Advanced Synthesis \& Catalysis

Accepted Article

Title: Cobalt-catalyzed Formation of functionalized diarylmethanes from benzylmesylates and aryl halides

Authors: Bhoomireddy Rajendra Prasad Reddy, Sushobhan
Chowdhury, Audrey AUFFRANT, and Corinne Gosmini
This manuscript has been accepted after peer review and appears as an Accepted Article online prior to editing, proofing, and formal publication of the final Version of Record (VoR). This work is currently citable by using the Digital Object Identifier (DOI) given below. The VoR will be published online in Early View as soon as possible and may be different to this Accepted Article as a result of editing. Readers should obtain the VoR from the journal website shown below when it is published to ensure accuracy of information. The authors are responsible for the content of this Accepted Article.

To be cited as: Adv. Synth. Catal. 10.1002/adsc. 201800468

Link to VoR: http://dx.doi.org/10.1002/adsc. 201800468

Cobalt-catalyzed formation of functionalized diarylmethanes from benzylmesylates and aryl halides

Bhoomireddy Rajendra Prasad Reddy, Sushobhan Chowdhury, Audrey Auffrant* and Corinne Gosmini*

a LCM, CNRS, Ecole polytechnique, Université Paris-Saclay, 91228 Palaiseau, France. [Phone (+33) 1.69.33.44.00; fax: (+33) 1.69.33.44.40;
e-mail: audrey.auffrant@polytechnique.edu, corinne.gosmini@polytechnique.edu]

Received: ((will be filled in by the editorial staff))
Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/adsc.201\#\#\#\#\#\#.((Please delete if not appropriate)) halides was also described. ${ }^{[8]}$ However, other cross-
coupling reactions using alternative benzyl reagents have been reported. ${ }^{[9]}$ Thus, Weix described the synthesis of various diarylmethanes thanks to a dual $\mathrm{Ni} /$ Co catalysis in which the cobalt phthalocyanine forms via a $\mathrm{S}_{\mathrm{N}} 2$ mechanism the radical specie from benzyl mesylates. ${ }^{[10]}$ This elegant method however requires two catalysts. Ackermann ${ }^{[11]}$ and Yoshikai ${ }^{[12]}$ also reported cobalt-catalyzed ortho C-H benzylations of heteroarenes or aryl amines respectively. Few years ago, we already demonstrated that aryl sulfonates, especially aromatic triflates, are suitabl reagents for cobalt catalysis to form either biaryl compounds or the corresponding organozinc specie after transmetalation with zinc bromide. ${ }^{[13]}$ Nevertheless no reaction occurred with ary. mesylates in the described conditions because of their greater stability. Benzyl mesylates are more reactive than the corresponding aryl and would be easy-to access coupling partners.
In this present contribution, we report a very simple Co-catalyzed cross-coupling protocol to form various diarylmethanes using benzyl mesylates instead of benzyl chlorides and aryl bromides. To our delight, we demonstrate that the more easily accessible and less reactive benzyl mesylates can advantageously replace benzyl halides. Furthermore, it is also possible to conduct the cross-coupling reaction in a very simple manner from the benzyl alcohol without isolating the corresponding mesylate.
First, we initiated our studies by investigating the reductive cross-coupling reaction of the benzyl mesylate with ethyl 4-bromobenzoate (Table 1). In the conditions established for the coupling of benzyl chlorides, ${ }^{[7]]}$ the reaction is slow but efficient (Table 1 , entry 1). Raising the temperature to $45^{\circ} \mathrm{C}$ shorten the reaction but also decrease the yield (Table 1, entry 2). Better yields were obtained by diluting the reaction mixture (Table 1, entry 3-4). Increasing the temperature to $50^{\circ} \mathrm{C}$, slightly decreases both the reaction time and the yield (Table 1, entry 5). Adding 4 equivalents of Mn as reductant instead of 2.2 does
not significantly modify the yield nor the reaction time (Table 1, entry 6). No improvement was observed by employing cobalt complex with nitrogen ligands (Table 1, entry 6-7). It should be noted that in these reactions manganese is activated by traces of trifluoroacetic acid. Without this activation, same yields of coupling products can be obtained at $45^{\circ} \mathrm{C}$ but longer time is required (Table 1 entry 9).
The optimized reaction conditions (Table 1, entry 4) allow the arylation of benzyl mesylates as efficiently as that of benzyl chlorides however higher reaction temperature and longer time are necessary. Other electrophiles such as carbamates, carbonates, acetates were non-reactive under these conditions.

Table 1. Optimization study.

Entry	$\mathrm{T}^{\circ} \mathrm{C}$	[ArBr]	Reaction time	GC yield\%
1	r.t.	1.25 M	70h	71(85 ${ }^{\text {d }}$)
2	45	1.25 M	6h	51
3	45	0.83 M	17h	60
4	45	0.625 M	21h	82
5	50	0.625 M	15h	66
$6^{\text {a }}$	45	0.625 M	19h	75
$7{ }^{\text {b }}$	45	0.625 M	15h	66
$8^{\text {c }}$	45	0.625 M	8h	33
9	45	0.625 M	36h	79
${ }^{\text {a }}$ Conducted with 4 equiv.of Mn. ${ }^{\mathrm{b}}$ Using [CoBr L]. ${ }^{\mathrm{c}}$ Using $\left[\mathrm{CoBr}_{2}\right.$ (bpy)]. ${ }^{\text {d }}$ From benzyl chloride.				

Encouraged by these results, we examined the scope of this reaction employing substituted benzylmesylates and arylhalides (Table 2). Both electron-donating and electron-withdrawing functional groups, including potentially sensitive ones such as ester, nitrile, were tolerated. Good yields were generally observed. The position of the substituent on the coupling partner generally does not influence much the efficiency of the reaction (Table 2, entries $1 / 2,4 / 6,8 / 13$, and $9 / 12$). With a less electronwithdrawing on aryl bromide such as $p-\mathrm{CF}_{3}$, the coupling with benzyl mesylate requires heating at 65° C (Table 2, entry 5). With electron-donating groups, the reactivity decreases. Then, a valuable alternative is therefore to use the corresponding aryl iodide (Table 2, entries 7, 11 and 19). Concerning the benzyl, the presence of electron donor favors the dimerization of the benzyl radical to form the dibenzyl derivative, as already observed with benzyl chlorides. In this case, dropwise addition of the benzyl mesylate or use of the more reactive aryl iodide in order to limit this side reaction (Table 2, entry 17-18) did not give a better result. However, with chlorine on the benzyl
moiety (Table 2, entries 8-16), good yields are obtained except in entry 15 .
Coupling of hetero-aromatic halides was also attempted (Scheme 1). Reactions with 2bromopyridines were efficient. However reactions with 2-bromothiophene failed.
Table 2. Substrate scope

Entry	FG	FG'	Reaction Time (h)	Isolated Yield (\%)
1	$4-\mathrm{CO}_{2} \mathrm{Et}$	H	21	78
2	$3-\mathrm{CO}_{2} \mathrm{Et}$	H	24	71
3	4 -COMe	H	20	60
4	$4-\mathrm{CN}$	H	16	76
5	$4-\mathrm{CF}_{3}{ }^{\text {a }}$	H	16	53
6	$2-\mathrm{CN}$	H	12	82
7	$4-\mathrm{OMe}^{\text {b }}$	H	16	72
8	$4-\mathrm{CO}_{2} \mathrm{Et}$	4-Cl	19	65
9	$2-\mathrm{CN}$	$4-\mathrm{Cl}$	20	88
10	H	$4-\mathrm{Cl}$	24	$85{ }^{\text {c,d }}$
11	4-OMe ${ }^{\text {b }}$	$4-\mathrm{Cl}$	19	77
12	$2-\mathrm{CN}$	$2-\mathrm{Cl}$	16	82
13	$4-\mathrm{CO}_{2} \mathrm{Et}$	$2-\mathrm{Cl}$	17	71
14	3-F	$2-\mathrm{Cl}$	19	70
15	4-OMe ${ }^{\text {b }}$	$2-\mathrm{Cl}$	16	27°
16	$4-\mathrm{SO}_{2} \mathrm{Me}$	$2-\mathrm{Cl}$	20	$77^{\text {c,e }}$
17	$2-\mathrm{Cl}$	4-Me	16	$47 / 48^{\text {c,f }}$
18	$4-\mathrm{CO}_{2} \mathrm{Et}$	4-Me	17	$51^{1 / 55}{ }^{\text {c,b }}$
19	4 -OMe ${ }^{\text {b }}$	$4-\mathrm{CO}_{2} \mathrm{Me}$	15	84
20	4-CO2Me	$4-\mathrm{CN}$	16	52

${ }^{\text {a }}$ Reaction conducted at $65^{\circ} \mathrm{C}^{\mathrm{b}}$ Reaction conducted with ArI. ${ }^{\text {c }}$ GC yield. ${ }^{\text {d }}$ Inseparable from benzyl dimerization product. ${ }^{\mathrm{e}}$ Inseparable from ArH. ${ }^{\text {f }}$ Dropwise addition of benzyl derivative

Using 2-iodo-thiophene, a satisfactory coupling with p-Cl benzyl mesylate took place, but not with oCl benzyl derivative. In the same manner coupling with $3-\mathrm{Br}$ furan failed. Compared to our previous study using benzyl chlorides the coupling with hetero-aryl is as expected more difficult and less general. Nevertheless, we found no precedent report of coupling between benzylmesylate and bromopyridine using a base-metal catalyst. This works quitnicely with this simple methodology. We also try to couple a benzyl mesylate featuring an heteroaromatic ring but those from 2- and 3-thiophenemethanol as well as that from 3-pyridinylmethanol decomposes rapidly in the reaction mixture. The reaction of mesylated 2-pyridynyl methanol mostly gave dibenzyl homocoupling product when reacting with 4-bromobenzonitrile. With a dropwise addition of ethyl 4 -iodobenzoate, the coupling product forms only in 15% GC yield. Thus reactions with mesylated heteroaromatic methanol were disappointing.

HetArX=2-Br-pyr; $\mathrm{FG}^{\prime}=\mathrm{H} 59 \%$ isolated yied HetArX $=2-\mathrm{Br}-\mathrm{pyr} ; \mathrm{FG}^{\prime}=4-\mathrm{Cl} 81 \%$ isolated yied HetArX $=2$-I-thiophene; $\mathrm{FG}^{\prime}=4-\mathrm{Cl} 66 \% \mathrm{GC}$ yield HetArX $=3$-Br-thiophene; $\mathrm{FG}^{\prime}=4-\mathrm{Cl} 28 \% \mathrm{GC}$ yield

Scheme 1. Coupling with hetero-aromatic halides.

However, a better result was obtained when coupling an α-substituted benzyl mesylate (Scheme 2). Due to its enhanced reactivity towards cobalt, the mesylate formed from 1-phenylethanol was added dropwise to a reaction mixture containing the catalytic system and the ethyl 4-bromobenzoate to give the coupling product in 60% yield. This reaction is as effective as that described with a secondary benzyl chloride. ${ }^{[7]]}$

Scheme 2. Cross-coupling with α-substituted benzyl.

In order to widen the applicability of this synthetic method we wish to avoid the isolation of the mesylate and develop a procedure from the benzyl alcohol.

Table 3. Coupling reaction from benzyl alcohols.

${ }^{\mathrm{a}}$ GC yield starting from isolate benzyl mesylate. ${ }^{\mathrm{b}}$ Isolated yield. ${ }^{\text {c }}$ Not separated from the homocoupling product of the benzyl derivative.

The key to success was to employ a stoichiometric amount of triethylamine and mesylate chloride in the first step, a slight excess yielded lower yields of coupling products. As often observed for reactions with CoBr_{2} salt, acetonitrile was the best solvent. With these conditions it was possible to perform the coupling from the benzyl alcohol. The mesylate is formed in a first step, then the ammonium salt is removed by centrifugation and the obtained solution added to a second reaction flask containing the aryl bromide, the cobalt catalyst and the reductant (Mn). With this 2 -step procedure satisfactory to good yields were obtained (Table 3). Indeed the coupling of benzyl alcohol with 4-bromo-ethylbenzoate proceeds with a GC yield of 66% to compare with 78% obtained when using an isolated benzyl mesylate. The decrease in efficiency is thus pretty low (Table 3, entries 1-5) and often the observed GC yields are comparable. This has allowed realizing other reductive couplings (table 3, entries 6-10) employing variously substituted benzyl alcohols and aryl halides bearing an electron-withdrawing group. Again the position of the substituent does not have any appreciable influence on the coupling efficiency. Coupling with 2-bromopyridine worked nicely, whereas it was not satisfactory for aryl halides bearing an electron donating substituent.

As previously mentioned, we postulate a reaction mechanism similar to that from benzyl halides. The active catalyst should be cobalt(I) complex formed by reduction of the $\mathrm{Co}^{\mathrm{II}}$ precatalyst with Mn . The oxidative addition of the $\mathrm{C}-\mathrm{X}$ bond leads to a $\mathrm{Co}^{\mathrm{T}^{-}}$ complex which is reduced to $\mathrm{Co}^{\mathrm{II}}$ by manganese allowing its reaction with the benzyl radical to give cobalt(III) complex from which the diarylamethane is released by reductive elimination allowing the regeneration of the cobalt(I) catalyst. To prove the involvement of a radical specie, control experiments were done in the presence of TEMPO (2,2,6,6-Tetramethylpiperidin-1-yl)oxyl) or glavinoxyl as radical scavenger (see SI for details). Their inhibitory effect on the reaction was observed. Nevertheless, it is not clear at this stage how benzyl radicals were generated. GC analysis of the crude mixture showed the presence of benzyl bromide, which could be formed from the reactions of benzyl mesylate and metal (Co and Mn) halides. Therefore, we hypothesized benzyl halides might be involved in the formation of the radicals. However, a complete mechanistic investigation was not conducted.
To conclude we describe a very simple synthetic protocol using cobalt bromide ($5 \mathrm{~mol} \%$) and stoichiometric amounts of manganese (2.2 equiv.) to achieve the reductive coupling of benzylmesylates and arylhalides at $45^{\circ} \mathrm{C}$. Yields are moderate to excellent. The reaction tolerates a variety of functional groups and is not much sensitive to the position of the substituent. Interestingly this procedure can also be conducted in a 2 -step manner directly from the benzylalcohol without the isolation of the benzylmesylate.

Experimental Section

To a solution of aryl bromide (5.0 mmol) and benzyl mesylates (7.5 mmol) in $\mathrm{CH}_{3} \mathrm{CN}(8.0 \mathrm{~mL}$) manganese powder (2.2 equiv., $11.0 \mathrm{mmol}, 605 \mathrm{mg}$) was added. Trifluoroacetic acid $(0.1 \mathrm{~mL})$ was added to it, in order to activate manganese followed by the addition of dodecane or n -decane (0.1 mL) as internal standard. The reaction mixture was stirred for approximately 10 min . Then, CoBr_{2} ($5 \mathrm{~mol} \%, 0.25 \mathrm{mmol}, 55 \mathrm{mg}$) was added and the resulting reaction mixture was stirred at $45^{\circ} \mathrm{C}$ until the disappearance of either of the starting materials. Upon completion, the mixture was then quenched with a solution of $2 \mathrm{M} \mathrm{HCl}(25 \mathrm{~mL})$ or with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (in case basic nitrogen containing compounds) and was stirred vigorously until layers turned clear. The solution was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or EtOAc ($3 \times 25 \mathrm{ml}$), dried over MgSO_{4}, filtered and concentrated in vacuo. Purification of the resulting oil or solid by flash chromatography over silica with petroleum ether/ethyl acetate mixtures afforded the pure compounds.

Acknowledgements

We thank Ecole polytechnique for postdoctoral fellowships to B.R.P.R.. and S.C. and CNRS for financial support. We are grateful to Dr. Sophie Bourcier for HRMS measurement.

References

[1]a) C. Gosmini, A. Moncomble, Israel J. Chem 2010, 50, 568-576; b) G. Cahiez, A. Moyeux, Chem. Rev. 2010, 110, 1435-1462; c) C. Gosmini, J. M. Begouin, A. Moncomble, Chem. Commun. 2008, 3221-3233.
[2] a) X. Wang, Y. Dai, H. Gong, Top. Curr. Chem. 2016, 374; b) D. J. Weix, Acc. Chem. Res. 2015, 48, $1767-$ 1775; c) J. Gu, X. Wang, W. Xue, H. Gong, Org. Chem. Front. 2015, 2, 1411-1421; d) S. Z. Tasker, E. A. Standley, T. F. Jamison, Nature 2014, 509, 299-309; e) T. Moragas, A. Correa, R. Martin, Chem. Eur. J. 2014, 20, 8242-8258; f) C. E. I. Knappke, S. Grupe, D. Gartner, M. Corpet, C. Gosmini, A. Jacobi von Wangelin, Chem. Eur. J. 2014, 20, 6828-6842; g) A. Rudolph, M. Lautens, Angew. Chem. Int. Ed. 2009, 48, 2656-2670; h) M. Beller, C. Bolm, Transition metals for organic synthesis, 2nd edition. Wiley-VCH, Weinheim, 2004; i) Metal-catalyzed couling reactions. Eds.: F. Diederich, A. d. Meijere, Wiley-VCH, Weinheim, 2004.
[3] a) T. Mesganaw, N. K. Garg, Org. Process Res. Dev. 2013, 17, 29-39; b) D. G. Yu, B. J. Li, Z. J. Shi, Acc. Chem. Res. 2010, 43, 1486-1495.
[4] a) B. M. Rosen, K. W. Quasdorf, D. A. Wilson, N. Zhang, A.-M. Resmerita, N. K. Garg, V. Percec, Chem. Rev. 2011, 111, 1346-1416; b) B. J. Li, D. G. Yu, C. L. Sun, Z. J. Shi, Chem. Eur. J. 2011, 17, 1728-1759.
[5] a) J. C. Ma, D. A. Dougherty, Chem. Rev. 1997, 97, 1303-1324; b) W. J. Moree, B.-F. Li, F. Jovic, T. Coon, J. Yu, R. S. Gross, F. Tucci, D. Marinkovic, S. ZamaniKord, S. Malany, M. J. Bradbury, L. M. Hernandez, Z. O’Brien, J. Wen, H. Wang, S. R. J. Hoare, R. E. Petroski, A. Sacaan, A. Madan, P. D. Crowe, G. Beaton, J. Me. Chem. 2009, 52, 5307-5310; c) S. Mondal, G. Panda, RSC Advances 2014, 4, 28317-28358.
[6] a) K. E. Poremba, N. T. Kadunce, N. Suzuki, A. H. Cherney, S. E. Reisman, J. Am. Chem. Soc. 2017, 139, 5684-5687; b) J. Zhang, G. Lu, J. Xu, H. Sun, Q. Shen, Org. Lett. 2016, 18, 2860-2863; c) L. L. Anka-Lufford, K. M. M. Huihui, N. J. Gower, L. K. G. Ackerman, D. J. Weix, Chem. Eur. J. 2016, 22, 11564-11567; d) L. N. Zhang, G. Y. Ang, S. Chiba, Org. Lett. 2011, 13, 16221625; e) C. Duplais, A. Krasovskiy, A. Wattenberg, B. H. Lipshutz, Chem. Commun. 2010, 46, 562-564.
[7] a) M. Amatore, C. Gosmini, Chem. Commun. 2008, 5019-5021; b) S. Pal, S. Chowdhury, E. Rozwadowski, A. Auffrant, C. Gosmini, Adv. Synth. Catal. 2016, 358, 2131-2435.
[8] A. D. Benischke, I. Knoll, A. Rerat, C. Gosmini, P. Knochel, Chem. Commun. 2016, 52, 3171-3174.
[9] a) J. Li, Z. Zheng, T. Xiao, P.-F. Xu, H. Wei, Asian J. Org. Chem 2018, 7, 133-136; b) J. Zhu, M. Perez, D W. Stephan, Angew. Chem. Int. Ed. 2016, 55, 84488451 ; c) M. O. Konev, L. E. Hanna, E. R. Jarvo, Angew Chem. Int. Ed. 2016, 55, 6730-6733; d) X.-X. Wang, M.-J. Luo, J.-M. Lu, Org. Biomol. Chem. 2015, 13. 11438-11444; e) Z.-C. Cao, D.-G. Yu, R.-Y. Zhu, J.-B. Wei, Z.-J. Shi, Chem. Commun. 2015, 51, 2683-2686.
[10] L. K. G. Ackerman, L. L. Anka-Lufford, M. Naodovic, D. J. Weix, Chem. Sci. 2015, 6, 3633-3633.
[11] a) L. Ackermann, J. Org. Chem. 2014, 79, 89488954; b) W. F. Song, L. Ackermann, Angew. Chem. Int. Ed. 2012, 51, 8251-8254.
[12] W. G. Xu, R. Paira, N. Yoshikai, Org. Lett. 2015, 17, 4192-4195.
[13] a) I. Kazmierski, C. Gosmini, J. M. Paris, J. Perichon, Synlett 2006, 881-884; b) M. Amatore, C. Gosmini, Angew. Chem. Int. Ed. 2008, 47, 2089-2092.

COMMUNICATION

Cobalt-catalyzed Formation of functionalized diarylmethanes from benzylmesylates and aryl halides

Adv. Synth. Catal. Year, Volume, Page - Page

Bhoomireddy Rajendra Prasad Reddy, Sushobhan

Chowdhury, Audrey Auffrant and Corinne
Gosmini

