BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN VOL. 42 2924-2930 (1969)

Studies on s-Triazines. I. Cotrimerization of Trichloroacetonitrile with Other Nitriles^{*1}

Ko WAKABAYASHI, Masaru TSUNODA and Yasushi Suzuki

Research Laboratory, Mitsubishi Chemical Industries Ltd., Mizonokuchi, Kawasaki, Kanagawa

(Received March 7, 1969)

2-Substituted 4,6-bis(trichloromethyl)-s-triazines have been prepared by the cotrimerization of CCl_3CN with some nitriles. The reaction proceeds, in general, smoothly at ordinary pressure in the presence of hydrogen halide or Friedel-Crafts catalyst-hydrogen halide complex. An improved method was developed for the nitriles such as propionitrile with which CCl_3CN did not easily cotrimerize under above mentioned conditions.

2-Substituted 4,6-bis(trichloromethyl)-s-triazines and their derivatives, such as 2-substituted 4amino-6-trichloromethyl-s-triazines, are highly effective as herbicides,^{1,2)} fungicides,^{3,4)} nitrification inhibitors,⁵⁻¹⁰⁾ in soil and antimalarials.¹¹⁾

- 2) M. Okuzu, K. Wakabayashi and T. Okada, Japanese Pat. 6825 (1967).
- 3) K. Matsui, H. Kasugai, K. Wakabayashi and S. Motojima, Japanese Appl. 74210 (1967).
 - 4) O. Weiberg, German Pat. 1117131 (1961).
- 5) T. Nishihara, Tsuchi to Biseibutsu (Soil and Microbe), 7, 28 (1965).
- 6) M. Okuzu, K. Wakabayashi and T. Okada, Japanese Pat. 15889 (1967).
- 7) M. Okuzu, K. Wakabayashi and T. Okada, Japanese Pat. 25170 (1967).
- 8) Y. Yokoi, K. Wakabayashi, Y. Suzuki and M. Tsuda, Japanese Pat. 5752 (1968).
- 9) M. Okuzu, K. Wakabayashi and T. Okada, Japanese Appl. 30187 (1965).

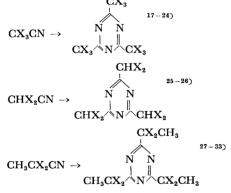
Starting material, CCl₃CN, is easily obtained by the chlorination¹²⁻¹⁶⁾ of CH₃CN which is a byproduct in SOHIO acrylonitrile process. This led us to investigate the cotrimerization of CCl₃CN with other nitriles.

- 10) M. Okuzu, R. Hayashi, K. Wakabayashi and Y. Suzuki, Japanese Appl. 52006 (1967).
- 11) S. Birtwell and W. Hepworth, Brit. Pat. 767848 (1957).
- 12) K. Dachlauer, German Pat. 694479 (1942);
- D. R. P. Org. Chem., 6, 1384; Brit. Pat. 522835 (1940). 13) F. N. Stepanov and N. I. Shirokova, Zhur. Obshch. Khim., 25, 941 (1955).
- 14) G. Käbisch, U. S. Pat. 2745868 (1956); Brit. Pat. 750712 (1956).
- 15) J. J. Gray and F. Burgess, U. S. Pat. 2426091 (1947).
 - 16) R. T. Foster, U. S. Pat. 2375545 (1945).
 - 17) A. Weddige, J. prakt. Chem., (2), 33, 76 (1886).
 - 18) N. Tscherwen-Iwanow, *ibid.*, (2), 46, 142 (1892).
- 19) K. Dachlauer, German Pat. 699493 (1940);
- D. R. P. Org. Chem., 6, 2621.
- 20) E. McBee, O. Pierce and R. Bolt, Ind. Eng. Chem., **39**, 391 (1947).

^{*1} Taken in part from the dissertation presented by K. Wakabayashi to the University of Tokyo, 1969.

¹⁾ R. Yamamoto, I. Yamamoto and H. Honda, Japanese Pat. 17796 (1965).

TABLE 1.* THE EFFECT OF COMBINED CATALYST FOR TRIMERIZATION OF CCl₃CN


3CCl ₃ CN	$\xrightarrow{\text{Cat. +HX}}$	$\begin{array}{c} \text{CCl}_3\\ \\ N \\$

Combined ca	atalyst	Starting material	Product (I)	Yield	Мр
Catalyst	HX	(g)	(g)	(%)	°Č
None	HCl	32.0	0.5	1.6	93
None	HBr	32.0	11.0	34.0	93
AlF ₃	HCl	32.0	21.5	67.2	93
AlCl ₃	HCl	32.0	11.5	35.9	9293
AlBr ₃	HCl	32.0	30.5	95.3	93
AlBr ₃	HBr	32.0	30.5	95.3	92—93
BF ₃ -acetate	HCl	32.0	20.3	62.5	92—93
BF ₃ -etherate	HCl	32.0	30.1	93.8	93
FeCl ₃	HCl	32.0	14.0	43.8	93
$ZnCl_2$	HCl	32.0	13.4	42.2	93
SnCl ₄	HCl	32.0	16.4	51.6	92—93
SbCl ₃	HCl	32.0	15.1	46.9	93
TiCl4	HCl	40.0	16.2	40.5	9293
TiBr₄	HCl	40.0	24.9	62.3	92-93

All samples in Table 1 were identified by a mixed melting point with an authentic sample²¹ and IR spectra analyses.

* Reaction condition; See Experimental A).

Several authors^{17–33}) observed the formation of the s-triazines from α -chlorinated nitriles.

Scheme 1. (X: halogen)

21) T. Norton, J. Am. Chem. Soc., 72, 3527 (1950).

22) L. Reilly and H. C. Brown, J. Org. Chem., 22, 698 (1957).

- 23) C. Broche, J. prakt. Chem., (2), 47, 304 (1893).
- 24) C. Broche, *ibid.*, (2), 50, 97 (1894).
- 25) C. Grundmann, G. Weisse and S. Seide, *Liebigs* Ann. Chem., 577, 77 (1952).
- 26) E. Ghigi, Gazz. chim. ital., 71, 641 (1941).
- 27) R. Otto, Liebigs Ann. Chem., 116, 195 (1860).
- 28) R. Otto, ibid., 132, 181 (1864).
- 29) H. Beckurts and R. Otto, Ber., 9, 1593 (1876).
- 30) H. Beckurts and R. Otto, ibid., 10, 2040 (1877).
- 31) R. Otto, Ber., 23, 836 (1890).
- 32) R. Otto and K. Voigt, J. prakt. Chem., (2), 36, 78 (1887).

Trimerization of nitriles has been effected with both basic and acidic catalysts. The basic catalysts, such as sodium,^{34,35} potassium methoxide,³⁶ diethylzinc,^{37,38} sodium hydride³⁸ and *N*-sodium methylaniline³⁸ give, in general, dimers³⁹ or pyrimidines³⁶ as main products. Acid catalyzed trimerization of nitriles ^{17–21,23–33} affords *s*-triazines in good yields. The reaction ^{19–21} was carried out in a closed system. AlBr₃-HCl (Norton's catalyst) is so effective that it can afford excellent yield under ordinary pressure in trimerization of CCl₃CN.²¹

The cotrimerization of CCl₃CN with other nitriles, RCN (R: methyl,^{25,40-42,44}) phenyl,^{25,40,41}) 2-

- 33) J. Tröger, ibid., (2), 46, 353 (1892).
- 34) A. Hofmann, Ber., 1, 194 (1868).
- 35) A. Lottermoser, J. prakt. Chem., (2), 54, 113 (1896).
- 36) A. R. Ronzio and W. B. Cook, "Organic Syntheses," Coll. Vol. III, p. 71 (1955).
- 37) E. Frankland and J. C. Evans, J. Chem. Soc., 37, 563 (1880).
- 38) F. Swamer, G. Reynolds and C. Hauser, J. Org. Chem., 16, 43 (1951).
- 39) H. Adkins and G. M. Whitman, J. Am. Chem. Soc., 64, 150 (1942).
- 40) K. Dachlauer, German Pat. 682391 (1939); D. R. P. Org. Chem., 6, 2619.
- 41) C. Grundmann and A. Kreutzberger, U. S. Pat. 2858310 (1958).
- 42) G. I. Braz, G. V. Myasnikova, A. Ya. Yakubovich, V. P. Bazov and K. I. Sakodynskii, *Zhur, Obshchei Khim.*, 33, 1939 (1963).

TABLE 2.* THE EFFECT OF COMBINED CATALYST FOR COTRIMERIZATION OF CCl₃CN with CH₃CN

 CH_3

	2CCl ₃ C	$N + CH_3CN \stackrel{Ca}{-}$	$\xrightarrow{\text{t.} +\text{HX}} \underbrace{N N}_{N N}$	(II)	
	Combined cataly	st	CCl ₃ ^(A) N ^(A) C Reaction time	Product (II) yield	Mp °C
Catalyst	(g)	HX	(hr)	(%)	u
AlF ₃	3.0	HCl	8.0	95	96-97
AlCl ₃	3.0	HCl	12.0	85	96—97
AlBr ₃	3.0	HCl	3.0	95	96—97
AlBr ₃	3.0		96.0	0	
BF ₃ -acetate	5.0	HCl	3.0	95	9697
BF ₃ -etherate	5.0	HCl	4.0	95	96-97
BBr ₃	3.0	HCl	5.0	88	96
FeCl ₃	3.0	HCl	16.0	83	96
$ZnCl_2$	4.0	HCl	16.0	78	96
$SnCl_4$	4.0	HCl	16.0	83	96—97
SbCl ₅	4.0	HCl	24.0	76	96—97
TiCl ₄	3.0	HCl	3.0	90	96
TiBr ₄	3.0	HCl	3.0	90	96
$CuCl_2$	10.0	HCl	48.0	58	96
$MgCl_2$	10.0	HCl	48.0	50	96—97
None		HBr	48.0	87	96
None		HCl	96.0	85	96—97

* Reaction condition; See experimental B-a).

naphthyl,⁴⁰) 2-chloroethyl⁴³) and 2-bromoethyl⁴³), has also been reported, although the reaction is exceedingly slow.

We wish to report the results of reexamination and development of Norton's catalyst and also results of cotrimerization of CCl₃CN with other nitriles to give s-triazines.

Results and Discussion

Trimerization of CCl₃CN was undertaken to find out a new effective catalyst.

As shown in Table 1, it is clear that the use of combined catalysts to trimerize CCl_3CN (Friedel-Crafts catalysts-hydrogen halides) produces a good result, especially with AlBr₃-HCl, AlBr₃-HBr and BF₃ etherate-HCl. But the use of HCl only produces 1.6% yield of I.

Under a similar condition the use of combined catalysts to cotrimerize CCl_3CN with CH_3CN was investigated. These results are listed in Table 2. It is evident that the use of hydrogen halides only as well as that of the combined catalysts were effective, although the reaction was slow.

The parent peaks in mass spectrum of I and II are m/e 429(P₁) and m/e 327(P₂). Peaks at mass m/e 394(P₁-35), 292(P₂-35); 359(P₁-35×2), 257(P₂-35×2); 324(P₁-35×3), 222(P₂-35×3)

are results from the loss of one, two and three chlorine atom(s) respectively. There are also large peaks at mass $m/e \, 117(+\text{CCl}_3)$ and $108(+\text{CCl}_2-\text{CN})$ in both spectra. Intensities of isotope peaks of I relative to the parent peak for chlorines (Cl₉) are as follows: P₁, 100% (100%), (Calcd (Found)); P₁+2, 287 (294); P₁+4, 366 (368); P₁+6, 273 (276); P₁+8, 130 (134); P₁+10, 42 (43). Similarly, intensities of isotope peaks of II relative to the parent peak for chlorines (Cl₆) are P₂, 100 (100); P₂+2, 190 (192); P₂+4, 153 (152); P₂+6, 65 (69).

The structure of all samples, (II), was identified by the consideration of Mass, IR, UV and NMR spectra with an authentic sample.^{25,40}

The data in Table 2 indicate that the combined catalyst, AlBr₃-HCl, are most effective and economical.⁴⁴) This particular catalyst was used to investigate the distribution of the products by changing the molar ratio of CCl₃CN and CH₃CN. Table 3 shows the results.

We see that the best result was obtained in molar ratio, n: 1.5 or 2.0, in the cotrimerization of CCl₃CN with CH₃CN. GLC's relative R_t values are (I)=1.00, (II)=0.38 (based on (I)= 1.00). These values were the same as those of authentic samples.

⁴³⁾ Z. N. Pazenko and T. N. Lebedeva, Ukr. Khim. Zhur., 29, 1192 (1963).

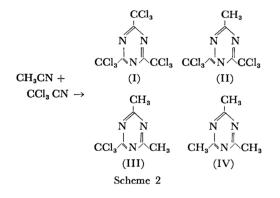

⁴⁴⁾ M. Okuzu, K. Wakabayashi and T. Okada, Japanese Pat. 11750 (1967).

Table 3.* The effect of molar ratio for cotrimerization of CCl₃CN with CH₃CN n CCl₃CN + CH₃CN \rightarrow I + II

CCl ₃ CN/CH ₃ CN Molar ratio	Yield** of II	Sele	ctivity
(n)	(%)	I	II
1.0	97		100
1.5	97		100
2.0	95	0.5	99.5
3.0		23.5	76.5
4.0		38.8	61.2

* Experiment was carried out in the same reaction condition as Experimental B-a) in the presence of AlBr₃ (3g), using 41 g (1 mol) of CH₃CN.

** Based on CCl₃CN.

Although the values of relative R_t of III and IV synthesized from another route were 0.16 and 0.08, no peak was found when the sample prepared from cotrimerization of $\rm CCl_3CN$ with $\rm CH_3CN$ was inspected.

Several other nitriles as well as CH_3CN were cotrimerized with CCl_3CN , using HCl-catalyst only. As shown in Table 4, several 2-substituted 4,6-bis(trichloromethyl)-s-triazines were obtained.

Some aliphatic nitriles which have more than 3 carbon atoms did not cotrimerize until a new improved method^{45,46}) was developed.

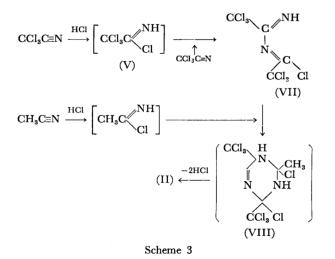

That is to say, 2-alkyl*²-4,6-bis(trichloromethyl)s-triazines were prepared from cotrimerization of 2 mol CCl₃CN and 1 mol aliphatic nitriles in good yield when anhydrous HCl was introduced into the mixture and then heated strongly. The use of a combined catalyst also promoted this reaction. But it was not necessarily required, because the use of HCl only gave good results.

Table 5 shows the compounds obtained from the above mentioned method.

The following two experiments were carried out to observe some aspects of the mechanism about HCl-catalysed cotrimerization of CCl_3CN with CH_3CN . This mechanism may explain the cotrimerization of CCl_3CN with other nitriles also. a) Addition of 1 mol CH_3CN to the adduct^{*3} of 2 mol of CCl_3CN and 1 mol HCl.

b) Addition of $1 \mod CH_3CN$ that has already absorbed $1 \mod HCl$ to the adduct of $2 \mod of CCl_3CN$ and $1 \mod HCl$.

Like Grundmann *et al.*²⁵⁾ we could hardly obtain the (co)trimerized product under the condition of a). However, the reaction proceeded readily to afford in a good yield under the condition of b).

45) K. Matsui, K. Wakabayashi, M. Tsunoda, Y. Suzuki, M. Tsuda and M. Nakazawa, Japanese Appl. 79006 (1967).

79470 (1967).

^{*2} Alkyl having more than C₂ in Table 5

^{*&}lt;sup>3</sup> The adduct was identified in the form of $(CCl_3-CO)_2NH$ (lit. 25).

⁴⁶⁾ K. Matsui, K. Wakabayashi, M. Tsunoda, Y. Suzuki, M. Tsuda and M. Nakazawa, Japanese Appl.

R Yie	eld	Mp^{*2}	UV	IR*3	Molecular				0/ (
	%	ŝ	$\lambda^{ m CH_3OH}_{ m max} { m m}\mu(arepsilon)$	cm ⁻¹	formula		σ	H	z	0
CH ₃ 95	2	9697*4	219(1920) 280(950)	1543						
C ₆ H ₅ † 9-	94	9798*4	282 (23210)	1514 1548						
2-ClC ₆ H ₄ 91	16	120—122		1510 1548	C ₁₁ H₄N ₃ Cl ₇	Calcd Found	30.99 31.04	$0.95 \\ 1.11$	$9.86 \\ 9.57$	58.21 58.50
3-ClC ₆ H ₄ 9.	93	125-127		1512 1548	C ₁₁ H ₄ N ₃ Cl ₇	Calcd Found	30.99 30.86	$0.95 \\ 0.99$	$9.86 \\ 10.03$	58.21 58.19
4-CIC ₆ H ₄ 9:	92	158159*5		1510 1548						
2,4-Cl ₂ C ₆ H ₃ 8	88	143—145	216(22690) 283(2600)	1510 1550	C ₁₁ H ₃ N ₃ Cl ₈	Calcd Found	28.67 28.34	$0.66 \\ 0.87$	$9.12 \\ 9.36$	61.55 61.38
3,4-Cl ₂ C ₆ H ₃ 9	06	139140		1510 1548	C ₁₁ H ₃ N ₃ Cl ₈	Calcd Found	28.67 28.61	$\begin{array}{c} 0.66 \\ 0.74 \end{array}$	$9.12 \\ 8.96$	61.55 61.41
2,4,5-Cl ₃ C ₆ H ₂ 8	85	153155		1510 1550	C ₁₁ H ₂ N ₃ Cl ₉	Calcd Found	26.68 26.52	$0.41 \\ 0.53$	$8.49 \\ 8.50$	64.43 64.72
4-BrC ₆ H ₄ 9	92	161-163		1512 1548	C ₁₁ H ₄ N ₃ Cl ₆ Br	Calcd Found	28.06 27.99	$\begin{array}{c} 0.86 \\ 0.72 \end{array}$	$8.93 \\ 8.76$	62.15^{*6} 62.22
4-CH ₃ C ₆ H ₄ 9	95	122123*5		1512 1546						
$3-NO_2C_6H_4$ 7	74	103104*5		1510 1538						
I4†	06	144145*5	240(7930) $328(22580)$	1512 1546						
1-Naphthyl 8	83	216-218		1545	C ₁₅ H ₇ N ₃ Cl ₆	Calcd Found	40.76 40.52	$1.60 \\ 1.86$	$9.50 \\ 9.43$	48.13 48.46
2-Naphthyl 7	78	210-212*4		1545						

2928

TABLE 4.*1 COTRIMERIZATION OF CCl3CN WITH OTHER NITRILES

Ч

R	Yield	Mn. ()		cm ⁻¹	۲	formula		G	H	z	ت (
	%	(From solvent)	$\lambda_{\max}^{CH3UH} m \mu (\varepsilon)$								
C_2H_5	92	$165-166/11^{*3}$ 34-36	221 (1770) 278(570)	1525 1543	8.64(t, 3H) 6.79(q, 2H)						
<i>n</i> -C ₃ H ₇	93	136—138/2	220(1820) 278(660)	1528 1548	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₈ H ₇ N ₃ Cl ₆	Calcd Found	26.85 26.70	$1.97 \\ 1.82$	11.74 11.75	59.44 59.62
i-C ₃ H ₇	87	170175/14	214(3220) 265(580)	1522 1545	8.55 $(d, 6H)$ 6.60 (m, H)	C ₈ H ₇ N ₃ Cl ₆	Calcd Found	26.85 26.49	1.97 1.89	11.74 11.83	59.44 60.11
$n-C_4H_9$	6	157—159/3		1528 1545		C ₉ H ₉ N ₃ Cl ₆	Calcd Found	$29.06 \\ 28.88$	$2.44 \\ 2.39$	11.30	57.20 57.36
i-C4H9	82	154—156/3	216(3840) 281(730)	1528 1545	$\begin{array}{c} 8.97(d, \ 6H) \\ 7.58(m, \ H) \\ 6.94(d, \ 2H) \end{array}$	C ₉ H ₉ N ₃ Cl ₈	Calcd Found	29.06 28.96	$2.44 \\ 2.34$	11.30 11.48	57.20 57.43
s-C4H9	81	142—146/3	222(1910) 276(600)	1528 1548	9.04 $(t, 3H)$ 8.56 $(d, 3H)$ 8.17 $(qi 2H)$ 6.80 (m, H)	C ₉ H ₉ N ₃ Cl ₆	Calcd Found	29.06 29.20	2.44 2.56	11.30 11.21	57.20 57.34
ℓ-C₄H₀	56	154—157/8 68—70	224(2220) 283(610)	1525 1543	B. 50(<i>s</i>)	C ₆ H ₆ N ₃ Cl ₆	Calcd Found	29.06 29.17	$2.44 \\ 2.62$	11.30 11.42	57.20
<i>n</i> -C ₅ H ₁₁	95	175—177/5	216(3500) 280(650)	1528 1548	$\begin{array}{c} 9.08(t, 3H) \\ 7.93-8.72(m, 6H) \\ 6.83(t, 2H) \end{array}$	C ₁₀ H ₁₁ N ₃ Cl ₆	Calcd Found	31.12 31.03	2.87 2.74	10.89 10.73	55.12 55.08
<i>n</i> -C ₉ H ₁₉	78	192194/5*4	216(2320) 262(450)	1525 1548	$\begin{array}{c} 9.12(t, 3H) \\ 7.42-8.46(m, 14H) \\ 6.84(t, 2H) \end{array}$	C ₁₄ H ₁₉ N ₃ Cl ₆	Calcd Found	38.04 37.95	$4.33 \\ 4.18$	$9.50 \\ 9.55$	48.12 48.34
<i>n</i> -C ₁₇ H ₃₅	92	210-215/4*5		1520 1548		$\mathrm{C}_{22}\mathrm{H}_{35}\mathrm{N}_3\mathrm{Cl}_6$	Calcd Found	47.67 47.54	6.36	7.58	37.51
CH _a ClCH _a	69	6567* ⁶ (EtOH)	244 (3320)	1528	$6.36(t, 2H),^{b}$ 5.88(t, 2H), ^a						
CH2CICCI2	87	4748 (EtOH)	223(2330) $285(~770)$	1548	518(s)	C ₇ H ₂ N ₃ Cl ₉	Calcd Found	$18.10 \\ 18.72$	$0.45 \\ 0.38$	$9.40 \\ 9.43$	71.35 71.54

October, 1969]

TABLE 5.† COTRIMERIZATION OF CCl₃CN WITH ALIPHATIC NITRILES

∝-<_z-

 $2CCI_{s}CN + RCN \rightarrow$

The mechanism may be explained as follows. The dimer (VII) (formed from 2 molecules CCl_3CN and 1 molecule HCl) and acetimidoyl chloride (VI) (formed from 1 molecule CH_3CN and 1 molecule HCl) may produce the adduct (VIII) by Diels-Alder type reaction. VIII may be changed into resonance-stabilised s-triazine, II, by the loss of 2 molecules HCl.

It may be explained that the intermediates (VIII) from the nitriles in Table 4 are converted smoothly into s-triazine by the loss of 2 molecules HCl at room temperature, but the intermediates (VIII) from the nitriles in Table 5 are not converted without strong heating.

Experimental

All the boiling points and melting points are uncorrected. Gas-liquid chromatography was performed with a Shimadzu GC-2C fitted with a flame ionization detecter, with 25 ml/min of nitrogen, using a $2 \text{ m} \times 4 \text{ mm}$ column containing 4% SE-30 on Gaschrom. P. IR spectra were obtained with a JASCO model IR-S spectrometer. UV spectra were obtained with a Perkin-Elmer model 202 spectrometer. NMR spectra were determined at 60 Mc with a Varian A-60 spectrometer, using TMS as the internal standard. Mass spectra were obtained with a Hitachi RMU-6C spectrometer.

Materials. Nitriles. $CH_2ClCH_2CN^{47}$ was prepared from acrylonitrile. CCl_3CN^{12} was prepared by the chlorination of acetonitrile and $CH_2ClCCl_2CN^{48}$) by the chlorination of acrylonitrile. $i-C_4H_9CN$, $s-C_4H_9CN$, $t-C_4H_9CN$, $n-C_9H_{19}CN$, $2-ClC_6H_4CN$, $3-ClC_6H_4CN$, $4-BrC_6H_4CN$, $2,4-Cl_2C_6H_3CN$, $3,4-Cl_2C_6+3CN$ and $2,4,5-Cl_3C_6H_2CN$ were prepared by the dehydration of corresponding amide with P_2O_5 . Acetonitrile and acrylonitriles were obtained from Tokyo Kasei Kogyo Co., Ltd.

Metal Halides. All reagents were obtained from Wako Pure Chemical Industries Ltd.

A) Trimerization of CCl₃CN. 2,4,6-Tris-(trichloromethyl)-s-triazine (I). 32 g (0.22 mol) of CCl₃-CN and 0.5 g of a catalyst were placed into a 300 ml flask. The mixture was saturated with anhydrous HCl at $-10-0^{\circ}$ C with stirring. The reaction mixture was kept at room temperature for 12 hr to complete trimerization. The contents of the flask was melted by heating at 100-110°C and poured into a large quantity of water to wash out HCl and catalyst. The mixture was cooled to let the product solidify again. The solid product was filtered, dried in air and recrystallized from ethanol (Table 1). Analysis example; using AlBr₃-HCl as the catalyst.

Found: C, 16.60; N, 9.49; Cl, 73.90%. Calcd for $C_6N_3Cl_9$: C, 16.64; N, 9.70; Cl, 73.66%.

IR absorption; 1545, 1341 cm⁻¹ (s-triazine ring).

UV absorption; $\lambda_{\max}^{CH_{3}OH}$ 219 m μ (ε 2590); 287 m μ (ε 790).

B) Cotrimerization of CCl₃CN. a) 2-Methyl-4,6-bis(trichloromethyl)-s-triazine (II). 289 g (2 mol) of CCl₃CN and 50 g (1.2 mol) of CH₃CN and a catalyst were placed into a 500 ml flask. The mixture was saturated with anhydrous HCl at $-20-0^{\circ}$ C with stirring, which was continued at the same temperature for 2-3 hr. At the end of the reaction time the contents of the flask solidified. After the reaction mixture was kept at room temperature to complete cotrimerization, the product was melted by heating at $100-110^{\circ}$ C and poured into a large quantity of water to wash out HCl and the catalyst. After being cooled to room temperature, the separated solid was collected, dried in air and then recrystallized from ethanol. (Table 2). Analysis example; using AlBr₃-HCl as the catalyst.

Found: C, 21.99; H, 1.00; N, 12.69; Cl, 64.48%. Calcd for $C_6H_3N_3Cl_6$: C, 21.84; H, 0.92; N, 12.74; Cl, 64.49%.

IR absorption; 1543, 1339 cm⁻¹ (s-triazine ring).

UV absorption; $\lambda_{\max}^{CH_3OH}$ 219 m μ (ϵ 1920); 280 m μ (ϵ 950).

NMR spectrum (CDCl₃); τ 7.02 (CH₃).

b) 2 - $Alkyl^{*2.4}$, 6-bis (trichloromeltyl)-s-triazine. The mixed solution of 289 g (2 mol) of CCl₃CN and 1.2 mol of RCN was saturated with anhydrous HCl at -30- -15° C by cooling with dry ice-methanol bath for 2 hr with stirring, which was continued at $-10-0^{\circ}$ C for 2-3 hr. The reaction mixture was kept overnight at room temperature. Then HCl gas was removed under reduced pressure by a water pump, gradually heating the reaction mixture at 150-200°C to complete cotrimerization. The residue is fractionated under reduced pressure. Thus 2-alkyl-4,6-bis (trichloromethyl)-s-triazine was obtained (Table 5).

C) The Preparation of Authentic Samples. a) 2,4-Dimethyl-6-trichloromethyl-s-triazine (III). III was prepared from acetic anhydride and N-(acetimidoyl) trichloroacetamidine which was prepared from CCl₃CN and acetamidine.⁴⁹) Yield 55%. Mp 72—73°C (lit⁴⁹) mp 69—71°C).

IR absorption; 1540 cm⁻¹ (s-triazine ring).

UV absorption; λ_{\max}^{CH+0H} 234 m μ (ε 2020); 260 m μ (ε 890).

NMR spectrum (CDCl₃); τ 7.26 (CH₃).

b) 2,4,6-Trimethyl-s-triazine (IV). IV was prepared by the method of Schaefer⁵⁰ from ethyl acetimidate. Yield 90%. Mp 60°C. Bp 150–155°C (lit⁵⁰) bp 155°C). IR absorption; 1536 cm⁻¹ (s-triazine ring).

UV absorption; $\lambda_{\max}^{CH_{3}OH}$ 228 m μ (ϵ 270); 257 m μ (ϵ 390).

NMR spectrum (CDCl₃); τ 7.42 (CH₃).

D) Experiments to Elucidate HCI-catalysed Cotrimerization of CCI₃CN with CH₃CN. a) The Reaction of CH₃CN and the Adduct (VII) of CCI₃CN and HCl. 18 g (0.5 mol) of anhydrous HCI was absorbed into 144.5 g (1 mol) of CCI₃CN at $-10-0^{\circ}$ C for 0.5 hr. Then 20.5 g (0.5 mol) of CH₃CN was added to this solution with stirring. The mixture was allowed to stand for 90 hr at room temperature. The product was distilled under reduced pressure by a water pump.

⁴⁷⁾ R. Stewart and R. H. Clark, J. Am. Chem. Soc., 69, 714 (1947).

⁴⁸⁾ N. B. Lorette, J. Org. Chem., 26, 2324 (1961).

⁴⁹⁾ American Cyanamid Co., Brit. Pat. 912112 (1962).

⁵⁰⁾ F. C. Schaefer and G. A. Peters, J. Org. Chem., 26, 2778 (1961).

The distillate was a mixture of CH_3CN and CCl_3CN . A small amount of residue was obtained. This compound was found out to be a mixture of II and unidentified substance by GLC and IR analyses.

b) The Reaction of the Adduct (VI) of CH_3CN and HCl, and the Adduct (VII) of CCl_3CN and HCl. 18 g (0.5 mol) of anhydrous HCl was absorbed into 144.5 g (1 mol) of CCl_3CN at $-10-0^{\circ}C$ for 0.5 hr. 18 g of anhydrous HCl was also absorbed into 20.5g (0.5 mol) of CH_3CN under the same condition. Then two solutions were mixed at $0-10^{\circ}C$ with stirring. The mixture was allowed to stand for 90 hr at room temperature. At the end of the reaction, the reaction mixture almost solidified which was then poured into water. The

crude product was filtered and air-dried to yield 140 g (85%). Mp 90–93°C. This compound was identified II by GLC and IR analyses.

The authors are indebted to the Mitsubishi Chemical Industries Ltd. for their generous support of this publication. They also wish to express their thanks to Mr. Y. Takigawa for obtaining and interpreting the spectra which were of great assistance in this work and Mr. K. Suzuki for the microanalyses. Valuable technical assistance was also provided by Mr. M. Tsuda and Mr. M. Nakazawa.