Synthesis of three diosgenyl saponins: dioscin, polyphyllin D , and balanitin 7

Shaojiang Deng ${ }^{\text {a }}$, Biao $\mathrm{Yu}^{\mathrm{a}, *}$, Yongzheng Hui ${ }^{\mathrm{a}, 1}$, Hai Yu ${ }^{\mathrm{b}}$, Xiuwen Han ${ }^{\mathrm{b}}$
${ }^{a}$ State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, PR China
${ }^{\mathrm{b}}$ State Key Laboratory of Catalyst, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China

Received 20 November 1998; accepted 1 March 1999

Abstract

Dioscin, polyphyllin D , and balanitin 7, which belong to a group of structurally similar diosgenyl saponins with promising bioactivities, were synthesized by stepwise glycosylation. © 1999 Elsevier Science Ltd. All rights reserved.

Keywords: Diosgenyl 2,4-di-O- $\alpha-$ L-rhamnopyranosyl- β-D-glucopyranoside (dioscin); Diosgenyl α-L-rhamnopyranosyl-($1 \rightarrow 2$)-(α-L-arabinofuranosyl)-($1 \rightarrow 4$)- β-D-glucopyranoside (polyphyllin D); Diosgenyl [β-D-xylopyranosyl-($1 \rightarrow 3$)- β-D-glucopyranosyl]-($1 \rightarrow$ $4)$-(α-L-rhamnopyranosyl)-($1 \rightarrow 2$)- β-d-glucopyranoside (balanitin 7); Saponin; Synthesis

1. Introduction

Saponins are a structurally and biologically diverse class of glycosides of steroids and triterpenes that are widely distributed in terrestrial plants and in some marine organisms. The structural diversity of saponins lies mainly in their sugar moieties [1]. Diosgenyl saponins are the most abundant existing steroid saponins. A typical structural pattern of the sugar chain in this family is one with a β-D-glucopyranoside as the first sugar attached to diosgenin, which in turn has an α-L-rhamnopyranose substituted at $2-\mathrm{OH}$ and another sugar or sugar chain at $4-\mathrm{OH}$. Dioscin, polyphyllin D , and balanitin 7 belong to this group. Dioscin exists widely in the

[^0]plant kingdom, including many species intensively used in traditional Chinese herbal medicines that exhibit cardiovascular and antifungal activities [2]. Polyphyllin D has been isolated from Paris polyphylla and other species and shows very promising cardiovascular and cytotoxic activities [3]. Balanitin 7 is one of the cytostatic saponins isolated from the east African medicinal plant Balanites aegyptica [4]. Herein we wish to report a general approach to synthesizing these three saponins [5].

Sugar =

dioscin

polyphyllin D

balanitin 7

2. Results and discussion

The common diosgenyl disaccharide building block (11) for the target saponins was synthesized as shown in Schemes 1 and 2.

Glycosylation of diosgenin with thioglycoside 2, which was prepared from ethyl $2-O-$ benzoyl-4,6- O-benzylidene-1-thio- α-D-glucopyranoside (1) [6a] under promotion by NISAgOTf [6,7] gave the desired glycoside 3 in moderate yield (55%). Surprisingly, the $2-\mathrm{OBz}$ on $\mathbf{3}$ was found to be highly inert to any cleaving reagents, such as $\mathrm{NaOMe}, \mathrm{NaOH}, t-\mathrm{KOBu}-$ $\mathrm{H}_{2} \mathrm{O}$ [8a], DIBAL-H [8b], MeMgI [8c], and LiAlH_{4} [8d]. Therefore, diosgenyl glycoside 5 was prepared from ethyl 2,3 -di- O-benzoyl-4,6-O-benzylidene-1-thio- β-D-glucopyranoside (4) [9]. Removal of the two benzoyl groups afforded the diol 6. It has been documented that it is quite difficult to selectively protect one of the OH groups of the 2,3-diol of a D-glucopyranoside, especially when it is in the β-form [5b]. Fortunately, treatment of 6 with pivaloyl chloride predominantly gave the $3-O-\mathrm{Piv}$ product 7 in satisfactory yield (64%), which was readily separated by chromatography from the corresponding 2 - O-Piv product $7 \mathrm{a}(9.6 \%$) and 2,3 -di-O-Piv product 7b (4.7\%) (Scheme 1).

Glycosylation of 7 with tri- O-acetyl-L-
rhamnopyranosyl trichloroacetimidate 8 [10] under the promotion of a catalytic amount of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ afforded the diosgenyl disaccharide 9 in almost quantitative yield, which was then treated with TsOH to remove the 4,6-benzylidene to give diol $\mathbf{1 0}(75 \%)$. Selective benzoylation of $\mathbf{1 0}$ with benzoyl chloride then provided 11 (75%). Diosgenyl disaccharide 11, having a single free OH at the 4^{\prime} position, is the key building block for the preparation of the target saponins.
2,3,5-Tri- O-acetyl- α-L-arabinofuranosyl trichloroacetimidate (15) was prepared from te-tra- O-acetyl- α-L-arabinofuranose (13) [11]. Treatment of $\mathbf{1 3}$ with ammonia in THFMeOH or hydrazine acetate gave the corresponding hemiacetal 14 in poor yield ($\sim 20 \%$). Nevertheless, treatment of $\mathbf{1 3}$ with $\mathrm{HBr}-\mathrm{HOAc}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, after silica gel column chromatography, provided $\mathbf{1 4}$ quantitatively. Glycosylation of $\mathbf{1 1}$ with the donor imidates $\mathbf{8}$ and 15 efficiently afforded the corresponding glycosides 12 (89%) and $16(93 \%)$, respectively (Scheme 3). Removal of all of the acyl groups with sodium hydroxide furnished dioscin (100%), and polyphillin D (85%), whose data were virtually identical to those reported [2,3].

The synthesis of the tetrasaccharide saponin balanitin 7 was completed by glycosylation of

Scheme 1. Reagents and conditions: (a) TBSCl, imidazole, DMF, $50^{\circ} \mathrm{C}, 5 \mathrm{~h}, 100 \%$; (b) NIS, AgOTf, $4 \AA \mathrm{MS}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-30^{\circ} \mathrm{C}$, $1 \mathrm{~h}, 55 \%$ (for 3), 50% (for 5); (c) $\mathrm{NaOMe}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{MeOH}, 5{ }^{\circ} \mathrm{C}, 85 \%$; (d) PivCl, $\mathrm{Py}, \mathrm{rt}, 64 \%$.

Scheme 2. Reagents and conditions: (a) $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, 4 \AA \mathrm{MS}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-40^{\circ} \mathrm{C}, 100 \%$; (b) $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}, \mathrm{MeOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 80 \%$; (c) $\mathrm{BzCl}, \mathrm{Py}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-20^{\circ} \mathrm{C}, 75 \%$.

Scheme 3. Reagents and conditions: (a) $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, 4 \AA \mathrm{MS}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 89 \%$ (for 12), 93% (for 16); (b) $\mathrm{NaOH}, 100 \%$ (for dioscin), 85% (for polyphyllin D); (c) $\mathrm{HBr}-\mathrm{HOAc}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 100 \%$; (d) $\mathrm{CCl}_{3} \mathrm{CN}, \mathrm{DBU}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 100 \%$.

Scheme 4. Reagents and conditions: (a) $\mathrm{Pd}-\mathrm{C}, \mathrm{H}_{2}, 88 \%$; (b) $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, 4 \AA \mathrm{MS}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 100 \%$; (c) $\mathrm{NH}_{2} \mathrm{NH}_{2} \cdot \mathrm{HOAc}, \mathrm{DMF}, 5{ }^{\circ} \mathrm{C}$, 73%; (d) $\mathrm{CCl}_{3} \mathrm{CN}, \mathrm{DBU}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 96 \%$; (e) $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, 4 \AA \mathrm{MS}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 31 \%$; (f) $\mathrm{NaOH}, 75 \%$.
the diosgenyl disaccharide $\mathbf{1 1}$ with the appropriate disaccharide donor (Schemes 4 and 5). Glycosylation of $\mathbf{1 8}$ (which was readily prepared from 1,2,4,6-tetra- O-acetyl-3- O-benzyl-β-D-glucopyranose (17) [12] by hydrogenolysis) with $2,3,4$-tri- O-acetyl- β-D-xylopyranosyl trichloracetimidate (19) [13] in the presence of a catalytic amount of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ gave disaccharide 20 quantitatively. Heptaacetate 20 was further exposed to hydrazine acetate to afford the desired hemiacetal $21(73 \%)$. Subsequent treatment of $\mathbf{2 1}$ with $\mathrm{CCl}_{3} \mathrm{CN}-\mathrm{DBU}$ [14] gave disaccharide imidate 22 in excellent yield (96%). The coupling of imidate 22 with disaccharide saponin $\mathbf{1 1}$ in the presence of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ gave the desired tetrasaccharide 23 in a quite low yield (31%), along with 66% of the acceptor 11 recovered. Finally, removal of all of the acyl groups on 23 with sodium hydroxide provided balanitin 7 (75%), whose data were in good accordance with those reported by Pettit [4].

Alternatively, an ethyl 1-thio-disaccharide donor (27) was prepared and applied to the final glycosylation (Scheme 5). Treatment of bromide 24 [15] and thioglycoside 1 with AgOTf provided the disaccharide 25 in excellent yield (98%). Removal of the 4,6-benzylidene group and subsequent acetylation of the

Scheme 5. Reagents and conditions: (a) AgOTf, collidine, $4 \AA$ MS, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 98 \%$; (b) $70 \% \mathrm{HOAc}, 80^{\circ} \mathrm{C}$; (c) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{Py}, 86 \%$, two steps; (d) NIS, AgOTf, 4 A MS, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 66 \%$.
resulting diol afforded peracylated disaccharide 27 (86%, two steps). Glycosylation of $\mathbf{1 1}$ with ethyl thioglycoside 27 under the promotion of NIS-AgOTf [6,7] gave the desired tetrasaccharide saponin 28 in better yield (66%) than that in the previous glycosylation with the imidate donor 22 (31\%). The low yield of this glycosylation could probably contribute to the steric hindrance of the $4^{\prime}-\mathrm{OH}$ in 11 and the mismatching of the two rings of the glucopyranosides (donor and acceptor) via the β - $(1 \rightarrow 4)$-glycosidic bond. Recently, it has been shown that the glycosylation between hindered acceptor and donor with thioglycoside instead of imidate would give a more satisfactory result [16].

3. Experimental

General methods.—See Ref. [5b].
Ethyl 2-O-benzoyl-4,6-O-benzylidene-3-O-tert-butyldimethylsilyl-1-thio- α - D-glucopyranoside (2).-A solution of ethyl 2-O-benzoyl-4,6- O-benzylidene-1-thio- α-D-glucopyranoside (1) (3.0 g, 7.2 mmol$)$, tert-butylchlorodimethylsilane (TBDMSCl, $1.63 \mathrm{~g}, 10.8 \mathrm{mmol}$) and imidazole ($1.23 \mathrm{~g}, 18.0 \mathrm{mmol}$) in dry DMF (15 mL) was stirred at $50^{\circ} \mathrm{C}$ for 5 h , then diluted with EtOAc. The organic layer was washed with brine, dried over MgSO_{4}, and concentrated. Chromatography of the residue on a silica gel column (10:1 to $3: 1$ petroleum ether-EtOAc) gave $2(3.84 \mathrm{~g}$, 100%) as a colorless solid: $R_{f} 0.82$ (6:1 petroleum ether-EtOAc); ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.10-7.40(\mathrm{~m}, 10 \mathrm{H}), 5.68(\mathrm{~d}$, $\left.1 \mathrm{H}, J_{1,2} 5.8, \mathrm{H}-1\right), 5.58(\mathrm{~s}, 1 \mathrm{H}, \mathrm{PhCH}), 5.29$ (dd, $\left.1 \mathrm{H}, J_{2,3} 9.3, \mathrm{H}-2\right), 4.40-4.17$ (m, 3 H , H-6, H-5, H-3), 3.82 (t, 1 H, H-6'), 3.62 ($\mathrm{t}, 1$ H, H-4), 2.54 (m, 2 H), 1.23 (t, 3 H, J 7.4), $0.71(\mathrm{~s}, 9 \mathrm{H}), 0.01$ and -0.06 (each s, each 3 H); EIMS (m/z): 473, 411, 367, 351, 105. Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{O}_{6} \mathrm{SSi}$: C, 63.36; H , 7.22. Found: C, 63.52; H, 7.39.

Diosgenyl 2-O-benzoyl-4,6-O-benzylidene-3-O-tert-butyldimethylsilyl- β-D-glucopyranoside (3).-A suspension of $2(3.19 \mathrm{~g}, 6.0 \mathrm{mmol})$, diosgenin $(2.07 \mathrm{~g}, 5.0 \mathrm{mmol})$ and $4 \AA \mathrm{MS}(2.0$ $\mathrm{g})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was stirred under Ar at room temperature for 0.5 h , then cooled to
$-30^{\circ} \mathrm{C}$. NIS ($1.69 \mathrm{~g}, 7.5 \mathrm{mmol}$) was added, followed by immediate addition of a solution of AgOTf ($514 \mathrm{mg}, 0.4 \mathrm{mmol}$) in dry toluene (15 mL). After being stirred for 1 h at room temperature, the mixture was quenched with a satd $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution, then diluted with EtOAc, and filtered. The organic layer was washed with satd $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution and brine, dried over MgSO_{4}, and concentrated. Chromatography of the residue on a silica gel column (20:1 to 15:1 petroleum ether-EtOAc) afforded $3(2.41 \mathrm{~g}, 55 \%)$ as a white solid: $[\alpha]_{\mathrm{D}}^{22}$ $-38.7^{\circ} \quad\left(c \quad 1.62, \quad \mathrm{CHCl}_{3}\right) ; \quad R_{f} 0.69 \quad(5: 1$ petroleum ether-EtOAc); ${ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.10-7.30(\mathrm{~m}, 10 \mathrm{H}), 5.55(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{PhCH}), 5.20\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6, \mathrm{H}-2^{\prime}\right), 4.70(\mathrm{~d}$, $\left.1 \mathrm{H}, J_{1^{\prime}, 2^{\prime}} 8.7, \mathrm{H}-1^{\prime}\right), 4.41-4.30$ (m, $2 \mathrm{H}, \mathrm{H}-16$, H-6'), $4.01\left(\mathrm{t}, 1 \mathrm{H}, J_{2,3} J_{3,4} 8.9\right.$, H-3'), 3.83 (t , $1 \mathrm{H}, \mathrm{H}^{\prime} \mathbf{6}^{\prime}$), 3.61 ($\left.\mathrm{t}, 1 \mathrm{H}, \mathrm{H}^{\prime} 4^{\prime}\right), 3.53-3.30$ (m, 4 H, H-5', H-3, H-26a, H-26b), 0.69 (s, 9 H), -0.06 and -0.11 (each s, each 3 H); EIMS (m/z): 881, 826, 469, 397 (base).

Diosgenyl 2,3-di-O-benzoyl-4,6-O-benzylid-ene- β-D-glucopyranoside (5).-A procedure similar to that for the preparation of 3 was employed. Ethyl 2,3-di- O-benzoyl-4,6- O-benz-ylidene-1-thio- β-D-glucopyranoside (4) (625 $\mathrm{mg}, 1.2 \mathrm{mmol}$) and diosgenin ($414 \mathrm{mg}, 1.0$ $\mathrm{mmol})$ were treated with NIS ($337 \mathrm{mg}, 1.50$ mmol) and $\mathrm{AgOTf}(103 \mathrm{mg}, 0.4 \mathrm{mmol})$ to afford $5(439 \mathrm{mg}, 50 \%)$ as a white solid: $[\alpha]_{D}^{22}$ 8.5° (c 1.2, CHCl_{3}); $R_{f} 0.50$ (4:1 petroleum ether-EtOAc); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.00-7.30(\mathrm{~m}, 15 \mathrm{H}), 5.75\left(\mathrm{t}, 1 \mathrm{H}, J_{2,3} J_{3,4}\right.$ 9.5, H-3'), 5.53 (s, 1 H, PhCH), 5.43 (dd, 1 H , $J_{1,2} 7.9, \mathrm{H}^{\prime} 2^{\prime}$), 5.22 (d, $\left.1 \mathrm{H}, J 5.2, \mathrm{H}-6\right), 4.89$ (d, $1 \mathrm{H}, \mathrm{H}-1$ '), 4.41 (dd, $1 \mathrm{H}, J 4.9,9.7, \mathrm{H}-16$), 4.34 ($\mathrm{t}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}$), 4.26 (dd, $1 \mathrm{H}, J_{5,6} 4.9$, $J_{6^{\prime},^{\prime} 6^{\prime} \mathrm{b}} 12.8, \mathrm{H}^{\prime} 6^{\prime} \mathrm{a}$), 3.99 ($\mathrm{t}, 1 \mathrm{H}, \mathrm{H}-6^{\prime} \mathrm{b}$), 3.67 (m, 1 H, H-5'), 3.60-3.40 (m, $3 \mathrm{H}, \mathrm{H}-3$, H-26a, H-26b); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.73,165.28,140.34,136.93,133.21$, 133.12, 129.90, 129.84, 129.79, 129.60, 129.57, 129.07, 128.44, 128.36, 128.26, 126.20, 125.98, 121.87, 109.35, 101.53, 100.58, 80.87, 80.15, 78.92, 72.80, 72.64, 72.33, 72.27, 68.82, 66.93, $66.72,66.05,62.21,56.55,50.14,41.69,40.34$, 39.82 , $38.86,37.24,36.88,32.12,31.91,31.47$, 30.38, 29.59, 28.89, 20.90, 19.38, 17.20, 16.32, 14.58; EIMS (m/z): 872, 459, 105 (base). Anal. Calcd for $\mathrm{C}_{54} \mathrm{H}_{64} \mathrm{O}_{10}$: $\mathrm{C}, 74.29 ; \mathrm{H}, 7.39$. Found: C, 74.47; H, 7.18.

Diosgenyl 4,6-O-benzylidene- β-D-glucopyranoside (6).-A solution of $5(111 \mathrm{mg}, 0.127$ mmol) and NaOMe (catalytic) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (6 mL) and $\mathrm{MeOH}(6 \mathrm{~mL})$ was stirred at $50^{\circ} \mathrm{C}$ overnight. The mixture was then neutralized with Dowex-50 (H^{+}form), and filtered. The filtrate was concentrated, and the resulting residue was purified by column chromatography to afford diol 6 ($71 \mathrm{mg}, 85 \%$) [5b].

Diosgenyl 4,6-O-benzylidene-3-O-pivaloyl-β-D-glucopyranoside (7), diosgenyl 4,6-O-benz-ylidene-2-O-pivaloyl- β-D-glucopyranoside (7a), and diosgenyl 4,6-O-benzylidene-2,3-di-O-pi-valoyl- β-D-glucopyranoside (7b).-To a solution of $6(723 \mathrm{mg}, 1.09 \mathrm{mmol})$ in pyridine (4 mL) was slowly added pivaloyl chloride (0.27 $\mathrm{mL}, 2.19 \mathrm{mmol}$) at room temperature. After being stirred for 2 h , the mixture was quenched with MeOH and concentrated. Chromatography of the residue on a silica gel column ($6: 1$ to $4: 1$ petroleum ether-EtOAc) gave 7 ($511 \mathrm{mg}, 64 \%$) as a white foam, 7 a (77 $\mathrm{mg}, 9.6 \%$), 7b ($41 \mathrm{mg}, 4.7 \%$) and recovered 6 ($82 \mathrm{mg}, 11.3 \%$). 7: $[\alpha]_{\mathrm{D}}^{22}-91.9^{\circ}$ (c 0.48 , CHCl_{3}); $R_{f} 0.43$ (4:1 petroleum ether-EtOAc); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.50-7.30(\mathrm{~m}$, $5 \mathrm{H}), 5.52(\mathrm{~s}, 1 \mathrm{H}, \mathrm{PhCH}), 5.39(\mathrm{~d}, 1 \mathrm{H}, J 4.7$, H-6), 5.20 (t, $\left.1 \mathrm{H}, J_{2,3} J_{3,4} 9.3, \mathrm{H}-3^{\prime}\right), 4.59$ (d, $\left.1 \mathrm{H}, J_{1^{\prime}, 2^{\prime}} 7.7, \mathrm{H}-1^{\prime}\right), 4.40(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-16), 4.36$ (dd, $\left.1 \mathrm{H}, J_{5^{\prime}, 6^{\prime} \mathrm{a}} 4.7, J_{6^{\prime} \mathrm{a}, 6^{\prime} \mathrm{b}} 10.6, \mathrm{H}-6^{\prime} \mathrm{a}\right), 3.80(\mathrm{t}$, $\left.1 \mathrm{H}, J_{5^{\prime}, 6^{\prime} \mathrm{b}} 10.2, \mathrm{H}-6^{\prime} \mathrm{b}\right), 3.67\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}_{4^{\prime}, 5^{\prime}} 9.6\right.$, H-4'), $3.60-3.30$ (m, 5 H, H-2', H-3, H-5', H-26a, H-26b), 1.23 (s, 9 H); ${ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 178.71, 140.26, 137.15, 129.00, 128.28, 126.01, 122.17, 109.38, 102.10, $101.23,80.92,79.53,78.70,73.71,73.64,68.83$, 66.96, 66.54, 66.08, 62.25, 56.61, 50.21, 41.74, $40.39,39.05,37.30,36.97,32.20,31.96,31.53$, 31.28, 30.42, 29.73, 28.93, 27.20, 20.98, 19.48, $17.25,16.39,16.25,14.64$; EIMS (m/z): 747, 397, 282, 253, 139 (base). HREIMS Calcd for $\mathrm{C}_{45} \mathrm{H}_{63} \mathrm{O}_{9}$: 747.4472. Found: $747.4476\left[\mathrm{M}^{+}-\right.$ H]. 7a: $[\alpha]_{\mathrm{D}}^{21}-84.1^{\circ}\left(c 0.59, \mathrm{CHCl}_{3}\right) ; R_{f} 0.30$ (4:1 petroleum ether-EtOAc); ${ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.50-7.20(\mathrm{~m}, 5 \mathrm{H}), 5.54(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{PhCH}), 5.35(\mathrm{~d}, 1 \mathrm{H}, J 4.9, \mathrm{H}-6), 4.86$ (dd, $\left.1 \mathrm{H}, \mathrm{J}_{1^{\prime}, 2^{\prime}} 8.0, \mathrm{~J}_{2^{\prime}, 3^{\prime}} 8.8, \mathrm{H}-2^{\prime}\right), 4.65(\mathrm{~d}, 1 \mathrm{H}$, $\left.\mathrm{H}-1^{\prime}\right), 4.41(\mathrm{q}, 1 \mathrm{H}, J 7.5, \mathrm{H}-16), 4.33$ (dd, 1 H , $\left.J_{5^{\prime}, 6^{\prime} \mathrm{a}} 5.0, \mathrm{~J}_{6^{\prime} \mathrm{a}, 6^{\prime} \mathrm{b}} 10.5, \mathrm{H}-6^{\prime}\right), 3.87(\mathrm{t}, 1 \mathrm{H}, J 11.8$, H-26a), 3.80 (t, $1 \mathrm{H}, J_{5^{\prime}, 6^{\prime} \mathrm{b}} 10.4, \mathrm{H}^{\prime} 6^{\prime} \mathrm{b}$), 3.60 (t , $\left.1 \mathrm{H}, J_{3^{\prime}, 4^{\prime}} J_{4^{\prime}, 5^{\prime}} 9.3, \mathrm{H}-4^{\prime}\right), 3.57-3.32$ (m, 4 H ,

H-3', H-5', H-3, H-26b), 1.24 ($\mathrm{s}, 9 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 177.69, 140.15, 136.78, 128.95, 128.04, 126.00, 121.56, 109.04, $101.49,99.57,80.70,80.54,79.06,74.16,72.43$, 68.40, 66.59, 65.85, 61.87, 56.24, 49.84, 41.35, 40.02, 39.49, 38.64, 36.91, 36.62, 31.82, 31.58, 31.17, 30.02, 29.32, 28.54, 26.92, 20.58, 19.07, 16.87, 16.01, 14.25; FABMS (m/z): 749 [M + 1], 747, 663, 607, 397 (base). Anal. Calcd for $\mathrm{C}_{45} \mathrm{H}_{64} \mathrm{O}_{9} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 70.47 ; \mathrm{H}, 8.67$. Found: C, 70.52; H, 8.80. 7b: $[\alpha]_{\mathrm{D}}^{21}-73.9^{\circ}$ (c 0.57, CHCl_{3}); $R_{f} 0.71$ (4:1 petroleum ether-EtOAc); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.40-7.20(\mathrm{~m}$, $5 \mathrm{H}), 5.51(\mathrm{~s}, 1 \mathrm{H}, \mathrm{PhCH}), 5.34(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6$, $\mathrm{H}-3^{\prime}$), 5.03 (dd, $1 \mathrm{H}, J_{1^{\prime}, 2^{\prime}} 7.9, J_{2^{\prime}, 3^{\prime}} 8.9, \mathrm{H}-2^{\prime}$), 4.71 (d, $\left.1 \mathrm{H}, \mathrm{H}^{\prime} \mathrm{l}^{\prime}\right), 4.45-4.27$ (m, $2 \mathrm{H}, \mathrm{H}-16$, H-6'a), 3.81 (t, $1 \mathrm{H}, J_{6^{\prime} \mathrm{a}, 6^{\prime} \mathrm{b}} 10.3, J_{5^{\prime}, 6^{\prime} \mathrm{b}} 10.1$, H-6'b), 3.71 (t, 1 H, J 9.3, H-4'), 3.56-3.34 (m, 4 H, H-5', H-3, H-26a, H-26b), 1.18 ($\mathrm{s}, 9$ H), 1.16 (s, 9 H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 176.95,176.25,140.04,136.73,128.60$, 127.88, 125.59, 121.62, 108.99, 100.80, 99.89, 80.54, 79.19, 78.53, 71.46, 71.13, 68.41, 66.57, 66.03, 61.89, 56.22, 49.82, 41.35, 40.02, 39.49, $38.64,38.47,36.89,36.60,31.82,31.58,31.17$, 30.03, 29.30, 28.56, 26.97, 26.83, 20.58, 19.07, 16.87, 16.01, 14.26; FABMS (m / z): 833 [M+ 1], 831, 662, 397 (base). Anal. Calcd for $\mathrm{C}_{50} \mathrm{H}_{72} \mathrm{O}_{10}$: C, 72.08; H, 8.71. Found: C, 71.95; H, 8.98.

Diosgenyl 2-O-(2,3,4-tri-O-acetyl- α-L-rham-nopyranosyl)-4,6-O-benzylidene-3-O-pival-oyl- β-D-glucopyranoside (9).-To a suspension of $8(1.68 \mathrm{~g}, 3.87 \mathrm{mmol}), 7(833 \mathrm{mg}, 1.13$ $\mathrm{mmol})$ and $4 \mathrm{~A} \mathrm{MS}(2 \mathrm{~g})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10$ mL) at $-40^{\circ} \mathrm{C}$ was added a solution of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(0.55 \mathrm{~mL}, 0.1 \mathrm{M})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. After being stirred for 1 h , the reaction was quenched with $\mathrm{NEt}_{3}(0.5 \mathrm{~mL})$, filtered, and concentrated. Chromatography of the residue on a silica gel column (5:1 to $4: 1$ petroleum ether-EtOAc) gave 9 ($1.13 \mathrm{~g}, 100 \%$) as a white solid: $[\alpha]_{\mathrm{D}}^{22}-61.9^{\circ}$ (c 1.41, CHCl_{3}); R_{f} 0.47 (4:1 petroleum ether-EtOAc); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.40-7.20(\mathrm{~m}, 5 \mathrm{H}$), 5.44 (brs, $1 \mathrm{H}, \mathrm{PhCH}$), $5.44-5.36$ (m, 2 H , H-6, H-3"), 5.21 (dd, $1 \mathrm{H}, J_{2^{\prime \prime}, 3^{\prime \prime}} 3.3, J_{3^{\prime \prime}, 4^{\prime \prime}}$ $\left.9.9, \mathrm{H}-3^{\prime \prime}\right), 5.16$ (dd, $\left.1 \mathrm{H}, J_{1^{\prime \prime}, 2^{\prime \prime}} 1.5^{\prime}, \mathrm{H}-2^{\prime \prime}\right), 5.03$ (t, $\left.1 \mathrm{H}, J_{4^{\prime \prime}, 5^{\prime \prime}} 10.0, \mathrm{H}-4^{\prime \prime}\right), 4.90\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-1^{\prime \prime}\right)$, 4.72 (d, $\left.1 \mathrm{H}, J_{1^{\prime}, 2^{\prime}} 7.7, \mathrm{H}^{\prime} 1^{\prime}\right), 4.48-4.30(\mathrm{~m}, 2$ H, H-5", H-16a), 3.80-3.30 (m, 7 H), 2.09,
2.01 and 1.95 (each s, each 3 H), $1.20(\mathrm{~d}, 3 \mathrm{H}$, $J 6.1), 1.12(\mathrm{~s}, 9 \mathrm{H}), 1.00(\mathrm{~s}),, 0.95(\mathrm{~d}, 3 \mathrm{H}, J$ 6.9), 0.77 (m, 6 H); EIMS (m / z): 1019, 962, 608, 153 (base); Anal. Calcd for $\mathrm{C}_{57} \mathrm{H}_{80} \mathrm{O}_{16} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 65.88 ; \mathrm{H}, 7.95$. Found: C, 65.68; H, 7.95.

Diosgenyl 2-O-(2,3,4-tri-O-acetyl- α-L-rham-nopyranosyl)-3-O-pivaloyl- β-D-glucopyranoside (10).—A solution of $9(1.13 \mathrm{~g}, 1.11 \mathrm{mmol})$ and $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{~g})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and $\mathrm{MeOH}(20 \mathrm{~mL})$ was stirred at rt for 2 h , then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with satd NaHCO_{3} solution and brine, dried over MgSO_{4}, and concentrated. Chromatography of the residue on a silica gel column ($2: 1$ to $1: 1$ petroleum ether-EtOAc) gave $10(826 \mathrm{mg}, 80 \%)$ as a white solid: $[\alpha]_{D}^{22}$ $-72.4^{\circ} \quad\left(c \quad 1.3, \quad \mathrm{CHCl}_{3}\right) ; \quad R_{f} 0.35 \quad(1.5: 1$ petroleum ether-EtOAc); ${ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.39$ (d, $1 \mathrm{H}, J 4.9, \mathrm{H}-6$), $5.22-5.16(\mathrm{~m}, 2 \mathrm{H}), 5.07\left(\mathrm{dd}, 1 \mathrm{H}, J_{2^{\prime \prime}, 3^{\prime \prime}} 3.2\right.$, $\left.J_{3^{\prime \prime}, 4^{\prime \prime}} 9.2, \mathrm{H}-3^{\prime \prime}\right), 5.03\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4^{\prime \prime}\right), 4.97$ (d, $\left.1 \mathrm{H}, J_{1^{\prime \prime}, 2^{\prime \prime}} 1.1, \mathrm{H}-1^{\prime \prime}\right), 4.62\left(\mathrm{~d}, 1 \mathrm{H}, J_{1^{\prime}, 2^{\prime}} 7.7\right.$, H-1'), 4.48 (m, $\left.1 \mathrm{H}, \mathrm{H}-5^{\prime \prime}\right), 4.41$ (m, 1 H , $\mathrm{H}-16), 3.90$ (dd, $1 \mathrm{H}, J_{5^{\prime}, 6^{\prime} \mathrm{a}} 3.0, J_{6^{\prime}, 6^{\prime} \mathrm{b}} 12.4$, H-6'a), 3.79 (dd, $1 \mathrm{H}, J_{5^{\prime}, 6^{\prime} \mathrm{b}} 4.7, \mathrm{H}^{\prime} \mathrm{6}^{\prime} \mathrm{b}$), 3.72 (dd, $\left.1 \mathrm{H}, J_{2^{\prime}, 3^{\prime}} 9.2, \mathrm{H}-2^{\prime}\right), 3.68-3.60(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{H}-5^{\prime}\right), 3.58$ ($\mathrm{t}, 1 \mathrm{H}, J_{3^{\prime}, 4^{\prime}} J_{4^{\prime}, 5^{\prime}} 9, \mathrm{H}-4^{\prime}$), $3.50-$ 3.32 (m, $3 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-26 \mathrm{a}, \mathrm{H}-26 \mathrm{~b}$), 2.10, 2.01 and 1.95 (each s, each 3 H), $1.20(\mathrm{~d}, 3 \mathrm{H}$, $J 6.3$), 1.17 ($\mathrm{s}, 9 \mathrm{H}$); EIMS (m / z): 934, 519, 440, 397, 273, 153 (base). Anal. Calcd for $\mathrm{C}_{50} \mathrm{H}_{76} \mathrm{O}_{16} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 63.74 ; \mathrm{H}, 8.24$. Found: C, 63.88; H, 8.14.

Diosgenyl 2-O-(2,3,4-tri-O-acetyl- α-L-rham-nopyranosyl)-6-O-benzoyl-3-O-pivaloyl- β-Dglucopyranoside (11).-To a cooled ($-20^{\circ} \mathrm{C}$) solution of $\mathbf{1 0}(551 \mathrm{mg}, 0.59 \mathrm{mmol})$ in pyridine $(5 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added BzCl ($78 \mu \mathrm{~L}, 0.67 \mathrm{mmol}$). After being stirred for 1 h , another portion of $\mathrm{BzCl}(78 \mu \mathrm{~L}, 0.67 \mathrm{mmol})$ was added. The mixture was stirred for another 1 h , then quenched with MeOH , and concentrated. Chromatography of the residue on a silica gel column (5:1 petroleum etherEtOAc) gave 11 ($461 \mathrm{mg}, 75 \%$) as a white solid: $[\alpha]_{\mathrm{D}}^{22}-26.8^{\circ}\left(c \quad 1.90, \mathrm{CHCl}_{3}\right) ; R_{f} 0.25$ (4:1 petroleum ether-EtOAc); ${ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.10-7.30(\mathrm{~m}, 5 \mathrm{H}), 5.34(\mathrm{~d}$, $1 \mathrm{H}, J 4.9, \mathrm{H}-6), 5.20$ (m, $\left.2 \mathrm{H}, \mathrm{H}-2^{\prime \prime}, \mathrm{H}-3^{\prime \prime}\right)$,
5.12-5.00 (m, $2 \mathrm{H}, \mathrm{H}-4^{\prime \prime}, \mathrm{H}^{\prime}$), 4.97 ($\mathrm{s}, 1 \mathrm{H}$, $\mathrm{H}-1^{\prime \prime}$), 4.60 (m, $\left.3 \mathrm{H}, \mathrm{H}^{\prime} 1^{\prime}, \mathrm{H}-6^{\prime}\right), 4.50-4.40$ (m, $2 \mathrm{H}, \mathrm{H}-5^{\prime \prime}, \mathrm{H}-16$), 3.76 (t, $1 \mathrm{H}, J_{1^{\prime}, 2^{\prime}} 7.9$, $\left.J_{2^{\prime}, 3^{\prime}} 9.0, \mathrm{H}-2^{\prime}\right), 3.70-3.44(\mathrm{~m}, 4 \mathrm{H}), 3.37(\mathrm{t}, 1$ $\mathrm{H}, J 10.8, \mathrm{H}-26 \mathrm{a}$), 2.11, 2.02 and 1.96 (each s, each 3 H), 1.18 (s, 9 H), 0.79 (d, $3 \mathrm{H}, J 6.4$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 179.73,169.94$, 169.87, 169.65, 166.61, 140.14, 133.11, 129.81, 128.37, 121.93, 109.28, 99.66, 97.67, 80.79, 79.37, 78.80, 74.80, 74.15, 71.11, 70.82, 69.46, $69.06,66.85,66.45,63.85,62.14,56.50,50.05$, 41.63, 40.27, 39.77, 38.98, 38.39, 37.02, 36.80, $32.08,31.83,31.40,30.29,29.72,28.82$, 26.92, 20.80, 20.68, 19.21, 17.21, 17.11, 16.26, 14.50; FABMS (m/z): $1036\left[\mathrm{M}^{+}\right], 623,397,273,111$ (base). Anal. Calcd for $\mathrm{C}_{57} \mathrm{H}_{80} \mathrm{O}_{17} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}$, 64.88; H, 7.83. Found: C, 64.93; H, 7.80.

Diosgenyl 2,4-di-O-(2,3,4-tri-O-acetyl- α-L-rhamnopyranosyl)-6-O-benzoyl-3-O-pivaloyl-β-D-glucopyranoside (12).-To a suspension of $8(180 \mathrm{mg}, 0.414 \mathrm{mmol}), 11(200 \mathrm{mg}, 0.193$ $\mathrm{mmol})$ and $4 \AA \mathrm{MS}(200 \mathrm{mg})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5$ $\mathrm{mL})$ at $-40^{\circ} \mathrm{C}$, was added $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(7.3 \mu \mathrm{~L}$, 0.058 mmol). After being stirred for 1 h , the reaction was quenched with $\mathrm{NEt}_{3}(0.5 \mathrm{~mL})$, filtered, and concentrated. Chromatography of the residue on a silica gel column (3:1 to 2.5:1, petroleum ether-EtOAc) gave 12 (224 $\mathrm{mg}, 89 \%$) as a white foam: $[\alpha]_{\mathrm{D}}^{17}-76.3^{\circ}(c$ $0.85, \mathrm{CHCl}_{3}$); $R_{f} 0.34$ (2.5:1 petroleum etherEtOAc); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 8.10-7.40 (m, 5 H), 5.32 (d, $1 \mathrm{H}, J 5.6, \mathrm{H}-6)$, 5.32 (dd, $\left.1 \mathrm{H}, J_{2^{\prime}, 3^{\prime \prime}} 7.9, J_{3^{\prime}, 4^{\prime}} 8.3, \mathrm{H}-3^{\prime}\right)$, $5.23-$ 5.17 (m, 3 H, H-3", H-3'"', H-2"), 5.12 (dd, 1 $\left.\mathrm{H}, J_{1^{\prime \prime}, 2^{\prime \prime}} 2.0, J_{2^{\prime \prime}, 3^{\prime \prime}} 2.9, \mathrm{H}-2^{\prime \prime}\right), 5.03\left(\mathrm{t}, 1 \mathrm{H}, J_{3^{\prime \prime}, 4^{\prime \prime}}\right.$ $\left.J_{4^{\prime \prime}, 5^{\prime \prime}} 9.9, \mathrm{H}-4^{\prime \prime}\right), 5.01\left(\mathrm{t}, 1 \mathrm{H}, J_{3^{\prime \prime \prime}, 4^{\prime \prime \prime}} J_{4^{\prime \prime \prime}, 5^{\prime \prime \prime}} 9.7\right.$, $\mathrm{H}-4^{\prime \prime \prime}$), 4.95 (brs, $1 \mathrm{H}, \mathrm{H}-1^{\prime \prime \prime}$), 4.85 (brs, 1 H , $\left.\mathrm{H}-1^{\prime \prime}\right), 4.73$ (dd, $1 \mathrm{H}, J_{5^{\prime}, 6^{\prime} \mathrm{a}} 2.4, J_{6^{\prime} \mathrm{a}, 6^{\prime} \mathrm{b}} 11.9$, H-6'a), 4.61 (d, $\left.1 \mathrm{H}, J_{1^{\prime}, 2^{\prime}} 7.3, \mathrm{H}-1^{\prime}\right), 4.52$ (dd, $\left.1 \mathrm{H}, \mathrm{J}_{5^{\prime}, 6^{\prime} \mathrm{b}} 6.1, \mathrm{H}-6^{\prime} \mathrm{b}\right), 4.42$ (dd, $1 \mathrm{H}, J 7.3$, 15.2, H-16), 4.35 (m, 1 H, H-5"), 3.95 (m, 1 H , H-5"'), 3.90 (ddd, H-5'), 3.83 ($\mathrm{t}, 1 \mathrm{H}, J_{4^{\prime}, 5^{\prime}} 9.4$, $\left.\mathrm{H}-4^{\prime}\right), 3.67$ ($\mathrm{t}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}$), 3.52 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-3$), 3.48 (m, $1 \mathrm{H}, \mathrm{H}-26 \mathrm{a}), 3.38$ (t, $1 \mathrm{H}, J 11.0$, H-26b), 2.11, 2.09, 2.04, 2.01, 1.96 and 1.94 (each s, each 3 H), $1.20-1.16(\mathrm{~m}, 15 \mathrm{H}), 0.98$ (d, $3 \mathrm{H}, J 7.0$), 0.93 (s, 3 H), 0.79 (d, $3 \mathrm{H}, J$ 6.4), 0.78 (s, 3 H); EIMS (m / z): 1021, 897, 634, 273 (base). Anal. Calcd for $\mathrm{C}_{69} \mathrm{H}_{96} \mathrm{O}_{24}: \mathrm{C}$, 63.28; H, 7.39. Found: C, 63.02; H, 7.56.

Diosgenyl 2,4-di-O-(α-L-rhamnopyranosyl)-β-D-glucopyranoside (dioscin).-A solution of $12(100 \mathrm{mg}, 0.076 \mathrm{mmol})$ and $\mathrm{NaOH}(49 \mathrm{mg}$, 1.23 mmol) in $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$, $\mathrm{MeOH}(2 \mathrm{~mL})$ and THF (2 mL) was stirred at $45^{\circ} \mathrm{C}$ for 5 h , then neutralized with Dowex-50 (H^{+}form), filtered, and concentrated. Chromatography of the residue on a silica gel column (6:1 to $5: 1$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$) gave dioscin ($66 \mathrm{mg}, 100 \%$) as a white solid: $[\alpha]_{\mathrm{D}}^{22}-113.6^{\circ}(c 1.1, \mathrm{MeOH})$, Lit. -121° (c 1.0, MeOH) [2].; $R_{f} 0.28$ (5:1 $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}\right) ; \quad{ }^{1} \mathrm{H} \quad \mathrm{NMR}(600 \mathrm{MHz}$, $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$): $\delta 6.38$ (brs, $1 \mathrm{H}, \mathrm{H}-1^{\prime \prime \prime}$), 5.83 (brs, 1 H, H-1"), 5.31 (brd, 1 H, H-6), 5.00-4.85 (m, $\left.3 \mathrm{H}, \mathrm{H}-1^{\prime}, \mathrm{H}-2^{\prime}, \mathrm{H}-4^{\prime}\right), 4.81$ (brs, 1 H), 4.66 (brs, 1 H), 4.61 (dd, $1 \mathrm{H}, J 3.4,9.3$), 4.57-4.50 $(\mathrm{m}, 2 \mathrm{H}), 4.40-4.30(\mathrm{~m}, 3 \mathrm{H}), 4.20(\mathrm{~m}, 3 \mathrm{H})$, 4.09 (dd, $1 \mathrm{H}, J_{5^{\prime}, 6^{\prime} \mathrm{a}} 3.1, J_{6^{\prime}, 6^{\prime} \mathrm{b}} 12.2, \mathrm{H}^{\prime} 6^{\prime} \mathrm{a}$), 3.87 (m, 1 H, H-3), 3.63 (m, 1 H), 3.57 (m, 1 H, H-26a), 3.50 (t, 1 H, H-26b), 2.79 (dd, 1 H, $J 2.9,13.0), 2.71(\mathrm{t}, 1 \mathrm{H}), 1.76(\mathrm{~d}, 3 \mathrm{H}, J 6.3)$, 1.62 (d, $3 \mathrm{H}, J 5.9$), 1.13 (d, $3 \mathrm{H}, J 6.7$), 1.04 $(\mathrm{s}, 3 \mathrm{H}), 0.82(\mathrm{~s}, 3 \mathrm{H}), 0.69(\mathrm{~d}, 3 \mathrm{H}, J 5.5$, $\mathrm{H}-27$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$): $\delta 140.95$, 121.99, 109.44, 103.09, 102.23, 100.45, 81.28, $78.70,78.22,78.15,77.95,77.14,74.32,74.13$, $73.02,72.94,72.75,70.60,69.72,67.04,63.06$, 61.44, 56.80, 50.46, 42.14, 40.63, 40.02, 39.15, $37.67,37.32$, $32.48,32.40,32.00,31.85,30.78$, $30.34,29.45,21.28,19.59,18.85,18.70,17.51$, 16.52, 15.23; IR (KBr): 3423, 2935, 1458, 1380, 1243, 1135, 1043, 981, 918, 899; FABMS $(\mathrm{m} / z): 870[\mathrm{M}+2], 868[\mathrm{M}]$.

Diosgenyl 4-O-(tri-O-acetyl- α-L-arabino-furanosyl)-2-O-(2,3,4-tri-O-acetyl- α - $\mathrm{L}-$ rham-nopyranosyl)-6-O-benzoyl-3-O-pivaloyl- β-Dglucopyranoside (16).-To a cooled solution $\left(0^{\circ} \mathrm{C}\right)$ of tetraacetyl α-L-arabinofuranose (13) $(0.21 \mathrm{~g}, 0.66 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added $\mathrm{HBr}-\mathrm{HOAc}(30 \%$, 0.5 mL). After being stirred at rt for 3 h , the mixture was concentrated and applied to a silica gel column ($2: 1$ petroleum ether-EtOAc) to give $14(0.18 \mathrm{~g}, 100 \%)$ as a syrup. A solution of 14 $(150 \mathrm{mg}, 0.54 \mathrm{mmol}), \mathrm{CCl}_{3} \mathrm{CN}(0.27 \mathrm{~mL}, 2.7$ mmol) and DBU (1 drop) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min , then concentrated. Chromatography of the residue on a silica gel column ($5: 1$ to $3: 1$ petroleum etherEtOAc, with $1 \% \mathrm{Et}_{3} \mathrm{~N}$) afforded 15 (228 mg ,
100%) as a colorless syrup, which was used in the next step without further characterization.

To a suspension of $15(170 \mathrm{mg}, 0.40 \mathrm{mmol})$, $11(150 \mathrm{mg}, 0.14 \mathrm{mmol})$ and $4 \AA \mathrm{MS}(250 \mathrm{mg})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, was slowly added a solution of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(0.1 \mathrm{~mL}, 0.1 \mathrm{M})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. After being stirred for 30 min , the reaction was quenched with $\mathrm{NEt}_{3}(0.5 \mathrm{~mL})$, filtered, and concentrated. Chromatography of the residue on a silica gel column (4:1 to 2.5:1 petroleum ether- EtOAc) gave 16 (174 $\mathrm{mg}, 93 \%):[\alpha]_{\mathrm{D}}^{22}-106.4^{\circ}\left(c 0.30, \mathrm{CHCl}_{3}\right) ; R_{f}$ 0.60 ($2: 1$ petroleum ether-EtOAc); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{DQFCOSY}, \mathrm{CDCl}_{3}$): $\delta 8.10-7.40$ (m, 5 H), 5.37-5.32 (m, 2 H, H-6, H-3'), 5.20 (dd, $\left.1 \mathrm{H}, J_{2^{\prime \prime}, 3^{\prime \prime}} 3.4, \mathrm{H}-3^{\prime \prime}\right), 5.19$ (m, $2 \mathrm{H}, \mathrm{H}-4^{\prime \prime}$, H-2"'), $5.04-5.00$ (m, 2 H, H-4", H-1"'), 4.95 (dd, $\left.1 \mathrm{H}, J_{2^{\prime \prime \prime}, 3^{\prime \prime \prime}} 1.5, J_{3^{\prime \prime \prime}, 4^{\prime \prime \prime}} 4.4, \mathrm{H}-3^{\prime \prime \prime}\right), 4.90$ (s, $\left.1 \mathrm{H}, \mathrm{H}-1^{\prime \prime}\right), 4.75$ (dd, $1 \mathrm{H}, J_{5^{\prime}, 6^{\prime} \mathrm{a}} 2.0, J_{6^{\prime} \mathrm{a}, \mathrm{G}^{\prime} \mathrm{b}}$ 12.0, H-6'a), 4.61 (d, $\left.1 \mathrm{H}, J 7.6, \mathrm{H}^{\prime} 1^{\prime}\right), 4.46$ (dd, $\left.1 \mathrm{H}, J_{5^{\prime}, 6^{\prime} \mathrm{b}} 6.0, \mathrm{H}-6^{\prime} \mathrm{b}\right), 4.42$ (dd, 1 H , H-16), 4.40 (m, $\left.1 \mathrm{H}, \mathrm{H}-5^{\prime \prime}\right), 4.31$ (dd, 1 H , $\left.\mathrm{J}_{4^{\prime \prime \prime}, 5^{\prime \prime \prime}} 3.7, \mathrm{H}-5^{\prime \prime \prime}\right), 4.30\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4^{\prime \prime \prime}\right), 4.16$ (dd, $1 \mathrm{H}, \mathrm{J}_{4^{\prime \prime}, 5^{\prime \prime \prime} \mathrm{a}} 4.7, \mathrm{~J}_{5^{\prime \prime \prime} \mathrm{a}, 5^{\prime \prime \prime} \mathrm{b}} 11.1, \mathrm{H}-5^{\prime \prime \prime} \mathrm{a}$), 3.89 (ddd, $1 \mathrm{H}, \mathrm{H}-5^{\prime}$), 3.79 ($\mathrm{t}, 1 \mathrm{H}, J_{3^{\prime}, 4^{\prime}} 9.1, J_{4^{\prime}, 5^{\prime}}$ 9.7, H-4'), 3.74 (t, $\left.1 \mathrm{H}, J 8.0, \mathrm{H}-2^{\prime}\right), 3.55$ (m, 1 H, H-3), 3.48 (m, 1 H, H-26a), 3.38 (t, $1 \mathrm{H}, J$ 9.0, 11.0, H-26b), 2.11, 2.10, 2.04, 2.04, 2.02 and 1.95 (each s, each 3 H), 1.19 (d, 3 H , $\left.J_{5^{\prime \prime}, 6^{\prime \prime}}+6.3, \mathrm{H}-6^{\prime \prime}\right), 1.17$ (s, 9 H), 0.98 (d, 3 H , $J 6.9), 0.96$ (s, 3 H), 0.79 (d, $3 \mathrm{H}, J 6.4$), 0.78 (s, 3 H); IR (KBr): 2954, 1752, 1454, 1371, 1224, 1134, 1050, 920, 900; FABMS (m/z): 1276, 1257, 1018, 882, 397, 41 (base). Anal. Calcd for $\mathrm{C}_{68} \mathrm{H}_{94} \mathrm{O}_{24}$: $\mathrm{C}, 63.05 ; \mathrm{H}, 7.31$. Found: C, 62.74; H, 7.50.

Diosgenyl α-L-rhamnopyranosyl- $(1 \rightarrow 2)-[(\alpha-$ L-arabinofuranosyl)-($1 \rightarrow 4$)]- β-D-glucopyranoside (polyphyllin D).-A solution of $\mathbf{1 6}(70 \mathrm{mg}$, $0.054 \mathrm{mmol})$ and $\mathrm{NaOH}(45 \mathrm{mg}, 1.12 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(1.5 \mathrm{~mL}), \mathrm{MeOH}(1.5 \mathrm{~mL})$ and THF (1.5 mL) was stirred at $45^{\circ} \mathrm{C}$ overnight, then neutralized with Dowex-50 (H^{+}form), filtered, and concentrated. Chromatography of the residue on a silica gel column ($6: 1$ to $5: 1$ $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}\right)$ gave polyphyllin $\mathrm{D}(45 \mathrm{mg}$, 85%) as a white solid: $[\alpha]_{\mathrm{D}}^{22}-116.3^{\circ}$ (c 0.52, MeOH), Lit. $-113^{\circ}(c 0.53, \mathrm{MeOH})$ [3]; R_{f} $0.40 \quad\left(5: 1 \quad \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}\right) ;{ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \quad \mathrm{DQFCOSY}, \quad \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right): \quad \delta \quad 6.25$
(brs, $1 \mathrm{H}, \mathrm{H}-1^{\prime \prime}$), 5.90 (brs, $1 \mathrm{H}, \mathrm{H}-1^{\prime \prime \prime}$), 5.30 (d, $1 \mathrm{H}, J 4.8, \mathrm{H}-6), 5.00-4.80$ (m, $4 \mathrm{H}, \mathrm{H}-1^{\prime}$, H-2', H-4', H-2 ${ }^{\prime \prime \prime}$), 4.76 (d, $\left.1 \mathrm{H}, \mathrm{H}-2^{\prime \prime \prime}\right), 4.58$ (dd, $\left.1 \mathrm{H}, J_{2^{\prime \prime}, 3^{\prime \prime}} 3.5, J_{3^{\prime \prime}, 4^{\prime \prime}} 9.2, \mathrm{H}-3^{\prime \prime}\right), 4.53$ (m, $\mathrm{H}-16), 4.35-4.10(\mathrm{~m}, 9 \mathrm{H}), 3.86(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3)$, 3.75 (m, $\left.1 \mathrm{H}, \mathrm{H}^{-5} \mathrm{~F}^{\prime}\right), 3.57$ (dd, $1 \mathrm{H}, J 2.8,10.3$, H-26a), 3.49 (t, 1 H, J 10.3, H-26b), 2.77 (dd, $1 \mathrm{H}, J 2.9,13), 2.70(\mathrm{t}, 1 \mathrm{H}), 1.74(\mathrm{~d}, 3 \mathrm{H}, J$ 6.2, H-6"), 1.12 (d, $3 \mathrm{H}, J 6.9$), 1.04 (s, 3 H), $0.82(\mathrm{~s}, 3 \mathrm{H}), 0.68(\mathrm{~d}, 3 \mathrm{H}, J 5.7)$; ${ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right): \delta 140.81,121.79,109.64$, 109.26, 101.90, 100.18, 86.71, 82.67, 81.11, $78.16,77.91,77.69,77.46,77.12,76.71,74.13$, $72.78,72.43,69.47,66.88,62.92,62.51,61.42$, $56.66,50.32,41.99,40.48,39.88,38.97,37.51$, $37.15,32.32,32.23,31.85,31.71,30.61,30.17$, $29.28,21.12,19.41,18.65,17.32,16.34,14.99$; IR (KBr): 3400, 2932, 1456, 1378, 1243, 1137, 1052, 982, 919, 900; FABMS (m/z): $856[\mathrm{M}+$ 1], 185 (base).

1,2,4,6-Tetra-O-acetyl- α, β-D-glucopyranose (18).-A suspension of $17(2.0 \mathrm{~g}, 4.56 \mathrm{mmol})$ and $10 \% \mathrm{Pd}-\mathrm{C}(0.8 \mathrm{~g})$ in EtOAc $(20 \mathrm{~mL})$ was stirred at $50^{\circ} \mathrm{C}$ and H_{2} atmosphere (60 atm) for 2 days, then filtered, and concentrated. Chromatography of the residue on a silica gel column ($1: 1$ to $1: 2$ petroleum ether-EtOAc) gave $18(1.39,88 \%)$ as a white solid: $[\alpha]_{\mathrm{D}}^{22}$ -4.9° (c 0.88, CHCl_{3}); Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{10}: \mathrm{C}, 48.28 ; \mathrm{H}, 5.79$. Found: C, 48.13; H, 5.70.

1,2,4,6-Tetra-O-acetyl-3-O-(2,3,4-tri-O-acetyl- β-D-xylopyranosyl)- β-D-glucopyranose (20).-To a suspension of $19(1.74 \mathrm{~g}, 4.14$ mmol), $\mathbf{1 8}(1.21 \mathrm{~g}, 3.49 \mathrm{mmol})$ and $4 \AA \mathrm{MS}$ (500 mg) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~mL}\right.$) at $0^{\circ} \mathrm{C}$, was slowly added a solution of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(5.8 \mathrm{~mL}$, $0.07 \mathrm{M})$. After being stirred for 30 min , the reaction was quenched with $\mathrm{NEt}_{3}(0.5 \mathrm{~mL})$, filtered, and concentrated. Chromatography of the residue on a silica gel column (1.5:1 to 1:1 petroleum ether-EtOAc) gave $20(2.12 \mathrm{~g}$, 100%) as a white foam: $[\alpha]_{\mathrm{D}}^{22}-9.0^{\circ}$ (c 1.1, CHCl_{3}); $R_{f} 0.36$ (1:1 petroleum ether-EtOAc); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.60(\mathrm{~d}, 1 \mathrm{H}$, $J_{1,2} 8.4, \mathrm{H}-1$), $5.14-5.00(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-4$, H-3'), 4.87 (dt, $\left.1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 4.78$ (dd, $1 \mathrm{H}, J_{1^{\prime}, 2^{\prime}}$ 3.3, $J_{2^{\prime}, 3^{\prime}} 7.9, \mathrm{H}-2^{\prime}$), 4.57 (d, $\left.1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 4.24-$ 4.04 (m, $\left.3 \mathrm{H}, \mathrm{H}-6, \mathrm{H}^{\prime} 5^{\prime}\right), 3.87\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{H}-3, J_{2,3}\right.$ $J_{3,4} 9.4$), $3.78-3.72$ (ddd, $1 \mathrm{H}, \mathrm{H}-5$), 3.35 (dd, $\left.1 \mathrm{H}, J_{4^{\prime}, 5^{\prime} \mathrm{a}} 8.0, \mathrm{~J}_{5^{\prime}, 5^{\prime \prime} \mathrm{b}} 12.0, \mathrm{H}-5^{\prime} \mathrm{a}\right), 2.10-2.00$
(7s, 21 H); EIMS (m/z): 606, 444, 394, 229, 43 (base). Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{O}_{17} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}$, 48.78; H, 5.73. Found: C, 48.83; H, 5.60.

1,2,4,6-Tetra-O-acetyl-3-O-(2,3,4-tri-O-acetyl- β-D-xylopyranosyl)- β-D-glucopyranosyl trichloroacetimidate (22).-A solution of 20 ($1.15 \mathrm{~g}, 1.89 \mathrm{mmol}$) and $\mathrm{NH}_{2} \mathrm{NH}_{2} \cdot \mathrm{HOAc}(209$ $\mathrm{mg}, 2.27 \mathrm{mmol}$) in DMF (10 mL) was stirred at $50^{\circ} \mathrm{C}$ for 30 min , then poured into brine and extracted with EtOAc. The organic layer was washed with brine, dried over MgSO_{4}, and concentrated. Chromatography of the residue on a silica gel column (1:1.2 to $1: 1.5$ petroleum ether-EtOAc) gave 21 (783 mg , 73.4%) as a white solid. A solution of 21 (111 $\mathrm{mg}, 0.197 \mathrm{mmol}), \mathrm{CCl}_{3} \mathrm{CN}(0.1 \mathrm{~mL}, 1 \mathrm{mmol})$ and DBU (1 drop) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was stirred at $0^{\circ} \mathrm{C}$ for 1 h , then concentrated. Chromatography of the residue on a silica gel column (1:1 petroleum ether-EtOAc, with 1\% $\mathrm{Et}_{3} \mathrm{~N}$) afforded $22(140 \mathrm{mg}, 100 \%)$ as a white foamy solid: $[\alpha]_{\mathrm{D}}^{22}+26.0^{\circ}\left(c 0.83, \mathrm{CHCl}_{3}\right) ; R_{f}$ 0.67 (1:1.5 petroleum ether-EtOAc); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.69$ (brs, 1 H , NH), 6.47 (brd, $1 \mathrm{H}, \mathrm{H}-1$), 5.14 (t, $1 \mathrm{H}, J_{2^{\prime}, 3^{\prime}}$ $\left.8.5, J_{3^{\prime}, 4^{\prime}} 9.7, \mathrm{H}^{\prime} 3^{\prime}\right), 5.08(\mathrm{t}, 1 \mathrm{H}, J 8.0, \mathrm{H}-4)$, 5.07 (dd, $\left.1 \mathrm{H}, J_{1,2} 3.8, J_{2,3} 9.7, \mathrm{H}-2\right), 4.89$ (m, $\left.\mathrm{H}-4^{\prime}\right), 4.83$ (dd, $1 \mathrm{H}, \mathrm{H}-2^{\prime}, J_{1^{\prime}, 2^{\prime}} 6.5, J_{2^{\prime}, 3^{\prime}} 8.4$), 4.68 (d, $\left.1 \mathrm{H}, \mathrm{H}^{\prime} 1^{\prime}\right), 4.20$ (dd, $1 \mathrm{H}, J_{5,6 \mathrm{a}} 4.0$, $\left.J_{6 \mathrm{a}, 6 \mathrm{~b}} 12.8, \mathrm{H}-6 \mathrm{a}\right), 4.16-4.08(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}$, H-3, H-5'a), 3.40 (dd, $1 \mathrm{H}, J_{4^{\prime}, 5^{\prime} \mathrm{b}} 8.0, J_{5^{\prime} \mathrm{a}, 5^{\prime} \mathrm{b}}$ 12.0, H-5'b), 2.09, 2.08, 2.07, 2.05, 2.02, 2.00 (each s, each 3 H); EIMS (m / z): 649, 547, 432, 259, 43 (base). Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{32}$ $\mathrm{Cl}_{3} \mathrm{NO}_{16}: \mathrm{C}, 42.36 ; \mathrm{H}, 4.55 ; \mathrm{N}, 1.98$. Found: C, 42.08; H, 4.53; N, 1.96.

Diosgenyl [(2,3,4-tri-O-acetyl- β-D-xylopyr-anosyl)-($1 \rightarrow 3$)-(2,4,6-tri-O-acetyl- β-D-gluco-pyranosyl)]-(1 $\rightarrow 4$)-2-O-(2,3,4-tri-O-acetyl- $\alpha-$ L-rhamnopyranosyl)-6-O-benzoyl-3-O-piva-loyl- β-D-glucopyranoside (23).-To a suspension of 22 ($536 \mathrm{mg}, 0.76 \mathrm{mmol}$), $11(214 \mathrm{mg}$, $0.21 \mathrm{mmol})$ and $4 \AA \mathrm{MS}(500 \mathrm{mg})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, was slowly added a solution of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(3 \mathrm{~mL}, 0.07 \mathrm{M})$. After being stirred for 30 min , the reaction was quenched with $\mathrm{NEt}_{3}(0.5 \mathrm{~mL})$, filtered, and concentrated. Chromatography of the residue on a silica gel column (1.5:1 to $1: 1$ petroleum ether-EtOAc) gave $23(102 \mathrm{mg}, 31 \%)$ as a white foam and recovered 11 (142
$\mathrm{mg}, 66 \%):[\alpha]_{\mathrm{D}}^{22}-62.4^{\circ}\left(c 0.60, \mathrm{CHCl}_{3}\right) ; R_{f}$ 0.46 (1:1 petroleum ether-EtOAc); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{DQFCOSY}, \mathrm{CDCl}_{3}$): $\delta 8.10-7.40$ (m, 5 H), 5.33 (d, $1 \mathrm{H}, J 4.7, \mathrm{H}-6), 5.29(\mathrm{t}, 1$ $\mathrm{H}, J 9.0), 5.20\left(\mathrm{dd}, 1 \mathrm{H}, J_{2^{\prime \prime}, 3^{\prime \prime}} 3.3, J_{3^{\prime \prime}, 4^{\prime \prime}} 10.0\right.$, $\mathrm{H}-3^{\prime \prime}$), 5.17 (br, $\left.1 \mathrm{H}, \mathrm{H}-1^{\prime \prime}\right), 5.03$ (t, $1 \mathrm{H}, J$ 8.4, 11.7, H-3 $3^{\prime \prime \prime}$), 5.02 (dd, $1 \mathrm{H}, J_{4^{\prime \prime}, 5^{\prime \prime}} 14.0$, H-4"), 4.90-4.83 (m, 4 H), 4.74 (brd, 1 H , H-2 ${ }^{\prime \prime \prime \prime}$), 4.71 (brd, $1 \mathrm{H}, \mathrm{H}^{\prime} 6^{\prime} \mathrm{a}$), 4.61 (d, 1 H , $\mathrm{H}-1^{\prime}, J_{1^{\prime}, 2^{\prime}} 7.7$), 4.48 (d, $1 \mathrm{H}, \mathrm{J}_{1^{\prime \prime \prime}, 2^{\prime \prime \prime \prime}} 6.4$, H$1^{\prime \prime \prime \prime}$), 4.43-4.36 (m, 4 H), 4.14 (dd, $1 \mathrm{H}, J$ 5.5, 12.3), 4.06-4.02 (m, 2 H), 3.92 (t, $1 \mathrm{H}, J$ 9.4), 3.78 (m, 1 H), $3.72(\mathrm{t}, 1 \mathrm{H}), 3.70(\mathrm{t}, 1$ $\mathrm{H}, J 9.4), 3.54(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 3.50-3.44(\mathrm{~m}$, $2 \mathrm{H}), 3.38$ ($\mathrm{t}, 1 \mathrm{H}, J 11.0, \mathrm{H}-26 \mathrm{a}$), 3.32 (dd, 1 $\mathrm{H}, J 8.1,11.9), 2.40$ (brd, 1 H), 2.23 (t, 1 H), 2.10, 2.09, 2.06, 2.04, 2.03, 2.02, 2.00, 1.99, 1.95 (each s, each 3 H), 1.18 (s, 9 H$), 0.98$ (d, $3 \mathrm{H}, J 6.7$), 0.95 (s, 3 H), 0.79 (d, 3 H , J 6.4), 0.78 (s, 3 H); EIMS (m / z): 1021, 547, 397, 273 (base).

Diosgenyl [β-D-xylopyranosyl-($1 \rightarrow 3$)- β-Dglucopyranosyl $]-(1 \rightarrow 4)-[(\alpha-\mathrm{L}-$ rhamnopyranos$y l)]-(1 \rightarrow 2)-\beta$-D-glucopyranoside (balanitin 7). —A solution of 23 ($58 \mathrm{mg}, 0.037 \mathrm{mmol}$) and NaOH ($38 \mathrm{mg}, 0.95 \mathrm{mmol}$) in $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$, $\mathrm{MeOH}(1 \mathrm{~mL})$ and THF (1 mL) was stirred at $50^{\circ} \mathrm{C}$ for 6 h , then neutralized with Dowex-50 (H^{+}form), filtered, and concentrated. Chromatography of the residue on a silica gel column (5:1 to $4: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$) gave balanitin $7(32 \mathrm{mg}, 86 \%)$ as a white solid: $[\alpha]_{\mathrm{D}}^{16}-84.6^{\circ}$ (c 0.80, pyridine), Lit -83° (c 0.83, pyridine) [4]; $R_{f} 0.53$ (4:1 $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}\right) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right): \delta 140.43,121.44,108.91,105.94$, 104.20, 101.45, 99.62, 86.98, 81.14, 80.76, 77.84, 77.80, 77.26, 76.95, 75.91, 74.96, 73.76, 73.64, 72.41, 72.08, 70.56, 69.12, 68.68, 67.04, 66.52, 62.55, 61.38, 61.14, 56.28, 49.95, 41.63, $40.12,39.51,38.58,37.15,36.78,31.96,31.88$, $31.49,31.34,30.25,29.80,28.93,20.76,19.06$, 18.30, 16.97, 15.99, 14.68.

Ethyl 2-O-benzoyl-4,6-O-benzylidene-3-O-(2,3,4-tri-O-benzoyl- β - D-xylopyranosyl)-1-thio- α-D-glucopranoside (25).-To a suspension of $24(2.1 \mathrm{~g}, 4.0 \mathrm{mmol}), 1(1.265 \mathrm{~g}, 3.04$ mmol), collidine ($0.53 \mathrm{~mL}, 4.05 \mathrm{mmol}$) and 4 $\AA \mathrm{MS}(4 \mathrm{~g})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$ under Ar , was added a solution of AgOTf ($1.02 \mathrm{~g}, 3.97 \mathrm{mmol}$) in dry PhMe (10
mL). After being stirred for 2 h , the mixture was filtered, and concentrated. Chromatography of the residue on a silica gel column ($6: 1$ to $5: 1$ petroleum ether-EtOAc) afforded 25 $(2.55 \mathrm{~g}, 98 \%)$ as a syrup: $[\alpha]_{\mathrm{D}}^{22}+49.3^{\circ}(c$ 1.07, CHCl_{3}); $R_{f} 0.36$ (petroleum etherEtOAc 4:1); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 8.10-7.10 (m, 25 H), 5.74 (d, $1 \mathrm{H}, J_{1,2} 5.8$, $\mathrm{H}-1), 5.63(\mathrm{~s}, 1 \mathrm{H}, \mathrm{PhCH}), 5.55\left(\mathrm{t}, 1 \mathrm{H}, J_{2^{\prime}, 3^{\prime}}\right.$ 5.0, $\left.J_{3^{\prime}, 4^{\prime}} 5.3, \mathrm{H}-3^{\prime}\right), 5.33$ (dd, $1 \mathrm{H}, J_{2,3} 9.7$, $\mathrm{H}-2), 5.28$ (d, $\left.1 \mathrm{H}, J_{1^{\prime}, 2^{\prime}} 2.9, \mathrm{H}^{\prime} 1^{\prime}\right), 5.18$ (dd, 1 H, H-2'), 5.15 (m, $\left.1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 4.64$ (dd, 1 H , $\left.J_{5,6 \mathrm{a}} 3.1, J_{6 \mathrm{a}, 6 \mathrm{~b}} 13.1, \mathrm{H}-6 \mathrm{a}\right), 4.48\left(\mathrm{t}, 1 \mathrm{H}, J_{3,4}\right.$ 9.6, Н-3), 4.45-4.30 (m, $\left.2 \mathrm{H}, \mathrm{H}-5, \mathrm{H}^{\prime} 5^{\prime} \mathrm{a}\right)$, 3.90-3.60 (m, $3 \mathrm{H}, \mathrm{H}-5^{\prime} \mathrm{b}, \mathrm{H}-6 \mathrm{~b}, \mathrm{H}-4$), 2.52 (m, 2 H), $1.20(\mathrm{t}, 3 \mathrm{H}, J 7.4)$. FABMS (m / z): $883[\mathrm{M}+\mathrm{Na}], 861,860[\mathrm{M}], 799,445,323$, 201, 105. Anal. Calcd for $\mathrm{C}_{48} \mathrm{H}_{44} \mathrm{O}_{13} \mathrm{~S}$: C, 66.97; H, 5.15. Found: C, 66.89; H, 5.12.

Ethyl 4,6-di-O-acetyl-2-O-benzoyl-3-O-(2,-3,4-tri-O-benzoyl- β-D-xylopyranosyl)-1-thio-α-D-glucopyranoside (27).-A solution of $\mathbf{2 5}$ ($2.29 \mathrm{~g}, 2.66 \mathrm{mmol}$) in $70 \% \mathrm{HOAc}(100 \mathrm{~mL})$ was stirred at $80^{\circ} \mathrm{C}$ until a clear solution appeared. The mixture was then concentrated, and traces of HOAc and water were coevaporated with toluene several times. The residue was dissolved in $\mathrm{Ac}_{2} \mathrm{O}(10 \mathrm{~mL})$ and pyridine (10 mL) and then stirred overnight at rt . The reaction was quenched with MeOH , then concentrated. The residue was diluted with EtOAc, washed with diluted HCl , satd NaHCO_{3} solution, and brine, respectively. The organic layer was dried over MgSO_{4}, then concentrated. Chromatography of the residue on a silica gel column (5:1 petroleum ether-EtOAc) gave 27 (1.97 g , $86 \%):[\alpha]_{\mathrm{D}}^{22}+44.4^{\circ}\left(c 1.14, \mathrm{CHCl}_{3}\right) ; R_{f} 0.68$ (3:1 petroleum ether-EtOAc); ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.00-7.10(\mathrm{~m}, 20 \mathrm{H}), 5.73$ (d, $\left.1 \mathrm{H}, J_{1,2} 6.0, \mathrm{H}-1\right), 5.62$ (t, $1 \mathrm{H}, J 6.7,7.4$, H-3'), 5.25-5.10 (m, 4 H, H-2, H-4, H-2', H-4'), 5.06 (d, $\left.1 \mathrm{H}, J_{1^{\prime}, 2^{\prime}} 4.6, \mathrm{H}-1^{\prime}\right), 4.45-4.23$ (m, $4 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-6, \mathrm{H}-5), 4.13$ (dd, $1 \mathrm{H}, J_{4^{\prime}, 5^{\prime}}$ $3.0, J_{5^{\prime}, 5^{\prime} \mathrm{b}} 12.6, \mathrm{H}-5^{\prime} \mathrm{a}$), 3.73 (dd, $1 \mathrm{H}, \mathrm{H}-5^{\prime} \mathrm{b}$, $\left.J_{4^{\prime}, 5^{\prime} \mathrm{b}} 6.5\right), 2.50(\mathrm{~m}, 2 \mathrm{H}), 2.14,2.11(2 \times \mathrm{s}$, $2 \times 3 \mathrm{H}$), 1.18 ($\mathrm{t}, 3 \mathrm{H}, J 7.4 \mathrm{~Hz}$); FABMS $(m / z): 879[\mathrm{M}+\mathrm{Na}], 795,663,647,445,105$ (base); Anal. Calcd for $\mathrm{C}_{45} \mathrm{H}_{44} \mathrm{O}_{15} \mathrm{~S} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$: C, 62.42; H, 5.24. Found: C, 62.64; H, 5.16.

Diosgenyl [2,3,4-tri-O-benzoyl- β-D-xylopyr-anosyl-(1 $\rightarrow 3$)-2-O-benzoyl-4,6-O-acetyl-β-D-glucopyranosyl]-($1 \rightarrow 4$)-[(2,3,4-tri-O-acet$y l-\alpha$-L-rhamnopyranosyl)]-(1 $\rightarrow 2$)-6-O-benz-oyl-3-O-pivaloyl- β-D-glucopyranoside (28).To a suspension of 27 ($124 \mathrm{mg}, 0.145 \mathrm{mmol}$), $11(48 \mathrm{mg}, 0.046 \mathrm{mmol})$ and $4 \mathrm{~A} \mathrm{MS}(100 \mathrm{mg})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$ under Ar, was added NIS ($39 \mathrm{mg}, 0.17 \mathrm{mmol}$), followed by immediate addition of a solution of AgOTf $(17 \mathrm{mg}, 0.066 \mathrm{mmol})$ in dry $\mathrm{PhMe}(0.5 \mathrm{~mL})$. After being stirred for 1 h , the mixture was quenched with NEt_{3}, then filtered, and concentrated. Chromatography of the residue on a silica gel column ($3: 1$ to $1: 1$ petroleum ether-EtOAc) afforded 28 ($56 \mathrm{mg}, 66 \%$) and recovered 11 ($12 \mathrm{mg}, 25 \%$): $[\alpha]_{\mathrm{D}}^{29}-17.9^{\circ}(c$ $0.55, \mathrm{CHCl}_{3}$); $R_{f} 0.20$ (3:1 petroleum etherEtOAc); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 8.10-7.05 (m, 25 H), 5.61 (t, $1 \mathrm{H}, J 7.0$), 5.37 (d, 1 H, J 3.7, H-6), 2.08, 2.07, 2.05, 1.99, 1.94 (each s, each 3 H), 1.62, 1.24 (each s, each 3 H), 1.13 (d, $3 \mathrm{H}, J 6.1$), $1.05(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 176.38, 170.55, 169.88, 169.53, 169.47, 166.02, 165.52, 165.20, $164.99,164.66,142.10,133.35,132.80,129.81$, 129.63, 129.39, 129.20, 128.87, 128.52, 128.38, 128.02, 121.83, 109.27, 100.74, 97.73, 97.11, 94.85, 80.70, 80-68 (multiple), 49.96, 42-14 (multiple).

Acknowledgements

This work was supported by the Ministry of Science and Technology of China. B.Y. would like to thank the NSFC (no. 29802008) and the TWAS (97-113 RG/CHE/AS) for research grants.

References

[1] K. Hostettmann, A. Marston, Saponins, Cambridge University Press, Cambridge, 1995.
[2] (a) K. Nakano, K. Murakami, Y. Takaishi, T. Tomimatsu, T. Nohara, Chem. Pharm. Bull., 37 (1989) 116-118. (b) C.D. Hufford, S. Liu, A.M. Clark, J. Nat. Prod., 51 (1988) 94-98. (c) Y. Hirai, S. Sanada, Y. Ida, J. Shoji, Chem. Pharm. Bull., 32 (1984) 295301. (d) C.-L. Liu, Y.-Y. Chen, Acta Pharm. Sin., 19 (1984) 799-801. (e) Y. Fang, J. Zhao, Y. Ho, B. Li, C. Xu, Acta Pharm. Sin., 17 (1982) 388-391. (f) R. Tschesche, V.B. Pandey, Phytochemistry, 17 (1978) 1781-1782.
[3] (a) J.C.N. Ma, F.W. Lau, Phytochemistry, 24 (1985) 1561-1565. (b) T. Namba, X.-L. Huang, Y.-Z. Shu, S.-L. Huang, M. Hattori, N. Kakiuchi, Q. Wang, G.-J. Xu, Planta Med., 55 (1989) 501-506. (c) J. Zhou, Pure Appl. Chem., 61 (1989) 457-460.
[4] G.R. Pettit, D.L. Doubek, D.L. Herald, A. Numata, C. Takahasi, R. Fujiki, T. Miyamoto, J. Nat. Prod., 54 (1991) 1491-1502.
[5] (a) S. Deng, B. Yu, Y. Hui, Tetrahedron Lett., 39 (1998) 6511-6514. (b) C. Li, B. Yu, M. Liu, Y. Hui, Carbohydr. Res., 306 (1998) 189-195.
[6] (a) K. Takeo, K. Nagayoshi, K. Nishimura, S. Kitamura, J. Carbohydr. Chem., 13 (1994) 1159-1177. (b) O. Kanie, Y. Ito, T. Ogawa, J. Am. Chem. Soc., 116 (1994) 12073-12074.
[7] (a) P. Konradsson, U.E. Udodong, B. Fraser-Reid, Tetrahedron Lett., 31 (1990) 4313-4316. (b) G.H. Veeneman, S.H. van Leeuwan, J.H. van Boom, Tetrahedron Lett., 31 (1990) 1331-1334.
[8] (a) P.G. Gassman, W.N. Schenk, J. Org. Chem., 42 (1977) 918-920. (b) K.C. Nicolaou, S.E. Webber, Synthesis, (1986) 453-461. (c) B.M. Trost, S.A. Godleski, J.L. Belletire, J. Org. Chem., 44 (1979) 2052-2054. (d) I.J. Bolton, R.G. Harrison, B. Lythgoe, R.S. Manwaring, J. Chem. Soc. C., (1971) 2944-2949.
[9] A.F. Bochkov, A.C. Jain, Izv. Akad. Nauk SSSR, Ser. Khim., 1 (1968) 179-180; Chem. Abstr., 69 (1968) 52437s.
[10] I. Kitagawa, N.I. Baek, K. Ohashi, M. Sakagami, M. Yoshikawa, H. Shibuya, Chem. Pharm. Bull., 37 (1989) 1131-1133.
[11] L.V. Backinowsky, S.A. Nepogod'ev, A.S. Shashkov, N.K. Kochetkov, Carbohydr. Res., 138 (1985) 4154.
[12] K. Takeo, S. Kitamura, Y. Murata, Carbohydr. Res., 224 (1992) 111-122.
[13] M. Mori, Y. Ito, T. Ogawa, Carbohydr. Res., 195 (1989) 199-224.
[14] M. Numata, M. Sugimoto, K. Koike, T. Ogawa, Carbohydr. Res., 163 (1987) 209-225.
[15] H.G. Fletcher Jr., C.S. Hudson, J. Am. Chem. Soc., 69 (1947) 921-924.
[16] (a) S. Lu, Q. O’Yang, Z. Guo, B. Yu, Y. Hui, J. Org. Chem., 62 (1997) 8400-8405. (b) D.P. Larson, C.H. Heathcock, J. Org. Chem., 62 (1997) 8406-8418.

[^0]: * Corresponding author. Tel.: + 86-21-64163300/1407; fax: +86-21-64166128.
 E-mail address: byu@pub.sioc.ac.cn (B. Yu)
 ${ }^{1}$ Also corresponding author.

