Oxidation of Monohydric and Dihydric Alcohols with $\mathbf{C C l}_{4}$ Catalyzed by Molybdenum Compounds

R. I. Khusnutdinov, N. A. Shchadneva, R. Yu. Burangulova, Z. S. Muslimov, and U. M. Dzhemilev
Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, Ufa, 450075Russia
e-mail: ink@anrb.ru

Received Novenber 2, 2005

Abstract

Mo}(\mathrm{CO})_{6}\) catalyzed oxidation of alcohols and diols with tetrachloromethane. Primary oxidation products in reaction of alcohols with CCl_{4} are alkyl hypochlorites, and final products depending on the structure of initial alcohol are aldehydes (as acetals), ketones, chloroketones, and esters.

DOI: 10.1134/S1070428006110030
We recently established that complexes of manganese, vanadium, and iron catalyzed oxidation of alcohols (ROH) with tetrachloromethane to alkyl hypochlorites (ROCl) [1,2]. A similar catalytic activity was manifested by molybdenum complexes in reaction of 7-tert-butoxynorbornadiene with a $\mathrm{CH}_{3} \mathrm{OH}-\mathrm{CCl}_{4}$ system resulting in 7,7-dimethoxynorbornadiene whose formation might be presumed to involve methyl hypochlorite, product of methanol oxidation with the tetrachloromethane [3].

The goal of the present study was an extension of the application range of the above reaction and investigation of regular trends and features in alcohols and diols oxidation effected by CCl_{4} in the presence of molybdenum compounds.

In the series of tested molybdenum compounds $\left[\mathrm{MoCl}_{5}, \mathrm{MoO}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}\right)_{2}, \mathrm{MoO}_{3}, \mathrm{Mo}(\mathrm{CO})_{6}\right] \mathrm{MO}(\mathrm{CO})_{6}$ was the most active in alcohols oxidation with CCl_{4}. Introducing into the catalyst composition nitrogencontaining (nitriles, amides, pyridines, phenanthroline) or organophosphorus (alkyl-, arylphosphines, phosphites) activators did not considerably affect the rate and selectivity of the process.

For objects of the study we chose monohydric and dihydric alcohols of various structures. For instance, in the reaction between methanol and CCl_{4} at $140^{\circ} \mathrm{C}$ in the presence of catalytic amounts of $\mathrm{Mo}(\mathrm{CO})_{6}$ within 3 h conversion of methanol reached 64%, and the main product was formaldehyde acetal (I). A small amount of hexachloroethane (II) ($\sim 11 \%$) was found in the reaction mixture. Apparently CCl_{4} oxidized methanol to methyl
hypochlorite, then to formaldehyde which in the acid medium reacted with excess alcohol giving acetal \mathbf{I}.

$$
\mathrm{CH}_{3} \mathrm{OH}+\mathrm{CCl}_{4} \xrightarrow{\mathrm{Mo}(\mathrm{CO})_{6}} \underset{\text { I }}{\mathrm{CH}_{2}\left(\mathrm{OCH}_{3}\right)_{2}}+\underset{\text { II }}{\mathrm{C}_{2} \mathrm{Cl}_{6}}
$$

At the longer process $\left(6 \mathrm{~h}, 140^{\circ} \mathrm{C}\right)$ the methanol conversion was raised to 84%.

By an example of methanol oxidation we determined the optimum molar ratio of catalyst and reagents $\mathrm{Mo}(\mathrm{CO})_{6}: \mathrm{MeOH}: \mathrm{CCl}_{4}$ at $1: 200: 200$. In the absence of CCl_{4} acetal \mathbf{I} formed in 2% yield. At the double excess of CCl_{4} the methanol conversion decreased to 28%, and the amount of the side product, hexachloroethane, in the reaction mixture grew.

Ethanol oxidation with CCl_{4} gave ambiguous results and led to the formation of ethyl acetate (III) and acetaldehyde diethyl acetal (IV). The conversion of ethanol and the composition of the reaction products is considerably affected by the molar reagents ratio EtOH : CCl_{4}.

Below the ethanol conversion and the ratio of reaction products are given at various molar ratios of the reagents.

EtOH:CCl ${ }_{4}$	EtOH conversion, \%	(III):(IV)
$1: 1$	38	$1: 2$
$1: 2$	59	$1: 2$
$2: 1$	44	$1: 1.5$

Since the iodometric titration of the reaction mixture reveals the presence of an active chlorine, it is presumable that ethanol is first through the formation of ethyl hypochlorite (EtOCl) oxidized to acetic aldehyde which in its turn in the acid medium gives acetal with excess alcohol.

The acetic aldehyde is further oxidized to acetic acid that forms ester with the alcohol.

The oxidation of primary $\mathrm{C}_{4}-\mathrm{C}_{5}$ alcohols (1-butanol, 1-pentanol, 3-methyl-1-butanol) occurs along a similar scheme.

The reaction was carried out in the presence of methanol, for it had been previously established that methanol fast underwent oxidation with tetrachloromethane into methyl hypochlorite, an active oxidant. Actually, the reaction of butanol with CCl_{4} in the presence of methanol at $170^{\circ} \mathrm{C}$ within 3 h at molar ratio $1: 2: 2$ resulted in butanol conversion of 39%, and alongside butyl butyrate (VI) and 1-chlorobutane (VII) methyl butyrate (VIII) was obtained (in a ratio 1:2:1).

The use of methanol easily generating methyl hypochlorite acting as an oxidant permitted a reduction of the process temperature to $130^{\circ} \mathrm{C}$ and exclusion of chlorinated products, but butanol conversion decreased therewith to 22%, although the reaction time was increased to 8 h .

Reaction of isoamyl alcohol with CCl_{4} taken in equimolar amounts occurred in the presence of $\mathrm{Mo}(\mathrm{CO})_{6}$ at $150^{\circ} \mathrm{C}$ in 3 h with the alcohol conversion of 61% and

Table 1. Effect of reaction conditions on conversion of primary alcohols and yields of reaction products

Oxidized alcohol $\mathrm{RCH}_{2} \mathrm{OH}$	Molar ratio of reagents $\mathrm{Mo}: \mathrm{RCH}_{2} \mathrm{OH}: \mathrm{CCl}_{4}$: $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$	Conversion of alcohol, \%	Reaction temperature, ${ }^{\circ} \mathrm{C}$ (time, h)	Yields, \% ${ }^{\text {a }}$			
				$\mathrm{RCH}_{2} \mathrm{Cl}$	RCOOCH_{3}	$\mathrm{RCH}_{2} \mathrm{OCH}_{2} \mathrm{R}$	$\mathrm{RCOOCH}_{2} \mathrm{R}$
1-Butanol $\mathrm{R}=\operatorname{Pr}$	1:200:400:(400)	22	130 (8)	-	61	-	39
	1:100:100(200)	22	140 (3)	28	35	-	37
	1:100:200:(200)	10	140 (3)	24	39	-	36
	1:100:100:(200)	24	140 (6)	48	34	-	17
	1:200:200:(400)	27	160 (3)	38	43	-	18
	1:200:200:(400)	36	160 (6)	55	7.1	-	37
	1:200:200:(400)	39	170	25	24	-	50
	1:200:400	78	170 (3)	67	-	17	16
$\begin{aligned} & \text { 3-Methyl-1- } \\ & \text { butanol } \mathrm{R}=i \text {-Bu } \end{aligned}$	1:100:100	30	140 (6)	57	-	30	13
	1:100:100	61	150 (3)	66	-	18	16
	1:100:200	50	160 (3)	55	-	20	25
	1:100:200:(200)	32	160 (3)	19	46	-	34
1-Pentanol $\mathrm{R}=\mathrm{Bu}$	1:100:200:(100)	18	150 (3)	66	-	12	22
	1:100:200:(200)	55	150 (3)	14	25	8	53
	1:100:200	15	150 (3)	64	-	18	18
	1:100:200	55	160 (4)	46	-	26	28

${ }^{a}$ Calculated on reacted alcohol.
formation of 1-chloro-3-methyl butane (IX) (66%, main product) and also of isoamyl isovalerate $(\mathbf{X})(16 \%)$, and diisoamyl ether (XI) (18\%). A similar reaction of amyl alcohol proceeded to 55% conversion leading to the formation of the following reaction products: 1-chloropentane (XII), 46\%, amyl valerate (XIII), 28%, and diamyl ether (XIV), 26%. All our attempts to increase the yield of the oxidation products by raising the temperature (to $160^{\circ} \mathrm{C}$) and the time of reaction (to 4 h) were unsuccessful. Only the use of methanol in the reactions of isoamyl and amyl alcohols with CCl_{4} permitted increasing the amount of oxidation products to the following values: X, 34\%; XIII, 53\%; and methyl valerate (XV), 25%.

$$
\begin{aligned}
& \mathrm{CHF}_{2} \mathrm{CF}_{2} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{CCl}_{4}+\mathrm{CH}_{3} \mathrm{OH} \\
& \xrightarrow[-\mathrm{CHCl}_{3}]{[\mathrm{Mo}]} \\
& \mathrm{CHF}_{2} \mathrm{CF}_{2} \mathrm{CH}\left(\mathrm{OCH}_{3}\right)_{2} \\
& \text { XVI }
\end{aligned}
$$

For special attention calls the high selectivity in oxidizing $2,2,3,3$-tetrafluoropropanol by the system $\mathrm{CCl}_{4}-$ $\mathrm{MeOH}-\mathrm{Mo}(\mathrm{CO})_{6}, 1: 0.5: 1$: The single reaction product is 1,1-dimethoxy-2,2,3,3-tetrafluoropropane (XVI), but its yield does not exceed 14% even at prolonging the process to $6 \mathrm{~h}\left(160^{\circ} \mathrm{C}\right)$. In the absence of methanol the fluorinated alcohol is not consumed and the only reaction product is hexachloroethane.

With growing length of the alkyl chain of the alcohols their activity in oxidation with CCl_{4} gradually diminished. For instance, 1-undecanol reacted with the system $\mathrm{CCl}_{4}{ }^{-}$ $\mathrm{CH}_{3} \mathrm{OH}$ in the presence of $\mathrm{Mo}(\mathrm{CO})_{6}$ to 18% conversion to form methyl undecanoate (XVII), 1,1-dimethoxyundecane (XVIII), and 1-chloroundecane (XIX) in a ratio 1.5:1:14.

Benzyl alcohol is oxidized with tetrachloromethane at $160^{\circ} \mathrm{C}$ virtually to 100% giving benzaldehyde ($\mathbf{X X}$), α-methoxytoluene (XXI), methyl benzoate (XXII), and benzyl chloride (XXIII) in a ratio depending mainly on the concentration of the initial reagents.

The ratio of reaction products obtained from benzyl alcohol at various molar ratios of reagents are given below.

$\mathrm{PhCH}_{2} \mathrm{OH}: \mathrm{CCl}_{4}:$	$\mathrm{PhCH}_{2} \mathrm{OH}$ conversion, $\%$	XX:XXI: XXII:XXIII
$1: 1: 1$	100	$4: 4: 1: 2$
$1: 2: 1$	100	$3: 2: 1: 3$
$1: 1: 2$	100	$7: 6: 1: 0.5$
$1: 1: 3$	100	$3: 3: 1: 0.2$

Further research demonstrated that generation of alkyl hypochlorites in the presence of molybdenum compounds and subsequent oxidation reactions with them are characteristic not only of primary, but also of secondary alcohols which as expected are oxidized into ketones. However the dominant direction (4:1) of reaction between secondary alcohols and CCl_{4} in the presence of $\mathrm{Mo}(\mathrm{CO})_{6}$ was the substitution of OH group by chlorine. The conversion of alcohols at $150-160^{\circ} \mathrm{C}$ was $60-80 \%$ in 3 h .

In reaction with secondary alcohols like with primary alcohols among the tested molybdenum compounds $\left[\mathrm{MoCl}_{5}, \mathrm{MoO}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}\right)_{2}, \mathrm{MoO}_{3}, \mathrm{Mo}(\mathrm{CO})_{6}\right] \mathrm{MO}(\mathrm{CO})_{6}$ proved to be the most active. Whereas CCl_{4} is simultaneously reagent and solvent it is reasonable to use it in a great excess with respect to alcohol ($\mathrm{ROH}: \mathrm{CCl}_{4}=1: 2-$ 5). The reaction of secondary alcohols with CCl_{4} is completed within 3 h , at a longer heating formation of ethers of the initial alcohols and chlorinated ketones is observed.

The optimum concentrations of the components of the catalytic system and of reagents and also the recommended reaction conditions are as follows: $\mathrm{Mo}(\mathrm{CO})_{6}: \mathrm{ROH}$: $\mathrm{CCl}_{4}=1: 100-200: 200-500,150-160^{\circ} \mathrm{C}, 3-6 \mathrm{~h}$. Under these conditions the conversion of alcohols is complete, but the ratio of the formed ketones and chloroalkanes is practically independent of the alcohol structure.

For instance, reaction of 1 mol of 2-decanol with 2 mol of CCl_{4} yielded as products 2-chlorodecane (XXX)

Table 2. Effect of reaction conditions on conversion of 2,3-butanediol and yields of reaction products

Molar ratio Mo:diol: CCl_{4}	Reaction temperature, ${ }^{\circ} \mathrm{C}$ (time, h)	$\begin{gathered} \text { Conversion } \\ \text { of initial } \\ \text { diol, } \% \end{gathered}$	Yields, \% ${ }^{\text {a }}$	
			XXXV	XXXVI
1:200:200	130 (3)	95	21	79
1:200:400	130 (6)	99	33	67
1:200:200	140 (3)	98	31	69
1:200:400	130 (3)	76	14	86

${ }^{\text {a }}$ Calculated on reacted diol.
and 2-decanone (XXXI), the former prevailing. At $150^{\circ} \mathrm{C}$ in 3 h the conversion was 70%, at $140^{\circ} \mathrm{C}$ in $6 \mathrm{~h}, 96 \%$, ratio of compounds XXX:XXXI was 2:1.

We succeeded in increasing the reaction selectivity with respect to ketone XXXI by introducing into the system methanol which was actively oxidized with CCl_{4} forming methyl hypochlorite. It turned out that the result of the process depended on two factors, namely, on the nature of the initial sibstrate, and on the reaction time. For instance, at the molar ratio secondary alcohol: $\mathrm{CH}_{3} \mathrm{OH}: \mathrm{CCl}_{4}: \mathrm{Mo}(\mathrm{CO})_{6} 100: 300: 300: 1\left(150^{\circ} \mathrm{C}, 3 \mathrm{~h}\right)$ the selectivity of reaction with respect to 2-decanone (XXXI) at conversion $53-87 \%$ can attain 90%.

Tertiary alcohol, tert-butanol, reacted with the system $\mathrm{CH}_{3} \mathrm{OH}-\mathrm{CCl}_{4}$ in the presence of $\mathrm{MO}(\mathrm{CO})_{6}$ leading to the formation of methyl tert-butyl ether (XXXII) as major product (87%). In the absence of methanol the tertbutanol suffered substitution chlorination giving tert-butyl chloride (XXXIII) in 66% yield. In both cases alongside compounds XXXII and XXXIII the reaction mixture contained 4,4,4-trichloro-2-methyl-1-butene (XXXIV) and traces of isobutylene indicating that presumably compound XXXIV formed in three stages by Scheme 1.

Molybdenum hexacarbonyl catalyzes also diols oxidation with CCl_{4}. The reaction direction is governed mainly by the structure of diol and also depends on CCl_{4}

Scheme 1.

concentration and reaction conditions. For instance, 2,3butanediol in reaction with 2 mol of CCl_{4} at a quantitative conversion provided a mixture of two products: 3 -chlorobutanol (XXXV) and 2,4,5-trimethyl-2-ethyl-1,3-dioxolane (XXXVI) in a $2: 1$ ratio (Table 2).

Based on published data [4] the following probable scheme of dioxolane XXXVI formation can be suggested.

The process starts by dehydration of the initial glycol resulting first in the formation of 2-butanone which undergoes acetalization with the second diol molecule. The content of 2-butanone to the end of the reaction was 3-5\% (detected by GLC and GC-MS methods).

At reduced CCl_{4} concentration $\left(\mathrm{CCl}_{4}\right.$: diol $\left.=1: 1\right)$ dioxolane XXXVI becomes the major reaction product. No reaction is observed in the absence of $\mathrm{Mo}(\mathrm{CO})_{6}$ or CCl_{4}.

2,5-Hexanediol under similar conditions is converted in 80% yield into chloroketone XXXVII, resulting from the diol oxidation at one of the hydroxy groups and substitution chlorination at the other. At diminished concentration of CCl_{4} the main product isolated from the

reaction mixture in 87% yield was 2,5 -dimethyltetrahydrofuran (XXXVIII), the product of intramolecular dehydration of 2,5-hexanediol. The influence of reaction conditions on the yield of products is presented in Table 3.

The reaction of CCl_{4} with α, ω-diols occurs by the type of substitution chlorination at one of the hydroxy groups giving in high yields α, ω-chlorohydrins and thus is of significant preparative interest.

$n=3$ (XXXIX, 95\%), 4 (XL, 98\%), 5 (XLI, 87\%), 7 (XLII, 74\%), 10 (XLIII, 48\%).

On increasing temperature to $150^{\circ} \mathrm{C}(3 \mathrm{~h})$ hexachloroethane formation is observed whose yield can reach 4045\%.

In contrast to the other α, ω-diols the reaction of 1,3-propyleneglycol with CCl_{4} under the effect of $\mathrm{Mo}(\mathrm{CO})_{6}$ is not selective. In the reaction mixture alongside 3-chloro-1-propanol (XLIV) is also present 2-(3,3,3-trichloro-propyl)-1,3-dioxane (XLV) (27\%).

The probable route of compound XLV formation may involve 4 stages: dehydration of diola to allyl alcohol, its telomerization with CCl_{4}, elimination of HCl from the

Table 3. Effect of reaction conditions on conversion of 2,5-hexanediol and yields of reaction products

Molar ratio Mo:diol: CCl_{4}	Reaction temperature, ${ }^{\circ} \mathrm{C}$ (time, h)	Conversion of initial diol, \%	Yields, \% ${ }^{\text {a }}$	
			XXXVII	XXXVIII
1:100:100	20 (144)	22	-	100
1:100:100	100 (3)	100	10	90
1:200:200	100 (3)	100	6	94
1:100:100	120 (3)	100	19	81
1:100:100	130 (0.5)	80	13	87
1:100:100	130 (3)	100	82	18
1:100:200	130 (3)	90	93	7
1:100:300	130 (3)	100	67	38
1:100:400	130 (3)	100	14	86
b	130 (3)	77	-	100
c	130 (3)	77	-	100

${ }^{a}$ Calculated on reacted diol. ${ }^{\text {b Diol without }} \mathrm{Mo}(\mathrm{CO})_{6}$ and CCl_{4}. ${ }^{c}$ Diol with $\mathrm{Mo}(\mathrm{CO})_{6}$ in a ratio $100: 1$ without CCl_{4}.
arising chlorohydrin to give 4,4,4-trichlorobutyric aldehyde which provides acetal XLV with diol excess.

Thus we established that $\mathrm{Mo}(\mathrm{CO})_{6}$ catalyzes oxidation of alcohols and diol with CCl_{4} leading to the formation of aldehydes, ketones, chloroketones, and esters.

EXPERIMENTAL

IR spectra were recorded on a spectrophotometer UR-75 from KBr pellets or thin films. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were registered on a spectrometer JEOL FX-90 Q at $89.55\left({ }^{1} \mathrm{H}\right)$ and $22.5 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$ in CDCl_{3}, chemical shifts were reported relative to TMS. Mass spectra were measured on a GC-MS instrument Finnigan-4021 (electrom impact, $70 \mathrm{eV}, 200^{\circ} \mathrm{C}$, direct admission into the ion source). GLC was carried out on a chromatograph Chrom-5, column $1.200 \times 3 \mathrm{~mm}$, stationary phase silicone SE-30 (5\%), on Chromaton N-AW-HMDS (0.1250.160 mm), carrier gas helium ($47 \mathrm{ml} / \mathrm{min}$), ramp from 50 to $250^{\circ} \mathrm{C}$ at a rate $8 \mathrm{deg} / \mathrm{min}$. Hypochlorite concentration was determined iodometrically [5].

Molybdenum compounds $\mathrm{Mo}(\mathrm{CO})_{6}, \mathrm{MoCl}_{5}$, $\mathrm{MoO}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}\right)_{2}, \mathrm{MoO}_{3}$ were commercial products, dried in a vacuum-desiccator before use.

General procedure of alcohols and diols oxidation. Into a pressure microreactor of stainless steel or a glass ampule (the results of parallel runs are virtually identical) were charged under an argon atmosphere 0.1 mmol of $\mathrm{MO}(\mathrm{CO})_{6}, 20 \mathrm{mmol}$ of an appropriate alcohol (or 10 mmol of diol), and $20-40 \mathrm{mmol}$ of CCl_{4}, and the reactor was air-tight closed (the ampule was sealed). The reaction was carried out at constant stirring for $1-$ 6 h at $120-150^{\circ} \mathrm{C}$. Then the reactor was cooled to room temperature, the reaction mixture was filtered through a silica gel bed (eluent hexane-ether, 1:1). The solvent was distilled off, the residue was distilled under the atmospheric pressure or in a vacuum. The yields are given with respect to consumed alcohol (GLC, internal reference). The structure of compounds obtained was proved by spectral methods and by comparison with authentic samples and reference data [6-11].

1,1-Dimethoxy-2,2,3,3-tetrafluoropropane (XVI). Yield 14%. Mass spectrum, $m / z\left(I_{\text {rel }}, \%\right): 87$ (26), 85 (31), 74 (100), 59 (28), 57 (19), 56 (10), 55 (19), 43 (63), 42 (10), 39 (14), 31 (5), 29 (57). Found, \%: C 34.12; H 4.47; F 43.17. $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{~F}_{4} \mathrm{O}_{2}$. Calculated, \%: C 34.09; H 4.58; F43.15.

Methyl undecenoate (XVII). Yield 3\%. Mass spectrum, m / z ($I_{\text {rel }}, \%$): $200[M]^{+}(3), 169$ (5), 157 (8), 143 (7), 101 (5), 87 (5), 75 (11), 74 (100), 69 (10), 59 (13), 57 (12), 56 (5), 55 (31), 43 (18), 42 (12), 41 (41), 39 (8), 29 (32). Found, \%: C 71.91; H 11.97. $\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{O}_{2}$. Calculated, \%: C 71.95; H 12.08.

1,1-Dimethoxyundecene (XVIII). Yield 2\%. Mass spectrum, $m / z\left(I_{\text {rel }}, \%\right): 185(5), 75$ (100), 71 (13), 69 (5), 58 (6), 55 (8), 53 (5), 47 (8), 45(8), 43(11), 41(17), 31(5), 29 (16). Found, \%: C 72.07; H 12.95. $\mathrm{C}_{13} \mathrm{H}_{28} \mathrm{O}_{2}$. Calculated, \%: C 72.16; H 13.04.

1-Chloroundecene (XIX). Yield 32%, bp $97^{\circ} \mathrm{C}$ $(20 \mathrm{~mm} \mathrm{Hg})$. Mass spectrum, $m / z\left(I_{\text {rel }}, \%\right): 105(10), 97$ (7), 93 (13), 91 (48), 85 (5), 84 (5), 83 (12), 71 (13), 70 (17), 69 (37), 68 (7), 67 (10), 57 (57), 56 (24), 55 (64), 54 (6), 53 (5), 43 (100), 42 (23), 41 (87), 39 (17), 31 (7), 39 (66). Found, \%: C 69.19; H 12.14; Cl 18.67. $\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{Cl}$. Calculated, \%: C 69.26; H 12.15; Cl 18.59.

2-Chlorodecene (XXX). Yield 64%, bp $105^{\circ} \mathrm{C}$ $(10 \mathrm{~mm} \mathrm{Hg})$. Mass spectrum, $m / z\left(I_{\text {rel }}, \%\right): 140(5), 112$ (11), 111 (18), 105 (7), 98 (14), 97 (25), 96 (6), 85 (7), 84 (25), 83 (24), 82 (10), 71 (16), 70 (60), 69 (67), 68 (7), 67 (7), 63 (7), 57 (23), 56 (41), 55 (81), 54 (8), 53 (6), 43 (100), 42 (36), 41 (89), 40 (5), 39 (22), 29 (48). Found, \%: C 56.49; H 9.91; Cl 33.60. $\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{Cl}$. Calculated, \%: C 56.60; H 9.97; Cl 33.43.

Decene-2-one (XXXI). Yield 90%, bp $81^{\circ} \mathrm{C}$ $(15 \mathrm{~mm} \mathrm{Hg})$. Mass spectrum, $m / z\left(I_{\text {rel }}, \%\right): 156[M]^{+}(5)$, 71 (25), 59 (25), 58 (100), 57 (12), 55 (8), 43 (90), 42 (5), 41 (19), 39 (5), 29 (12). Found, \%: C 75.82; H 13.86. $\mathrm{C}_{6} \mathrm{H}_{20} \mathrm{O}$. Calculated, \%: C 76.92; H 12.82.

4,4,4-Trichloro-2-methylbut-1-ene (XXXIV). Yield 47%, bp $60-61^{\circ} \mathrm{C}(75 \mathrm{~mm} \mathrm{Hg}) .{ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: $5.05-5.30 \mathrm{~d}\left(2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.42 \mathrm{~s}\left(2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.01 \mathrm{~s}$ $\left(3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR spectrum, δ, ppm: $98.33\left(\mathrm{C}^{4}\right), 61.69$ $\left(\mathrm{C}^{3}\right), 138.25\left(\mathrm{C}^{2}\right), 120.08\left(\mathrm{C}^{1}\right), 23.66\left(\mathrm{C}^{5}\right)$. Mass spectrum, $\left.m / z\left(I_{\text {rel }}, \%\right): 172[M]^{+}(6), 13910\right), 137(14)$, 127 (10), 125 (60), 124 (7), 123 (95), 122 (6), 109 (5), 103 (5), 101 (6), 98 (5), 96 (6), 89 (5), 87 (16), 85 (5), 78 (12), 76 (36), 75 (7), 73 (5), 65 (35), 63 (8), 61 (14), 55 (61), 53 (10), 51 (17), 50 (11), 49 (6), 41 (78), 40 (30), 39 (100), 38 (14), 37 (6), 29 (4). Found, \%: C 28.68; H 3.30 ; Cl 68.02. $\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{Cl}_{3}$. Calculated, \%: C 28.71; H 3.34; Cl 67.95 .

3-Chlorobutan-2-ol (XXXV). Yield 33\%. Mass spectrum, $m / z\left(I_{\text {rel }}, \%\right): 57$ (5), 55 (5), 45 (100), 43 (10), 29 (17). Found, \%: C 44.16; H 8.31; Cl 32.50. $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{ClO}$. Calculated, \%: C 44.25; H 8.35; Cl 32.66.

2,4,5-Trimethyl-2-ethyl-1,3-dioxolane (XXXVI). Isolated by preparative GLC. Yield 95%. IR spectrum, $v, \mathrm{~cm}^{-1}: 1050,1370,1400,2900-2960 .{ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: $0.75-1.1 \mathrm{t}\left(3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.3 \mathrm{~s}\left(9 \mathrm{H}, 3 \mathrm{CH}_{3}\right), 1.5-$ $1.8 \mathrm{q}\left(2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.5-3.7 \mathrm{~m}(2 \mathrm{H}, 2 \mathrm{CH}) .{ }^{13} \mathrm{C}$ NMR spectrum, δ, ppm: $109.6\left(\mathrm{C}^{2}\right), 78.89\left(\mathrm{C}^{4}\right), 78.04\left(\mathrm{C}^{5}\right)$, $25.19\left(\mathrm{C}^{6}\right), 33.14\left(\mathrm{C}^{7}\right), 8.13\left(\mathrm{C}^{8}\right), 16.78\left(\mathrm{C}^{9}\right), 16.40\left(\mathrm{C}^{10}\right)$. Mass spectrum, $m / z\left(I_{\text {rel }}, \%\right)$: 129 (11), 115 (47), 100 (11), 73 (23), 72 (25), 57 (48), 56 (18), 55 (28), 45 (7), 43 (100), 41 (17), 39 (6), 29 (24). Found, \%: C 66.50; H 11.14. $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{2}$. Calculated, \%: C 66.63; H 11.18.

2-Chlorohexan-5-one (XXXVII). Isolated by preparative GLC. Yield 85%. Mass spectrum, $m / z\left(I_{\text {rel }}, \%\right)$: $134[M]^{+}(5), 58$ (41), 57 (14), 56 (8), 55 (16), 43 (100), 42 (29), 41 (10), 39 (6), 29 (6). Found, \%: C 53.50; H 8.21; $\mathrm{Cl} 26.35 . \mathrm{C}_{6} \mathrm{H}_{11} \mathrm{ClO}$. Calculated, \%: C 53.59; H 8.24; Cl 26.37.

2,5-Dimethyltetrahydrofuran (XXXVIII). Yield $\sim 100 \%$, bp $91-92^{\circ} \mathrm{C}$. IR spectrum, $v, \mathrm{~cm}^{-1}: 1090,1370$, 1450, 2850-2950. ${ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm, transisomer: $1.20 \mathrm{~d}\left(6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 3.86 \mathrm{~m}(2 \mathrm{H}, 2 \mathrm{CH}), 1.68 \mathrm{~m}$ $\left(4 \mathrm{H}, 2 \mathrm{CH}_{2}\right)$; cis-isomer: $1.125 \mathrm{~d}\left(2 \mathrm{CH}_{3}\right), 4.02 \mathrm{~m}(2 \mathrm{H}$, $2 \mathrm{CH}), 1.68 \mathrm{~m}\left(4 \mathrm{H}, 2 \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR spectrum, δ, ppm, trans-isomer: $21.38\left(\mathrm{C}^{6}, \mathrm{C}^{7}\right), 74.49\left(\mathrm{C}^{2}, \mathrm{C}^{5}\right), 33.04\left(\mathrm{C}^{3}\right.$, $\left.\mathrm{C}^{4}\right)$; cis-isomer: $21.38\left(\mathrm{C}^{6}, \mathrm{C}^{7}\right), 75.34\left(\mathrm{C}^{2}, \mathrm{C}^{5}\right), 34.15\left(\mathrm{C}^{3}\right.$, $\left.\mathrm{C}^{4}\right)$. Mass spectrum, $m / z\left(I_{\text {rel }}, \%\right): 100[M]+(6), 73(23)$,

72 (25), 57 (48), 56 (18), 55 (28), 45 (7), 43 (100), 41 (17), 39 (6), 29 (24). Found, \%: C 71.86; H 12.06. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}$. Calculated, \%: C 71.95; H 12.08.

5-Chloropentanol (XXXIX). Yield 95%, bp $57-58^{\circ} \mathrm{C}$ $(1 \mathrm{~mm} \mathrm{Hg}) .{ }^{13} \mathrm{C}$ NMR spectrum, δ, ppm: $62.28\left(\mathrm{C}^{l}\right)$, $32.08\left(\mathrm{C}^{2}\right), 23.07\left(\mathrm{C}^{3}\right), 32.30\left(\mathrm{C}^{4}\right), 44.25\left(\mathrm{C}^{5}\right)$. Found, \%: C 49.05; H 9.11; Cl 29.01. $\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{ClO}$. Calculated, \%: C 48.98; H 9.04; Cl 28.92 .

6-Chlorohexanol (XL). Yield 98%, bp $97^{\circ} \mathrm{C}$ $(10 \mathrm{~mm} \mathrm{Hg}) .{ }^{1} \mathrm{H}$ NMR spectrum, $\delta, \mathrm{ppm}: 1.10-1.92(8 \mathrm{H}$, $\left.4 \mathrm{CH}_{2}\right), 3.42$ " $3.80 \mathrm{~m}\left(4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}, \mathrm{CH}_{2} \mathrm{OH}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}$ spectrum, δ, ppm: $62.99\left(\mathrm{C}^{1}\right), 32.49\left(\mathrm{C}^{2}\right), 26.59\left(\mathrm{C}^{3}\right)$, $25.00\left(\mathrm{C}^{4}\right), 32.07\left(\mathrm{C}^{5}\right), 45.03\left(\mathrm{C}^{6}\right)$. Mass spectrum, m / z ($I_{\mathrm{rel}}, \%$): 92 (10), 90 (12), 83 (12), 82 (30), 81 (5), 76 (5), 70 (8), 69 (65), 68 (8), 67 (47), 63 (5), 57 (11), 56 (40), 55 (100), 54 (29), 53 (8), 49 (5), 45 (5), 44 (7), 43 (34), 42 (76), 41 (99), 40 (12), 39 (28), 31 (77), 30 (7), 29 (41). Found, \%: C 52.70; H 9.56; Cl 26.08. $\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{ClO}$. Calculated, \%: C 52.74; H 9.59; Cl 25.95.

7-Chloroheptanol (XLI). Yield 87%, bp $80^{\circ} \mathrm{C}$ $(15 \mathrm{~mm} \mathrm{Hg}) .{ }^{1} \mathrm{H}$ NMR spectrum, $\delta, \mathrm{ppm}: 1.15-2.0 \mathrm{~m}$ $\left(10 \mathrm{H}, 5 \mathrm{CH}_{2}\right), 3.25-3.75 \mathrm{~m}\left(4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}, \mathrm{CH}_{2} \mathrm{OH}\right)$. ${ }^{13} \mathrm{C}$ NMR spectrum, δ, ppm: $62.69\left(\mathrm{C}^{l}\right), 32.39\left(\mathrm{C}^{2}\right), 25.57$ $\left(\mathrm{C}^{3}\right), 27.69\left(\mathrm{C}^{4}\right), 28.02\left(\mathrm{C}^{5}\right), 30.63\left(\mathrm{C}^{6}\right), 44.54\left(\mathrm{C}^{7}\right)$. Found, \%: C 55.74; H 10.10; $\mathrm{Cl} 23.68 . \mathrm{C}_{7} \mathrm{H}_{15} \mathrm{ClO}$. Calculated, \%: C 55.81; H 10.04; Cl 23.53.

9-Chlorononanol (XLII). Yield 74%, bp $142-143{ }^{\circ} \mathrm{C}$ $(20 \mathrm{~mm} \mathrm{Hg}) .{ }^{1} \mathrm{H}, \delta$, ppm: $1.2-2.0 \mathrm{~m}\left(14 \mathrm{H}, 7 \mathrm{CH}_{2}\right), 3.40-$ $3.65 \mathrm{~m}\left(4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}, \mathrm{CH}_{2} \mathrm{OH}\right) .{ }^{13} \mathrm{C}, \delta, \mathrm{ppm}: 62.79\left(\mathrm{C}^{l}\right)$, $32.50\left(\mathrm{C}^{2}\right), 26.17\left(\mathrm{C}^{3}\right), 27.55\left(\mathrm{C}^{4}\right), 27.23\left(\mathrm{C}^{5}\right), 27.89\left(\mathrm{C}^{6}\right)$, $28.00\left(\mathrm{C}^{7}\right)$, $28.74\left(\mathrm{C}^{8}\right)$, $44.40\left(\mathrm{C}^{9}\right)$. Found, \%: C 60.12; H 10.54; Cl 19.76. $\mathrm{C}_{9} \mathrm{H}_{19} \mathrm{ClO}$. Calculated, \%: C 60.48; H 10.72; Cl 19.84.

12-Chlorododecanol (XLIII). Isolated by column chromatography (eluent ether-hexane, 1:2). Yield 48\%. ${ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: $1.31-1.95\left(20 \mathrm{H}, 10 \mathrm{CH}_{2}\right)$, 3.42 " $3.64 \mathrm{~m}\left(4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}, \mathrm{CH}_{2} \mathrm{OH}\right) .{ }^{13} \mathrm{C}$ NMR spectrum, δ, ppm: $62.87\left(\mathrm{C}^{1}\right), 32.81\left(\mathrm{C}^{2}\right), 26.28\left(\mathrm{C}^{3}\right), 27.55\left(\mathrm{C}^{4}\right)$, $27.76\left(\mathrm{C}^{5}\right), 27.22\left(\mathrm{C}^{6}\right), 27.89\left(\mathrm{C}^{7}\right), 28.02\left(\mathrm{C}^{8}\right), 28.64\left(\mathrm{C}^{9}\right)$, $28.70\left(\mathrm{C}^{10}\right), 29.36\left(\mathrm{C}^{11}\right), 45.05\left(\mathrm{C}^{12}\right)$. Found, \%: C 65.32; H 14.30; $\mathrm{Cl} 15.67 . \mathrm{C}_{12} \mathrm{H}_{25} \mathrm{ClO}$. Calculated, \%: C 65.57; H 14.46; Cl 15.68.

3-Chloropropanol (XLIV). Yield 73%, bp $82^{\circ} \mathrm{C}$ $(80 \mathrm{~mm} \mathrm{Hg}) .{ }^{13} \mathrm{C}$ NMR spectrum, δ, ppm: $59.49\left(\mathrm{C}^{l}\right)$, $34.87\left(\mathrm{C}^{2}\right)$, $43.30\left(\mathrm{C}^{3}\right)$. Mass spectrum, $m / z\left(I_{\mathrm{rel}}, \%\right)$:

76 (11), 58 (72), 57 (48), 41 (16), 39 (8), 31 (100), 30 (36), 29 (55).

2-(3,3,3-Trichloropropyl)-1,3-dioxane (XLV). Yield 27%. $^{1} \mathrm{H}$ NMR spectrum, δ, ppm: $1.20-1.42 \mathrm{~m}(2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 2.00-2.15 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.78 " 2.85 \mathrm{t}\left(2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $3.70-4.12 \mathrm{~m}\left(4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 4.61-4.68 \mathrm{t}(1 \mathrm{H}, \mathrm{CH}) .{ }^{13} \mathrm{C}$ NMR spectrum, δ, ppm: $99.99\left(\mathrm{C}^{2}\right), 66.77\left(\mathrm{C}^{4}, \mathrm{C}^{6}\right), 25.75$ $\left(\mathrm{C}^{5}\right), 32.06\left(\mathrm{C}^{7}\right), 49.32\left(\mathrm{C}^{8}\right), 99.79\left(\mathrm{C}^{9}\right)$. Mass spectrum, $m / z\left(I_{\text {rel }}, \%\right): 233[M]+(8), 231(10), 141(5), 139(7), 111$ (5), 109 (7), 88 (5), 87 (100), 85 (5), 77 (5), 75 (13), 59 (13), 42 (8), 41 (7), 39 (5), 31 (16), 29 (10). Found, \%: C 36.02; $\mathrm{H} 4.63 ; \mathrm{Cl} 45.72 . \mathrm{C}_{7} \mathrm{H}_{11} \mathrm{Cl}_{3} \mathrm{O}_{2}$. Calculated, \%: C 35.99; H 4.75; Cl 45.55.

The study was carried out under a financial support of Ministry of Education and Science (grants NSh2189.2003.3; NSh-7470.2006.3).

REFERENCES

1. Khusnutdinov, R.I., Shchadneva, N.A., Baiguzina, A.R., and Dzhemilev, U.M., Izv. Akad. Nauk, Ser. Khim., 2002, p. 979.
2. Khusnutdinov, R.I., Shchadneva, N.A., Baiguzina, A.R., Lavrent'eva, Yu.Yu., and Dzhemilev, U.M., Izv. Akad. Nauk, Ser. Khim., 2002, p. 1919.
3. Khusnutdinov, R.I., Shchadneva, N.A., Baiguzina, A.R., Lavrent'eva, Yu.Yu., and Dzhemilev, U.M., Neftekhimiya, 2004, vol. 5, p. 382.
4. Nesmeyanov, A.N. and Nesmeyanov, N.A., Nachala organicheskoi khimii (Basis of Organic Chemistry), Moscow: Khimiya, 1969, vol. 1, p. 109.
5. Sharlo, G., Metody analiticheskoi khimii. Kolichestvennyi analiz neorganicheskikh soedinenii (Methods of Analytical Chemistry. Quantitative Analysis of Neorganic Compounds), Moscow: Khimiya, 1965, p. 975.
6. Promyshlennye khlororganicheskie produkty (Industrial Chloroorganic Products), Oshina, L., Moscow: Khimiya, 1978, p. 196.
7. Shriner, R. L., Fuson, R. C., Curtin, D. Y., and Morrill, T. C., The Systematic Identification of Organic Compounds. A Laboratory Manual, New York: Wiley, 1978.
8. Kapustina, N.I., Sokova, L.L., Makhaev, V.D., Borisov, A.P., and Nikishin, G.I., Izv. Akad. Nauk, Ser. Khim., 2000, p. 1870.
9. Sasson, Y. and Rempel, G.L., Synthesis, 1975, p. 448.
10. Barri, C.N. and Evans, Jr.S.A., J. Org. Chem., 1983, vol. 48, p. 2825.
11. Matveeva, E.D., Kurts, A.L., Yalovskaya, A.I., Nikishova, N.G., and Bundel', Yu.G., Zh. Org. Khim., 1979, vol. 25, p. 716.
