{2}\right), 30.1\left(\mathrm{CH}_{2}\right), 25.3\left(\mathrm{CH}_{2}\right), 23.2\left(\mathrm{CH}_{3}\right) ; m / z(\mathrm{EI})$ $389\left(\mathrm{MH}^{+}, 15 \%\right), 329\left(\mathrm{M}^{+}-\mathrm{CO}_{2} \mathrm{CH}_{3}, 12\right) ; \mathrm{m} / \mathrm{z}$ (CI) 389 $\left(\mathrm{MH}^{+}, 100 \%\right), 371\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}\right), 405\left(\mathrm{M}^{+}+\mathrm{NH}_{3}\right)($ Calc. for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{9} M, 389.1560$. Found: M, 389.1570).

Fmoc-Ala-Ala-(ε-keto)AP($\mathbf{O C H}_{3}$)- $\mathrm{OCH}_{3} 28$

Dess-Martin periodinane ($1.077 \mathrm{~g}, 2.54 \mathrm{mmol}$) was added slowly to a stirred solution of Fmoc-Ala-Ala-(ε-dL-hydroxy)-$\mathrm{AP}\left(\mathrm{OCH}_{3}\right)-\mathrm{OCH}_{3}$ 27b $(271 \mathrm{mg}, 465 \mu \mathrm{~mol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ at RT. After 40 min a further portion of oxidising agent ($20 \mathrm{mg}, 46 \mu \mathrm{~mol}$) was added and the mixture was stirred for a further 20 min . The reaction mixture was added to aq. $\mathrm{NaHCO}_{3}(150 \mathrm{ml})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 60 \mathrm{ml})$. The organic extracts were combined, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Purification by flash chromatography (5% $\mathrm{CH}_{3} \mathrm{CN}-95 \%$ EtOAc, $R_{\mathrm{f}} 0.34$) yielded compound 28 as a colourless foam ($155 \mathrm{mg}, 57.4 \%$); mp $162.5-163.5^{\circ} \mathrm{C}$; $[a]_{\mathrm{D}}^{24}-2.45$ (c 13.8, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 2956,1734,1647,1531 ; \delta_{\mathrm{H}}(270$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.40(8 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 6.70(1 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{NH}), 6.55$ $(1 \mathrm{H}, \mathrm{d}, J 6.2, \mathrm{NH}), 5.25(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 4.55(1 \mathrm{H}, \mathrm{m}, \alpha \mathrm{CH}), 4.45$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 4.15(2 \mathrm{H}, \mathrm{m}, 2 \times$ Ala $\alpha \mathrm{CH}), 3.82(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 3.73\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 2.82\left(2 \mathrm{H}, \mathrm{m}, \delta \mathrm{CH}_{2}\right), 1.85(1 \mathrm{H}, \mathrm{m}$, $\beta \mathrm{CH}), 1.60\left(3 \mathrm{H}, \mathrm{m}, \beta \mathrm{CH}+\gamma \mathrm{CH}_{2}\right), 1.40(6 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Ala} \mathrm{CH} 3)$; $\delta_{\mathrm{C}}\left(75.45 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 193.3(\mathrm{CO}), 172.5\left(\mathrm{CO}_{2}\right), 172.3\left(\mathrm{CO}_{2}\right)$, $161.1(2 \times \mathrm{CONH}), 157.0(\mathrm{OCONH}), 143.8(\mathrm{Ph}), 141.2(\mathrm{Ph})$, $127.7(\mathrm{Ph}), 127.1(\mathrm{Ph}), 125.1(\mathrm{Ph}), 120.0(\mathrm{Ph}), 67.1\left(\mathrm{OCH}_{2}\right), 53.1$ (Fmoc CH), $52.9\left(\mathrm{OCH}_{3}\right), 52.5\left(\mathrm{OCH}_{3}\right), 51.8(\alpha \mathrm{CH}), 50.5$ $(\alpha \mathrm{CH}), 48.9(\alpha \mathrm{CH}), 47.0\left(\delta \mathrm{CH}_{2}\right), 38.5\left(\mathrm{\beta CH}_{2}\right)$, $31.2\left(\gamma \mathrm{CH}_{2}\right)$, $19.1\left(\mathrm{Ala} \mathrm{CH}_{3}\right), 18.5(\mathrm{Ala} \mathrm{CH} 3) ; m / z(\mathrm{FAB}) 582\left(\mathrm{MH}^{+}, 20 \%\right)$, $\left.604(\mathrm{MNa})^{+}, 35\right]$

Di-[Ac-Phe-(ε-keto)AP(OLi)-OLi] pentahydrate 20

To a stirred solution of oxo diester $19(31.7 \mathrm{mg}, 78.1 \mu \mathrm{~mol})$ in $1: 1 \mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}(1 \mathrm{ml})$ was added 2 equiv. $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(6.55$ $\mathrm{mg}, 156.2 \mu \mathrm{~mol}$). After 60 min the solvent was removed in vacuo, and the residue was dissolved in water $(1 \mathrm{ml})$. The solution was freeze-dried to afford the salt $\mathbf{2 0}$ as a yellow powder ($28.2 \mathrm{mg}, 93 \%$); mp $230^{\circ} \mathrm{C}$ (decomp.); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3387$, 2933, 1639, 1417, 1122, 1031; $\delta_{\mathrm{H}}\left(300.4 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 7.35(5 \mathrm{H}$, $\mathrm{m}, \mathrm{Ph}), 4.61(1 \mathrm{H}, \mathrm{m}, \alpha \mathrm{CH}), 4.13(1 \mathrm{H}, \mathrm{m}, \alpha \mathrm{CH}), 3.18-3.08(2 \mathrm{H}$, m , Phe $\mathrm{\beta CH}_{2}$), $1.88\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.78\left(4 \mathrm{H}, \mathrm{m}, ~ \beta+\gamma \mathrm{CH}_{2}\right)$; $\delta_{\mathrm{C}}\left(75.45 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) \quad 178.9 \quad(\mathrm{CO}), 174.8 \quad\left(\mathrm{CO}_{2}\right), 173.1$ $\left(\mathrm{CO}_{2}+\mathrm{CONH}\right), 171.0(\mathrm{CONH}), 137.5(\mathrm{Ph}), 130.0(\mathrm{Ph}), 129.5$ (Ph), $127.9(\mathrm{Ph}), 55.8(2 \times \alpha \mathrm{CH}), 38.0\left(\mathrm{~m}, \delta \mathrm{CD}_{2}\right.$ solvent exchanged), $37.8\left(\mathrm{Phe}^{\beta} \mathrm{CH}_{2}\right), 32.0\left(3 \mathrm{CH}_{2}\right), 22.5\left(\gamma \mathrm{CH}_{2}\right), 20.0$ $\left(\mathrm{CH}_{3}\right) ; m / z\left(\mathrm{FAB}^{+}\right) 385\left[(\mathrm{M}-\mathrm{Li}+\mathrm{H}) \mathrm{H}^{+}, 20 \%\right], 401[(\mathrm{M}-$ $2 \mathrm{Li}+2 \mathrm{H}) \mathrm{Na}^{+}, 40$] (Calc. for $\mathrm{C}_{36} \mathrm{H}_{40} \mathrm{Li}_{4} \mathrm{~N}_{4} \mathrm{O}_{14} \cdot 5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 49.67$; H, 5.79; N, 6.44. Found: C, 49.50; H, 6.00; N, 6.17\%).

Ac-Asp(OLi)-(e-keto)AP(OLi)-OLi hexahydrate 26a

A solution of Ac - $\mathrm{Asp}\left(\mathrm{OCH}_{3}\right)-(\varepsilon$-keto $) \mathrm{AP}\left(\mathrm{OCH}_{3}\right)-\mathrm{OCH}_{3}$ 25a ($132.2 \mathrm{mg}, 355 \mu \mathrm{~mol}$) in $\mathrm{CH}_{3} \mathrm{CN}(1 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{ml})$ was stirred at room temperature. Solid $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(42.9 \mathrm{mg}, 1.06$ mmol, 3.0 equiv.) was added and allowed to dissolve slowly After 90 min all traces of solid had disappeared and the solvent
was removed in vacuo. The resulting yellow solid was dissolved in deionised water (2 ml) and freeze-dried to afford the title compound as a crisp yellow solid ($105 \mathrm{mg}, 64.8 \%$); mp $>250^{\circ} \mathrm{C}$ (decomp); $[a]_{\mathrm{D}}^{24}+4.7\left(c 2.0, \mathrm{H}_{2} \mathrm{O}\right) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 4.44(1 \mathrm{H}$, dd, $J 4.5,9.5$, Asp $\alpha \mathrm{CH}$), 3.97 ($1 \mathrm{H}, \mathrm{m}, \mathrm{AP} \alpha \mathrm{CH}$), $2.65(1 \mathrm{H}$, m , Asp $\beta \mathrm{CH}), 2.48(1 \mathrm{H}, \mathrm{m}$, Asp $\beta \mathrm{CH}), 1.45(4 \mathrm{H}, \mathrm{m}, \mathrm{AP}$ $\left.\beta \mathrm{CH}_{2}+\gamma \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}\left(75.45 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 208.0(\mathrm{CO}), 179.8\left(\mathrm{CO}_{2}\right)$, $178.7\left(\mathrm{CO}_{2}\right), 178.3\left(\mathrm{CO}_{2}\right), 174.2(\mathrm{CONH}), 173.1(\mathrm{CONH}), 56.0$ $(\alpha \mathrm{CH}), 52.9(\alpha \mathrm{CH}), 39.1\left(\mathrm{Asp} \beta \mathrm{CH}_{2}\right), 31.8\left(\mathrm{AP} \beta \mathrm{CH}_{2}\right), 22.8$ $\left(\gamma \mathrm{CH}_{2}\right), 20.0\left(\mathrm{CH}_{3}\right) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3421,1603,1413 ; \mathrm{m} / \mathrm{z}$ (FAB) $345\left[(\mathrm{M}-3 \mathrm{Li}+3 \mathrm{H})^{+}, 1 \%\right], 389[(\mathrm{M}-3 \mathrm{Li}+\mathrm{H}+$ $2 \mathrm{Na})^{+}$, 1.5] (Calc. for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{Li}_{3} \mathrm{~N}_{2} \mathrm{O}_{8} \cdot 6 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 34.23 ; \mathrm{H}, 5.97$; $\mathrm{N}, 6.14$. Found: C, $34.23 ; \mathrm{H}, 5.52 ; \mathrm{N}, 5.85 \%)$.

Ac-Asp([ع-keto]AP[OLi]-OLi)-OLi tetrahydrate 26b

A solution of $\mathrm{Ac}-\mathrm{Asp}\left([\varepsilon\right.$-keto $\left.] \mathrm{AP}\left[\mathrm{OCH}_{3}\right]-\mathrm{OCH}_{3}\right)-\mathrm{OCH}_{3} \mathbf{2 5 b}$ ($207.0 \mathrm{mg}, 0.7 \mathrm{mmol}$) in $1: 1 \mathrm{CH}_{3} \mathrm{CN}$-water (4 ml) was stirred with 3.0 mol equiv. of $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(88 \mathrm{mg}, 2.1 \mathrm{mmol})$. After 90 min the solvent was removed in vacuo and the resulting product was re-dissolved in water (1 ml) and freeze dried, to yield trilithium salt 26b as a crisp yellow solid ($169 \mathrm{mg}, 87 \%$); mp $>220^{\circ} \mathrm{C}$ (decomp.); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3420,2946,1617,1420 ;$ $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}-\mathrm{CD}_{3} \mathrm{CN}\right) 4.55(1 \mathrm{H}, \mathrm{m}, \alpha \mathrm{CH}), 4.26(1 \mathrm{H}, \mathrm{m}$, $\alpha \mathrm{CH}), 3.26\left(2 \mathrm{H}, \mathrm{m}, \mathrm{Asp} \beta \mathrm{CH}_{2}\right), 2.05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.94(2 \mathrm{H}, \mathrm{m}$, $\left.\beta \mathrm{CH}_{2}\right), 1.69\left(2 \mathrm{H}, \mathrm{m}, \gamma \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}\left(75.5 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}-\mathrm{CD}_{3} \mathrm{CN}\right) 198.5$ $(\mathrm{CO}), 183.0\left(\mathrm{CO}_{2}\right), 181.4\left(\mathrm{CO}_{2}\right), 178.8(\mathrm{CON}), 176.5(\mathrm{CON})$, $58.7(\alpha \mathrm{CH})$, $55.7(\alpha \mathrm{CH})$, $38.6\left(\right.$ Asp $\left.\beta \mathrm{CH}_{2}\right)$, $34.7\left(\mathrm{AP} \beta \mathrm{CH}_{2}\right)$, $24.3\left(\mathrm{AP} \gamma \mathrm{CH}_{2}\right), 22.2\left(\mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}, \mathrm{D}_{2} \mathrm{O}-\mathrm{H}_{2} \mathrm{O}\right) 347$ $\left[(\mathrm{M}-3 \mathrm{Li}+3 \mathrm{H}) \mathrm{H}^{+}, 5 \%\right], 348\left[(\mathrm{M}-3 \mathrm{Li}+2 \mathrm{H}+\mathrm{D}) \mathrm{H}^{+}, 8\right], 352$ $\left[(\mathrm{M}-2 \mathrm{~L}+2 \mathrm{H})^{+}, 9\right], 353\left[(\mathrm{M}-2 \mathrm{Li}+2 \mathrm{H}) \mathrm{H}^{+}, 45\right], 354$ $\left[(\mathrm{M}-2 \mathrm{Li}+\mathrm{H}+\mathrm{D}) \mathrm{H}^{+}, 52\right], 355\left[(\mathrm{M}-2 \mathrm{Li}+2 \mathrm{D}) \mathrm{H}^{+}, 40\right], 356$ $\left[(\mathrm{M}-2 \mathrm{Li}+2 \mathrm{D}) \mathrm{D}^{+}, \quad 20\right], 359\left[(\mathrm{M}-\mathrm{Li}+\mathrm{H}) \mathrm{H}^{+}, \quad 38\right], 360$ $\left[(\mathrm{M}-\mathrm{Li}+\mathrm{D}) \mathrm{H}^{+}\right], 361\left[(\mathrm{M}-\mathrm{Li}+\mathrm{D}) \mathrm{D}^{+}\right], 362 \quad[(\mathrm{M}-\mathrm{Li}-$ $\left.-\mathrm{H}+2 \mathrm{D}) \mathrm{D}^{+}\right], 364\left[(\mathrm{M})^{+}, 80\right], 365\left[(\mathrm{M}) \mathrm{H}^{+}, 100\right], 366\left[(\mathrm{M}) \mathrm{D}^{+}\right.$, 50], $367\left[(\mathrm{M}-\mathrm{H}+\mathrm{D}) \mathrm{D}^{+}, 45\right], 368\left[(\mathrm{M}-2 \mathrm{H}+2 \mathrm{D}) \mathrm{D}^{+}, 22\right]$, $369\left[(M-3 H+3 D) D^{+}, 20\right], 370\left[(M-4 H+4 D) D^{+}, 22\right], 371$ $\left[(\mathrm{M}) \mathrm{Li}^{+}, 28\right], 372\left[(\mathrm{M}-\mathrm{H}+\mathrm{D}) \mathrm{Li}^{+}, 34\right], 373[(\mathrm{M}-2 \mathrm{H}+$ 2D) $\left.\mathrm{Li}^{+}, 35\right], 374\left[(\mathrm{M}-3 \mathrm{H}+3 \mathrm{D}) \mathrm{Li}^{+}, 15\right], 375[(\mathrm{M}-4 \mathrm{H}+$ 4D) Li^{+}, 8] (Calc. for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{Li}_{3} \mathrm{~N}_{2} \mathrm{O}_{9} \cdot 4 \mathrm{H}_{2} \mathrm{O}$: C, 35.80 ; $\mathrm{H}, 5.33$. Found: C, 35.88 ; H, 5.19\%).

Ac-Asp(OLi)-(ε-dl-hydroxy)AP(OLi)-OLi 23a

A stirred suspension of 22a ($31 \mathrm{mg}, 66.8 \mu \mathrm{~mol}$), and $10 \% \mathrm{Pd} / \mathrm{C}$ $(5 \mathrm{mg})$ in dry $\mathrm{CH}_{3} \mathrm{OH}(1 \mathrm{ml})$ was stirred under 1 atm H_{2}. After $2.5 \mathrm{~h} 10 \% \mathrm{Pd} / \mathrm{C}(5 \mathrm{mg})$ was added and hydrogenation was continued. After a further $24 \mathrm{~h} 10 \% \mathrm{Pd} / \mathrm{C}(5 \mathrm{mg})$ and dry $\mathrm{CH}_{3} \mathrm{OH}(1 \mathrm{ml})$ were added. After a further 24 h the mixture was filtered through methanol-washed Celite, and eluted with further $\mathrm{CH}_{3} \mathrm{OH}$. The filtrate was evaporated in vacuo to yield an oily residue ($31 \mathrm{mg}, 66.8 \mu \mathrm{~mol}$).

To a stirred solution of the oily residue ($31 \mathrm{mg}, 66.8 \mathrm{mmol}$) in $1: 1 \mathrm{CH}_{3} \mathrm{CN}$-water (1 ml) was added $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(8.4 \mathrm{mg}, 200$ $\mu \mathrm{mol}$). After 60 min the solvent was removed in vacuo, and the residue was dissolved in water (1 ml). The solution was freezedried to afford a yellow powder ($22.6 \mathrm{mg}, 92.4 \%$) which proved to be the ε-alcohol 23a; $\mathrm{mp} 247-250^{\circ} \mathrm{C}$; $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3854$, $3423,2361,1594,1419,1320,1120,668 ; \delta_{\mathrm{H}}\left(300.40 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right)$ $4.60(1 \mathrm{H}, \mathrm{dd}, J 9.7,5.3, \alpha \mathrm{CH}), 4.14(1 \mathrm{H}, \mathrm{dd}, J 7.9,4.8, \alpha \mathrm{CH})$, $3.99(1 \mathrm{H}, \mathrm{dd}, J 7.7,3.8, \varepsilon \mathrm{CH}), 2.73(1 \mathrm{H}, \mathrm{dd}, J 4.4,16.0$, Asp $\beta \mathrm{CH}), 2.50(1 \mathrm{H}, \mathrm{dd}, J 5.2,16.0$, Asp $\beta \mathrm{CH}), 2.13(3 \mathrm{H}, \mathrm{s}), 1.71$ $\left(4 \mathrm{H}, \mathrm{m}, \mathrm{AP} \beta\right.$ - and $\left.\delta-\mathrm{CH}_{2}\right), 1.38\left(2 \mathrm{H}, \mathrm{m}, \mathrm{AP} \gamma \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}(75.5$ $\left.\mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 182.4\left(\mathrm{CO}_{2}\right), 179.7\left(\mathrm{CO}_{2}\right), 178.7\left(\mathrm{CO}_{2}\right), 175.0$ (CONH), $173.7(\mathrm{CONH}), 72.9(\varepsilon \mathrm{CH}), 56.1(\alpha \mathrm{CH}), 52.7(\alpha \mathrm{CH})$, $39.5\left(\mathrm{Asp} \beta \mathrm{CH}_{2}\right), 34.6\left(\delta \mathrm{CH}_{2}\right), 32.7\left(\mathrm{\beta CH}_{2}\right), 22.6\left(\gamma \mathrm{CH}_{2}\right), 22.0$ $\left(\mathrm{CH}_{3}\right) ; m / z\left(\mathrm{ES}^{+}, \mathrm{H}_{2} \mathrm{O}\right) 349\left[(\mathrm{M}-3 \mathrm{Li}+3 \mathrm{H}) \mathrm{H}^{+}, 10 \%\right], 355$ $\left[(\mathrm{M}-2 \mathrm{Li}+2 \mathrm{H}) \mathrm{H}^{+}\right.$, 12] $\left.361(\mathrm{M}-\mathrm{Li}+\mathrm{H}) \mathrm{H}^{+}, 15\right], 367$ $\left[(\mathrm{M}) \mathrm{H}^{+}, 8\right], 371\left[(\mathrm{M}) \mathrm{Li}^{+}, 28\right] ; m / z\left(\mathrm{ES}^{-}, \mathrm{H}_{2} \mathrm{O}\right) 347[(\mathrm{M}-$ $\left.3 \mathrm{~L}+2 \mathrm{H})^{-}, 100\right], 353\left[(\mathrm{M}-2 \mathrm{Li}+\mathrm{H})^{-}, 50\right], 359\left[(\mathrm{M}-\mathrm{Li})^{-}\right.$, 12], $375\left[(\mathrm{M}-2 \mathrm{Li}+\mathrm{Na})^{-}, 8\right]$.

H-Ala-Ala-(ε-keto)AP(OLi)-OLi 30

Fmoc-Ala-Ala-(ε-keto) $\mathrm{AP}\left(\mathrm{OCH}_{3}\right)-\mathrm{OCH}_{3} 28(230.4 \mathrm{mg}, 395$ $\mu \mathrm{mol})$ was suspended in a mixture of THF $(1.0 \mathrm{ml})$ and deionised water $(1.0 \mathrm{ml}) . \mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(\approx 3$ equiv.) was added in portions until HPLC analysis (method 1) revealed full methyl ester deprotection (t_{R} dimethyl ester 30.9 min ; t_{R} monomethyl esters 27.1 min and 28.3 min ; t_{R} diacid 25.9 min). ESMS^{+}analysis of the mixture indicated some additional Fmoc cleavage. Removal of solvent was achieved in vacuo and the residue was dissolved in a mixture of N-methylmorpholine $(5 \mathrm{ml})$ and water $(5 \mathrm{ml})$. After stirring of the mixture at RT for 24 h HPLC analysis (method 1) and ESMS ${ }^{+}$analysis revealed full Fmoc deprotection. Again, solvent was removed in vacuo. Final purification was carried out by HPLC (method 2). The title compound was eluted at $0-3 \mathrm{~min}$. Product containing fractions were combined, concentrated in vacuo and lyophilised to afford a pale yellow solid ($45 \mathrm{mg}, 33 \%$); mp $>210^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{24}-2.4\left(c 1.0, \mathrm{H}_{2} \mathrm{O}\right) ; \delta_{\mathrm{H}}(300$ $\left.\mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 4.64(1 \mathrm{H}, \mathrm{m}, \alpha \mathrm{CH}), 4.20(1 \mathrm{H}, \mathrm{m}, \alpha \mathrm{CH}), 3.90(1 \mathrm{H}$, $\mathrm{m}, \alpha \mathrm{CH}), 1.65\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 1.36\left(3 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{CH}_{2}\right), 1.23$ $\left(3 \mathrm{H}, \mathrm{d}, J 7.2, \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}\left(75.45 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 190.1(\mathrm{CO}), 176.4$ $\left(\mathrm{CO}_{2}\right), 175.5\left(\mathrm{CO}_{2}\right), 171.3(\mathrm{CONH}), 164.1(\mathrm{CONH}), 53.6$ $(\alpha \mathrm{CH}), 50.6(\alpha \mathrm{CH}), 49.7(\alpha \mathrm{CH}), 30.7\left(\mathrm{CH}_{2}\right), 19.7\left(\mathrm{CH}_{2}\right), 17.3$ $\left(\mathrm{CH}_{3}\right), 17.1\left(\mathrm{CH}_{3}\right) ; m / z\left(\mathrm{ES}^{-}\right) 330\left[(\mathrm{M}-2 \mathrm{Li}+\mathrm{H})^{-}, 20 \%\right], 336$ $\left[(\mathrm{M}-\mathrm{Li})^{-}, 25\right], 352\left[(\mathrm{M}-2 \mathrm{Li}+\mathrm{Na})^{-}, 60\right] ;$ HPLC (method 1) $t_{\mathrm{R}} 4.0 \mathrm{~min}$.

Piperidinyl enamine 31

The enamine was isolated after treatment of 29a and 29b with piperidine in water and acetonitrile by HPLC (method $2, t_{\mathrm{R}}$ $10.0 \mathrm{~min})$, selected data: $\delta_{\mathrm{H}}\left(300.4 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 4.25(2 \mathrm{H}, \mathrm{m}$, $2 \times \alpha \mathrm{CH}), 3.94(1 \mathrm{H}, \mathrm{dd}, J 7.2,13.8, \alpha \mathrm{CH}), 3.00(4 \mathrm{H}, 2 \times$ $\left.\mathrm{CH}_{2} \mathrm{~N}\right), 1.62\left(3 \mathrm{H}, \mathrm{m}, \beta \mathrm{CH}_{2}+\gamma \mathrm{CH}\right), 1.51(1 \mathrm{H}, \mathrm{m}, \gamma \mathrm{CH}), 1.39$ $\left(6 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{3}\right), 1.25\left(6 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{2}\right) ; m / z\left(\mathrm{ES}^{-}\right) 419.6$ $\left[(\mathrm{M}-2 \mathrm{H}+\mathrm{Na})^{-}, 8 \%\right]$.

Ac-Phe-(ε-Dl-hydrazino)AP(OH)-OH 6

To a solution of di-[Ac-Phe-(ε-keto $) \mathrm{AP}(\mathrm{OLi})-\mathrm{OLi}]$ pentahydrate $20(61.4 \mathrm{mg}, 141 \mu \mathrm{~mol})$ in HPLC-grade $\mathrm{CH}_{3} \mathrm{OH}(2 \mathrm{ml})$ was added hydrazine hydrate $(70 \mu \mathrm{l}, 72.1 \mathrm{mg}, 1.44 \mathrm{mmol})$. The solution was acidified to pH 5.0 by the careful addition of $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ and after $30 \mathrm{~min} \mathrm{NaCNBH}_{3}(89.4 \mathrm{mg}, 1.42 \mathrm{mmol})$ was added. The mixture was stirred at RT overnight, then acidified by the addition of conc. aq. HCl . Solvent was removed in vacuo and the solid residue was dissolved in deionised water $(1 \mathrm{ml})$. The solution was applied to the H^{+}-form of a column of Dowex AG50 WX-8 cation-exchange resin (2 ml bed volume) and eluted with deionised water until the washings were neutral. The desired product was eluted with $1 \mathrm{M} \mathrm{H}_{3}$ in deionised water. Removal of solvent afforded the product as a glassy semi-solid $(52.1 \mathrm{mg}, 93.8 \%) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 7.25(5 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}), 4.60(1 \mathrm{H}, \mathrm{m}, \alpha \mathrm{CH}), 4.15(1 \mathrm{H}, \mathrm{m}, \alpha \mathrm{CH}), 3.55(1 \mathrm{H}, \mathrm{m}$, $\alpha \mathrm{CH}), 3.20(1 \mathrm{H}, \mathrm{m}$, Phe $\beta \mathrm{CH}), 2.95(1 \mathrm{H}, \mathrm{m}$, Phe $\beta \mathrm{CH}), 2.20$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{AP} \beta \mathrm{CH}), 1.95\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.90-1.20(5 \mathrm{H}, \mathrm{m}, \mathrm{AP}$ $\left.\gamma+\delta \mathrm{CH}_{2}+\beta \mathrm{CH}\right) ; m / z\left(\mathrm{ES}^{+}, \mathrm{H}_{2} \mathrm{O}-\mathrm{D}_{2} \mathrm{O}\right) 394\left(\mathrm{M}^{+}, 5 \%\right), 395$ $\left[(\mathrm{M}-\mathrm{H}+\mathrm{D})^{+}, 80\right], 396\left[(\mathrm{M}-2 \mathrm{H}+2 \mathrm{D})^{+}, 75\right], 397[(\mathrm{M}-$ $\left.3 \mathrm{H}+3 \mathrm{D})^{+}, 65\right], 398\left[(\mathrm{M}-4 \mathrm{H}+4 \mathrm{D})^{+}, 33\right], 399[(\mathrm{M}-5 \mathrm{H}+$ $\left.5 \mathrm{D})^{+}, 8\right]$.

Ac-Asp(OH)-(ع-DL-hydrazino)AP(OH)-OH 5a

$\mathrm{Ac}-\mathrm{Asp}(\mathrm{OLi})-(\varepsilon-\mathrm{keto}) \mathrm{AP}(\mathrm{OLi})-\mathrm{OLi}$ hexahydrate 26a $(35.8 \mathrm{mg}$, $83.3 \mu \mathrm{~mol})$ was dissolved in HPLC-grade $\mathrm{CH}_{3} \mathrm{OH}(1.5 \mathrm{ml})$. Hydrazine hydrate ($820 \mu \mathrm{~mol}, 41 \mathrm{mg}, 40 \mu \mathrm{l}$) was added and the mixture adjusted to pH 5 by the judicious addition of $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$. After $30 \mathrm{~min} \mathrm{NaCNBH}_{3}(64 \mathrm{mg}, 1.0 \mathrm{mmol})$ was added and the mixture stirred overnight before being acidified by the addition of aq. $\mathrm{HCl}(1 \mathrm{M} ; 1.0 \mathrm{ml})$ to destroy excess of cyanoborohydride. Removal of solvent in vacuo afforded a white solid, which was dissolved in deionised water $(1 \mathrm{ml})$. This
was applied to the H^{+}-form of a column of Dowex AG50 WX-8 cation-exchange resin (2 ml bed volume) and eluted with deionised water until the washings were neutral. The desired product was eluted with $1 \mathrm{M} \mathrm{NH}_{3}$ in deionised water. Removal of solvent afforded the title product as a glassy semi-solid (28.0 mg , $92.8 \%) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 4.28(1 \mathrm{H}, \mathrm{dd}, J 4.2,8.8$, Asp $\alpha \mathrm{CH})$, $4.10(1 \mathrm{H}, \mathrm{m}, \alpha \mathrm{CH}), 3.48(1 \mathrm{H}, \mathrm{m}, \alpha \mathrm{CH}), 2.60(2 \mathrm{H}, \mathrm{m}$, Asp $\left.\beta \mathrm{CH}_{2}\right), 2.18(1 \mathrm{H}, \mathrm{m}, \mathrm{AP} \beta \mathrm{CH}), 2.00\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.85-1.35$ $\left(5 \mathrm{H}, \mathrm{m}, \gamma-+\delta-\mathrm{CH}_{2}+\mathrm{AP} \beta \mathrm{CH}\right) ; m / z\left(\mathrm{ES}^{+}, \mathrm{H}_{2} \mathrm{O}-\mathrm{D}_{2} \mathrm{O}\right) 362\left(\mathrm{M}^{+}\right.$, $20 \%), 363\left[(\mathrm{M}-\mathrm{H}+\mathrm{D})^{+}, 50\right], 364\left[(\mathrm{M}-2 \mathrm{H}+2 \mathrm{D})^{+}, 85\right]$, $365\left[(\mathrm{M}-3 \mathrm{H}+3 \mathrm{D})^{+}, 100\right], 366\left[(\mathrm{M}-4 \mathrm{H}+4 \mathrm{D})^{+}, 84\right], 367$ $\left[(\mathrm{M}-5 \mathrm{H}+5 \mathrm{D})^{+}, \quad 50\right], \quad 368 \quad\left[(\mathrm{M}-6 \mathrm{H}+6 \mathrm{D})^{+}, \quad 25\right], 369$ $\left[(\mathrm{M}-7 \mathrm{H}+7 \mathrm{D})^{+}, 5\right]$.

Ac-Asp([ع-DL-hydrazino]AP[OH]-OH)-OH 5b

To a stirred solution of $\mathrm{Ac}-\mathrm{Asp}([\varepsilon-k e t o] A P[O L i]-O L i)-O L i ~ 26 b ~$ $(75.2 \mathrm{mg}, 210 \mu \mathrm{~mol})$ in HPLC-grade $\mathrm{CH}_{3} \mathrm{OH}(3 \mathrm{ml})$ was added hydrazine monohydrate ($100 \mu \mathrm{l}, 103 \mathrm{mg}, 2.1 \mathrm{mmol}, 10$ equiv.). The pH was adjusted to pH 5.5 with TFA. $\mathrm{CH}_{3} \mathrm{OH}(0.5 \mathrm{ml})$, $\mathrm{CH}_{3} \mathrm{CN}(0.5 \mathrm{ml})$ and water $(0.5 \mathrm{ml})$ were added to solubilise the hydrazone. After $15 \mathrm{~min} \mathrm{NaCNBH}_{3}$ was added ($130 \mathrm{mg}, 2.1$ mmol, 10 equiv.). After 5 h the reaction mixture was acidified (conc. HCl) and passed down the H^{+}-form of a Dowex AG50 column. The column was washed with deionised water until neutral before addition of 1 M aq. ammonia. The basic fractions were collected and the solvent removed in vacuo to yield compound $\mathbf{5 b}$ as a glassy semi-solid $(43 \mathrm{mg}, 55 \%) ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$; $\left.\mathrm{D}_{2} \mathrm{O}-\mathrm{CD}_{3} \mathrm{CN}\right) 4.50(1 \mathrm{H}, \mathrm{m}, \alpha \mathrm{CH}), 4.18(1 \mathrm{H}, \mathrm{m}, \alpha \mathrm{CH}), 3.43$ $(1 \mathrm{H}, \mathrm{m}, \alpha \mathrm{CH}), 2.83\left(2 \mathrm{H}, \mathrm{m}, \mathrm{Asp} \beta \mathrm{CH}_{2}\right), 2.10\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.85$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.75\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.64\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}(100$ $\left.\mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}-\mathrm{CD}_{3} \mathrm{CN}\right) 180.6\left(\mathrm{CO}_{2} \mathrm{H}\right), 178.2\left(\mathrm{CO}_{2} \mathrm{H}\right), 177.5$ $\left(\mathrm{CO}_{2} \mathrm{H}\right), 175.2(\mathrm{CON}), 173.8(\mathrm{CON}), 67.7(\alpha \mathrm{CH}), 65.1(\alpha \mathrm{CH})$, $56.7(\varepsilon \mathrm{CH}), 39.6\left(\mathrm{CH}_{2}\right), 24.9\left(\mathrm{CH}_{2}\right), 23.2\left(\mathrm{CH}_{2}\right), 20.1\left(\mathrm{CH}_{2}\right)$, $19.0\left(\mathrm{CH}_{3}\right) ; m / z \quad\left(\mathrm{ES}^{+}, \mathrm{H}_{2} \mathrm{O}-\mathrm{D}_{2} \mathrm{O}\right) 362\left(\mathrm{M}^{+}, 3.8 \%\right), 363$ $\left[(\mathrm{M}-\mathrm{H}+\mathrm{D})^{+}, \quad 11.2\right], 364\left[(\mathrm{M}-2 \mathrm{H}+2 \mathrm{D})^{+}, \quad 15.7\right], 365$ $\left[(M-3 H+3 D)^{+}, 20.3\right], 366\left[(M-4 H+4 D)^{+}, 20.0\right], 367$ $\left[(M-5 H+5 D)^{+}, 14.7\right], 368\left[(M-6 H+6 D)^{+}, 9.6\right], 369$ $\left[(\mathrm{M}-7 \mathrm{H}+7 \mathrm{D})^{+}, 3.8\right], 370\left[(\mathrm{M}-8 \mathrm{H}+8 \mathrm{D})^{+}, 1.5\right]$.

H-Ala-Ala-(ε-DL-hydrazino)AP(OH)-OH 7b

To a stirred solution of H-Ala-Ala-(ε-keto)AP(OLi)-OLi 30 $(37.7 \mathrm{mg}, 110 \mu \mathrm{~mol})$ in a mixture of HPLC-grade $\mathrm{CH}_{3} \mathrm{OH}$ $(1 \mathrm{ml})$ and water $(100 \mu \mathrm{l})$ was added hydrazine monohydrate ($100 \mu \mathrm{l}, 103 \mathrm{mg}, 2.1 \mathrm{mmol}$). The pH was adjusted to pH 5.5 with TFA. After $15 \mathrm{~min} \mathrm{NaCNBH}_{3}$ was added $(65 \mathrm{mg}, 1.0$ mmol). After 20 h the reaction mixture was acidified (conc. $\mathrm{HCl})$ and passed down the H^{+}-form of a Dowex AG50 column. The column was washed with deionised water until neutral before addition of 1 M aq. ammonia. The basic fractions were collected and the solvent removed in vacuo to yield $\mathbf{7 b}$ as a colourless foam ($34.0 \mathrm{mg}, 89.1 \%$); mp $>200^{\circ} \mathrm{C} ; \delta_{\mathrm{H}}(300 \mathrm{MHz}$; $\left.\mathrm{D}_{2} \mathrm{O}\right) 4.25(1 \mathrm{H}, \mathrm{m}, \alpha \mathrm{CH}), 4.05(1 \mathrm{H}, \mathrm{m}, \alpha \mathrm{CH}), 3.85(2 \mathrm{H}, \mathrm{m}$, $2 \times \alpha \mathrm{CH}), \quad 1.65\left(4 \mathrm{H}, \quad \mathrm{m}, \quad \beta \mathrm{CH}_{2}+\delta \mathrm{CH}_{2}\right), \quad 1.35(8 \mathrm{H}, \quad \mathrm{m}$, $\left.\gamma \mathrm{CH}_{2}+2 \times \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(75.45 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 179.4\left(\mathrm{CO}_{2}\right), 174.7$ $\left(\mathrm{CO}_{2}\right), 174.6(\mathrm{CONH}), 174.6(\mathrm{CONH}), 55.76(\alpha \mathrm{CH}), 50.6$ $(\alpha \mathrm{CH}), 50.52(\alpha \mathrm{CH}), 50.0(\alpha \mathrm{CH}), 32.1\left(\mathrm{CH}_{2}\right), 22.9\left(\mathrm{CH}_{2}\right), 18.6$ $\left(\mathrm{CH}_{2}\right), 17.3\left(\mathrm{CH}_{3}\right), 17.2\left(\mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{-}\right.$, before ion exchange) $352.4\left[(\mathrm{M}-2 \mathrm{H}+\mathrm{Li})^{-}, 30 \%\right.$], $368.5\left[(\mathrm{M}-2 \mathrm{H}+\mathrm{Na})^{-}, 10\right]$, $384.5\left[(\mathrm{M}-2 \mathrm{H}+\mathrm{K})^{-}, 2\right] ; m / z\left(\mathrm{ES}^{+}\right.$, before ion exchange) $366.5\left[\left(\mathrm{M}-2 \mathrm{H}+2 \mathrm{Li}^{2} \mathrm{Li}^{+}, 3 \%\right], 382.5\left[(\mathrm{M}-2 \mathrm{H}+2 \mathrm{Li}) \mathrm{Na}^{+}\right.\right.$, 5], $398.3\left[(\mathrm{M}-2 \mathrm{H}+2 \mathrm{Li}) \mathrm{K}^{+}, 8\right] ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{-}\right.$, after ion exchange, $\left.\mathrm{H}_{2} \mathrm{O}-\mathrm{D}_{2} \mathrm{O}\right) 346\left[(\mathrm{M}-\mathrm{H})^{-}, 20 \%\right], 347\left[(\mathrm{M}-2 \mathrm{H}+\mathrm{D})^{-}, 45\right]$, $348\left[(\mathrm{M}-3 \mathrm{H}+2 \mathrm{D})^{-}, 40\right], 349\left[(\mathrm{M}-4 \mathrm{H}+3 \mathrm{D})^{-}, 10\right], 368$ $\left[(\mathrm{M}-2 \mathrm{H}+\mathrm{Na})^{-}, 25\right], 369\left[(\mathrm{M}-3 \mathrm{H}+\mathrm{Na}+\mathrm{D})^{-}, 55\right], 370$ $\left[(\mathrm{M}-4 \mathrm{H}+\mathrm{Na}+2 \mathrm{D})^{-}, 100\right], 371\left[(\mathrm{M}-5 \mathrm{H}+\mathrm{Na}+3 \mathrm{D})^{-}\right.$, 65], 372 [(M - 6H + Na + 4D) $\left.)^{-}, 48\right], 373[(\mathrm{M}-7 \mathrm{H}+\mathrm{Na}+$ 5D $\left.)^{-}, 33\right] ; m / z\left(\mathrm{ES}^{+}\right.$after ion exchange) $348\left[(\mathrm{M}) \mathrm{H}^{+}, 35 \%\right], 349$ $\left[(\mathrm{M}-\mathrm{H}+\mathrm{D}) \mathrm{H}^{+}, 100\right], 350 \quad\left[(\mathrm{M}-2 \mathrm{H}+2 \mathrm{D}) \mathrm{H}^{+}, 95\right], 351$ $\left[(\mathrm{M}-3 \mathrm{H}+3 \mathrm{D}) \mathrm{H}^{+}, 72\right], 352\left[(\mathrm{M}-4 \mathrm{H}+4 \mathrm{D}) \mathrm{H}^{+}, 43\right], 353$
$\left[(\mathrm{M}-5 \mathrm{H}+5 \mathrm{D}) \mathrm{H}^{+}, 30\right], 354\left[(\mathrm{M}-6 \mathrm{H}+6 \mathrm{D}) \mathrm{H}^{+}, 15\right], 355$ $\left[(\mathrm{M}-7 \mathrm{H}+7 \mathrm{D}) \mathrm{H}^{+}, 10\right], 370\left[(\mathrm{M}) \mathrm{Na}^{+}, 22\right], 371[(\mathrm{M}-\mathrm{H}+$ D) $\left.\mathrm{Na}^{+}, 53\right], 372\left[(\mathrm{M}-2 \mathrm{H}+2 \mathrm{D}) \mathrm{Na}^{+}, 62\right], 373[(\mathrm{M}-3 \mathrm{H}+$ 3D) $\left.\mathrm{Na}^{+}, 51\right], 374\left[(\mathrm{M}-4 \mathrm{H}+4 \mathrm{D}) \mathrm{Na}^{+}, 40\right], 375[(\mathrm{M}-5 \mathrm{H}+$ 5D) $\left.\mathrm{Na}^{+}, 42\right], 376\left[(\mathrm{M}-6 \mathrm{H}+6 \mathrm{D}) \mathrm{Na}^{+}, 25\right]$.

Enzyme assays

Stock assay solution [100 mM Tris buffer, pH 8.0 , containing EDTA tetrasodium salt (0.1 mM), $\mathrm{NaN}_{3}(5 \mathrm{mM})$, Bovine Serum Albumin ($1.0 \mathrm{mg} \mathrm{ml}^{-1}$) and $\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{mM})$] was prepared, and used to prepare the working assay solution [pyridoxal phosphate (PLP) 3.0 mg and NADPH 6.0 mg made up to 40 ml with stock assay solution]. The solutions were made using ACS-grade reagents and Milli-Q water. Assays were performed at $37^{\circ} \mathrm{C}$ and contained sufficient DAP-AT to give ΔA_{340} of $20-100 \mathrm{mAU} \mathrm{min}^{-1}$, using $0-20 \mathrm{mM}$ substrate $32,10 \mathrm{mM}$ L-glutamate 34, 10 units glutamate dehydrogenase (EC 1.4.1.4, Sigma) and assay solution to give a final volume of 1000μ. Inhibition assays also contained inhibitor at concentrations of $1.0-50 \mu \mathrm{M}$. The decrease in β-NADPH concentration was observed at 340 nm over 300 s for activity assays, 14400 s for regeneration assays and over 3600 s for inhibition testing. The cuvette was incubated in a heated water jacket at $37^{\circ} \mathrm{C}$ for all assays. Progress-of-inhibition assays contained no free PLP.

Data analysis

Data points (absorption at $340 \mathrm{~nm}, A_{340}$) were collected every 2 s into an Excel database. Rates of reaction were calculated from the initial linear portions of the curves. Michaelis-Menten parameters were calculated from direct fits to the equation Rate $=\left(k_{\text {cat }} \times[\right.$ DAP-AT $] \times[$ Substrate $] /\left([\right.$ Substrate $\left.]+K_{\mathrm{M}}\right)$ using the program MacCurveFit. Absolute concentrations were calculated using the Beer-Lambert Law $A_{340}=6220 \times$ [NADPH]. For inhibition, progress-of-inhibition curves were fitted directly to the integrated rate equation of Morrison and Walsh ${ }^{20}$ using MacCurveFit and parameters were calculated by averaging 4-6 independent runs.

Antimicrobial tests

The dipeptide hydrazines $\mathbf{3 , 6 , 5 a} \mathbf{5 b}$ and $\mathbf{7 b}$ were tested against E. coli on both L and M-9 minimal agar. The medium was prepared according to literature procedures, ${ }^{34}$ sterilised by autoclaving ($25 \mathrm{~min}, 120^{\circ} \mathrm{C}$) and 25 ml was poured into sterile 9 cm petri dishes. E. coli $\mathrm{DH} 5 \alpha$ was grown overnight $\left(37^{\circ} \mathrm{C}\right)$ in L media (3 ml), precipitated and resuspended in minimal medium $(3 \mathrm{ml}) .50 \mathrm{ml}$ of the resulting suspension was evenly spread onto the surface of each agar plate. Each plate was divided into quarters and in the centre of each quarter was placed a sterile filter disk (5 mm diameter, Whatman no. 1 paper) soaked in $3 \mu \mathrm{l}$ of the appropriate amount of antibiotic dissolved in sterile, deionised water. The plates were incubated at $37^{\circ} \mathrm{C}$ for 16 h (L medium) and 36 h (minimal medium). The inhibition zone was measured as the radius of inhibition minus the radius of the filter disk (2.5 mm).

Acknowledgements

R. J. C. thanks the School of Chemistry, University of Bristol, for financial assistance and the other authors who were undergraduate students at the time of this investigation. The Nuffield

Foundation generously made available an Undergraduate Research Bursary (to J. A. S., NUF-URB97). Mr Paul Wang and Mr Simone Tortioli are gratefully thanked for technical assistance.

References

1 The Management and Control of Hospital Acquired Infections in Acute NHS Trusts in England, National Audit Office Report, 14th February, 2000.
2 A. M. Rouhi, Chem. Eng. News, 1999, May 17, 52.
3 R. J. Cox, Nat. Prod. Rep., 1996, 13, 29.
4 R. J. Cox, A. Sutherland and J. C. Vederas, Bioorg. Med. Chem., 2000, 8, 843.
5 G. Scapin and J. S. Blanchard, Adv. Enzymol. Relat. Areas Mol. Biol., 1998, 72, 279.
6 D. H. Williams and B. Bardsley, Angew. Chem., Int. Ed., 1999, 38, 1172.

7 R. J. Cox, W. A. Sherwin, L. Lam and J. C. Vederas, J. Am. Chem. Soc., 1996, 118, 7449.
8 R. J. Cox, J. A. Schouten, R. A. Stentiford and K. J. Wareing, Bioorg. Med. Chem. Lett., 1998, 8, 945.
9 S. H. Sleigh, P. R. Seavers, A. J. Wilkinson, J. E. Ladbury and J. R. H. Tame, J. Mol. Biol., 1999, 291, 393.

10 J. T. Park, D. Raychaudhuri, H. Li, S. Normark and D. MenginLecreulx, J. Bacteriol., 1998, 180, 1215.
11 K. S. Cheung, W. Boisvert, S. A. Lerner and M. Johnston, J. Med. Chem., 1986, 29, 2060.
12 F. R. Atherton, C. H. Hassall and R. W. Lambert, J. Med. Chem., 1986, 29, 29.
13 H. Brückner and G. Jung, Liebigs Ann. Chem., 1980, 37.
14 D. A. Berges, W. E. DeWolf Jr., G. L. Dunn, S. F. Grappel, D. J. Newman, J. J. Taggart and C. Gilvarg, J. Med. Chem., 1986, 29, 89.

15 J. G. Kelland, L. D. Arnold, M. M. Palcic, M. A. Pickard and J. C. Vederas, J. Biol. Chem., 1986, 261, 13216.

16 K. Agouridas, J. M. Girodeau and R. Pineau, Tetrahedron Lett., 1985, 26, 3115; Y. Gao, P. Lane-Bell and J. C. Vederas, J. Org. Chem., 1998, 63, 2133.
17 E. Atherton and R. C. Sheppard, in The Peptides, ed. S. Udenfriend and J. Meienhofer, Academic Press, Orlando, FL, 1987, vol. 9, pp. 1-38.
18 D. B. Dess and J. C. Martin, J. Org. Chem., 1983, 48, 4156.
19 D. B. Dess and J. C. Martin, J. Am. Chem.Soc., 1991, 113, 7277.
20 J. F. Morrison and C. T. Walsh, Adv. Enzymol. Relat. Areas Mol. Biol., 1988, 61, 201.
21 J. F. Morrison and S. R. Stone, Comments Mol. Cell. Biophys., 1985, 2, 347 .
22 J. F. Morrison, Trends Biochem. Sci., 1982, 7, 102.
23 A. Cornish-Bowden, Fundamentals of Enzyme Kinetics, Portland Press, London, 1995, ch. 5.
24 J. Jager, R. A. Paupit, U. Sauder and J. N. Jansonius, Protein Eng., 1994, 7, 605.
25 R. Ledwidge and J. S. Blanchard, Biochemistry, 1999, 38, 3019.
26 W. C. Still, M. Kahn and A. Mitra, J. Org. Chem., 1978, 43, 2923.
27 S. S. Sandhu and N. S. Aulakh, J. Indian Chem. Soc., 1989, 66, 530.
28 W. H. Schuller and C. Niemann, J. Am. Chem. Soc., 1951, 73, 1644.

29 L. J. Liotta, R. A. Gibbs, S. D. Taylor, P. A. Benkovic and S. J. Benkovic, J. Am. Chem. Soc., 1995, 117, 4729.
30 G. Jahreis and S. Fittkau, J. Prakt. Chem., 1984, 326, 35.
31 B. S. Furniss, A. J. Hannaford, P. W. G. Smith and A. R. Tatchell, Vogel's Textbook of Organic Chemistry, Longman, New York, 5th edn., 1989, pp. 430-433.
32 R. E. Ireland and L. Longbin, J. Org. Chem., 1993, 58, 2899.
33 Available from Kevin Raner Software, http:/www.home.aone.net.au/ krs/mcf.html
34 J. Sambrook, E. F. Fritsch and T. Maniatis, Molecular Cloning: A Laboratory Manual, Cold Spring Laboratory, Cold Spring Harbour, N.Y., 2nd edn., 1989.

[^0]: $\dagger K_{\mathrm{I}}$ and K_{I}^{*} are concentration terms. When the concentration of inhibitor reaches K_{I}, the measured K_{M} of the substrate is doubled, i.e. at K_{I} half of the active sites are filled with inhibitor. K_{I} is thus a measure of affinity between the enzyme and the inhibitor - the lower K_{I} the higher the affinity.

