An unusual Michael addition-dealkylation or elimination via the reaction of tertiary or secondary amines with a (Z)-iodoacrylate

Graham Maw, ${ }^{\text {a }}$ Carl Thirsk ${ }^{\mathrm{b}}$ and Andrew Whiting ${ }^{\mathrm{b}, *}$
${ }^{\text {a }}$ Pfizer Global Research \& Development, Sandwich, Kent CT13 9NJ, UK
${ }^{\mathrm{b}}$ Department of Chemistry, Faraday Building, UMIST, PO Box 88, Manchester M60 1QD, UK

Received 11 May 2001; accepted 21 September 2001

Abstract

A series of (E)-ammonium or amino acrylates have been prepared via the Michael addition of methyl (Z)-iodoacrylate and several secondary and tertiary alkylamines. Tertiary amines undergo concomitant addition-dealkylation, almost quantitatively producing (E)-dialkylamino acrylates. © 2001 Elsevier Science Ltd. All rights reserved.

As part of an ongoing program concerned with the total synthesis of polyene natural products ${ }^{1}$ using palladium coupling methodology and vinyl dianion equivalent $\mathbf{1},{ }^{2}$ we investigated suitable conditions for the coupling of methyl (Z)-iodoacrylate ${ }^{3} 2$ with vinylboronate $\mathbf{1}$ in order to try to obtain the Heck product 3 selectively over the Suzuki product 4 (Eq. (1)).
of events, further experiments ${ }^{4}$ were performed with both secondary and tertiary amines with iodoacrylate 2. The results of which are outlined in Eq. (2) and Table 1.

Amino acrylates 6 were typically obtained in near quantitative yields in acetonitrile using 2 equiv. of base,

Use of phosphine and trialkylamine-free conditions [10 $\left.\mathrm{mol} \% \mathrm{Pd}(\mathrm{Oac})_{2}, \mathrm{AgCO}_{3}, \mathrm{MeCN}, \mathrm{rt}, 18 \mathrm{~h}\right]$ resulted in exclusive formation of the Suzuki product 4, in 68% yield after silica gel chromatography. However, the use of standard Heck conditions (phosphine and trialkyl-amine-containing, as shown in Eq. (1)), gave neither of the coupled products 3 nor 4 . Instead, a new compound was isolated whose ${ }^{1} \mathrm{H}$ NMR possessed unexpected resonances at $\delta 4.50$ (compared with $\delta 7.55$ and 6.91 for acrylate 2), together with signals which showed the presence of two n-butyl groups. We tentatively assigned this as methyl (E)-dibutylaminoacrylate $\mathbf{6 b}$, which may have arisen from a Michael addition-elimination sequence of tributylamine on iodoacrylate 2, followed by loss of a butyl group. In order to confirm this series

[^0]after isolation from the $1: 1$ mixture with the ammonium salt 7. The reaction was preferably carried out in toluene, since in most cases this allowed simple separation of the salt 7 (by filtration) from the amino acrylate 6 (Table 1). Assignment of the E-alkene geometry of the products was unambiguous by ${ }^{1} \mathrm{H} \mathrm{NMR}$; all of the amino acrylates exhibited a pair of doublets with coupling constants in the range $13.1-13.5 \mathrm{~Hz}$. However, analytical data ${ }^{5}$ were in full agreement with those reported in the literature for those amino acrylates that had been previously synthesised. ${ }^{6}$

Our mechanistic rationale for the formation of these adducts involves a reversible addition of the amine 5 to the acrylate 2 forming an intermediate ammonium propenolate zwitterion, analogous to the first step involved in the Baylis-Hillman reaction. ${ }^{7}$ This zwitterion would rapidly lose iodide to form a methyl 1-

$$
\begin{align*}
& 2+\underset{R^{2}}{\stackrel{R^{1}}{1}} \stackrel{N}{N_{-}} R^{3} \xrightarrow{\text { MeCN }, r t} \\
& 5 \\
& \text { a; } R^{1}=R^{2}=R^{3}=E t \\
& \text { a; } R^{1}=R^{2}=E t \\
& \text { a; } R^{1}=R^{2}=R^{3}=E t \\
& \text { b; } R^{1}=R^{2}=R^{3}={ }^{n} B u \\
& \text { b; } R^{1}=R^{2}={ }^{n} B u \\
& \text { b; } R^{1}=R^{2}=R^{3}={ }^{n} B u \\
& \text { c; } R^{1}=E t, R^{2}=R^{3}=i \operatorname{Pr} \\
& \text { d; } R^{1}=R^{2}=-\left(\mathrm{CH}_{2}\right)_{4}, R^{3}=M e \\
& \text { e; } R^{1}=R^{2}=-\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{O}, \mathrm{R}^{3}=\mathrm{Me} \\
& \text { c; } R^{1}=E t, R^{2}=i \operatorname{Pr} \\
& \text { c; } R^{1}=E t, R^{2}=R^{3}={ }^{i} \mathrm{Pr} \\
& f ; R^{1}=R^{2}=E t, R^{3}=H \\
& \text { d; } \mathrm{R}^{1}=\mathrm{R}^{2}=-\left(\mathrm{CH}_{2}\right)_{4}{ }^{-} \\
& \text {d; } R^{1}=R^{2}=-\left(\mathrm{CH}_{2}\right)_{4}{ }^{-}, \mathrm{R}^{3}=\mathrm{Me} \tag{2}\\
& \text { e; } \mathrm{R}^{1}=\mathrm{R}^{2}=-\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{O} \\
& \text { e; } \mathrm{R}^{1}=\mathrm{R}^{2}=-\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{O}, \mathrm{R}^{3}=\mathrm{Me} \\
& \text { f; } R^{1}=R^{2}={ }^{i} P r \\
& \text { f; } R^{1}=R^{2}=E t, R^{3}=H \\
& \text { g; } R^{1}=R^{2}={ }^{i} P r, R^{3}=H \\
& \text { g; } R^{1}=R^{2}=B n \\
& \text { g; } R^{1}=R^{2}={ }^{i} P r, R^{3}=H \\
& \text { h; } R^{1}=R^{2}=-\left(\mathrm{CH}_{2}\right)_{4}, R^{3}=H \\
& \text { i; } \mathrm{R}^{1}=\mathrm{R}^{2}=-\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{O}, \mathrm{R}^{3}=\mathrm{H} \\
& \text { h; } \mathrm{R}^{1}=\mathrm{R}^{2}=-\left(\mathrm{CH}_{2}\right)_{5^{-}} \\
& \text {h; } \mathrm{R}^{1}=\mathrm{R}^{2}=-\left(\mathrm{CH}_{2}\right)_{4^{-}}, \mathrm{R}^{3}=\mathrm{H} \\
& \text { i; } \mathrm{R}^{1}=\mathrm{R}^{2}=-\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{O}, \mathrm{R}^{3}=\mathrm{H} \\
& j ; R^{1}=R^{2}=B n, R^{3}=H \\
& \text { k; } R^{1}=R^{2}=-\left(\mathrm{CH}_{2}\right)_{5}, R^{3}=H \\
& \left.\mathrm{I} ; \mathrm{R}^{1}=\mathrm{R}^{2}=-\left(\mathrm{CH}_{2}\right)_{5}\right)^{-}, \mathrm{R}^{3}=\mathrm{Me} \\
& + \\
& 7 \\
& \text { j; } R^{1}=R^{2}=B n, R^{3}=H \\
& \text { k; } R^{1}=R^{2}=-\left(\mathrm{CH}_{2}\right)_{5^{-}}, R^{3}=H \\
& \mathbf{I} ; \mathbf{k} ; \mathrm{R}^{1}=\mathrm{R}^{2}=-\left(\mathrm{CH}_{2}\right)_{5}, \mathrm{R}^{3}=\mathrm{Me}
\end{align*}
$$

Table 1.

Entry	Amine 5	Amino Acrylate 6 (Yield/\%) in PhMe	Ammonium 7 Salt (Yield/\%) in PhMe	Amino Acrylate 6 (Yield/\%) in MeCN	Ammonium Salt 7 (Yield/\%) in MeCN
1	$\mathrm{Et}_{3} \mathrm{~N}$	$6 \mathrm{a}^{6 \mathrm{a}}$ (96)	7a (86)	6a ${ }^{6 a}$ (95)	7a (77)
2	${ }^{\mathrm{n}} \mathrm{Bu}_{3} \mathrm{~N}$	6b (94)	7b (96)	6b (94)	7b (79)
3	${ }^{1} \mathrm{Pr}_{2} \mathrm{NEt}$	6c (93)	7c (96) ${ }^{\text {b }}$	6c (91)	7c (70) ${ }^{\text {b }}$
4		a	a	6d (92)	7 d (74) ${ }^{\text {b }}$
5		a	a	6e (94)	7e (86)
6	$\mathrm{Et}_{2} \mathrm{NH}$	6a (92)	7f (88)	6a (93)	7f (83)
7	${ }^{\text {i }} \mathrm{Pr}_{2} \mathrm{NH}$	6 f (94)	$7 \mathrm{~g}(96)$	6 f (90)	7 g (77)
8		6d (93)	7h (94)	6d (91)	7h (72)
9		6e (92)	7 i (94)	6e (93)	7I (72)
10	$\mathrm{Bn}_{2} \mathrm{NH}$	6g (94)	7 j (94)	6g (95)	7 j (90)
11		6h (91)	7k (92)	6h (93)	7k (91)
12		a	a	6h (94)	71 (88)
13		$0^{\text {c }}$	$0^{\text {c }}$	$0^{\text {c }}$	$0^{\text {c }}$
14	$\mathrm{Et}_{2} \mathrm{NPh}$	$0^{\text {d }}$	$0^{\text {d }}$	$0^{\text {d }}$	$0^{\text {d }}$

${ }^{a}$ Obtained the corresponding methyl E-ammoniumpropenoate iodide 8 quantitatively. ${ }^{b}$ Salt not isolated; yield was estimated from ${ }^{1} \mathrm{H}$ NMR of crude reaction. ${ }^{\circ}$ Complex mixture of products results. ${ }^{d}$ No reaction observed.
ammoniumpropenoate iodide 8 . In both acetonitrile and toluene, subsequent reaction of iodide ion on salt $\mathbf{8}$ accomplishes dealkylation, giving rise to an alkyl iodide, which in turn reacts with the second equivalent of amine 5 yielding the salt 7 in almost all cases (see

Table 1). The exceptions to this are entries 4,5 and 12 (Table 1), where N-methylated cyclic tertiary amines are employed. For these cases, in acetonitrile, dealkylation occurs as for other amines, however in toluene, the methyl 1-ammoniumpropenoate iodide salt $\mathbf{8}$ rapidly
precipitates before dealkylation can occur allowing its isolation. ${ }^{5}$ In addition, it is interesting that loss of ${ }^{i} \mathrm{Pr}$ occurs in preference to loss of Et when using Hünig's base (entry 3, Table 1), which suggests that in this case an $\mathrm{S}_{\mathrm{N}} 1$ reaction is involved in the iodide-mediated dealkylation process. In contrast, the less nucleophilic base, diethylaniline, did not react under the reaction conditions employed, whereas pyridine did react resulting in a complex mixture of products.

Reported uses for amino acrylates are quite scarce; ${ }^{6}$ there are a few examples of them being utilised in natural product chemistry, but in each case they have been prepared through reaction of a secondary amine with a propiolate ester. There are also reports detailing the preparation of trans-ammonium halides $\mathbf{8}$ as stable compounds ${ }^{8}$ and their subsequent use as Diels-Alder dienophiles. ${ }^{9}$ These salts are usually prepared by reaction of a quaternary ammonium chloride or bromide with a propiolate ester under slightly milder conditions and in these cases there were no reports of amino acrylate formation, suggesting that elimination of iodide leading to amino acrylate formation is a facile process compared with loss of chloride or bromide.

To the best of our knowledge, the reaction presented here represents an unusual example of dealkylation from nitrogen and provides a simple, high-yielding route to a variety of amino acrylates.

Acknowledgements

We are grateful to the EPSRC for a CASE studentship (GR/99315155) to C.T. and to Pfizer Global Research and Development for additional funding.

References

1. (a) Hénaff, N.; Whiting, A. Org. Lett. 1999, 1, 1137-1139;
(b) Hénaff, N.; Whiting, A. Tetrahedron 2000, 56, 51935204.
2. (a) Hunt, A. R.; Stewart, S. K.; Whiting, A. Tetrahedron Lett. 1993, 34, 3599-3602; (b) Stewart, S. K.; Whiting, A. J. Organomet. Chem. 1994, 482, 293-300; (c) Stewart, S. K.; Whiting, A. Tetrahedron Lett. 1995, 36, 3925-3928; (d) Stewart, S. K.; Whiting, A. Tetrahedron Lett. 1995, 36, 3929-3932.
3. Piers, E.; Wong, T.; Coish, P. D.; Rogers, C. Can. J. Chem. 1994, 72, 1816-1819.
4. Representative procedure: A mixture of iodoacrylate $\mathbf{2}$ ($200 \mathrm{mg}, 0.943 \mathrm{mmol}$) and ${ }^{i} \operatorname{Pr}_{2} \mathrm{NEt}$ ($314 \mu \mathrm{~L}, 2$ equiv.) were refluxed in dry toluene (5 ml) under argon until TLC indicated consumption of $\mathbf{2}$. The cooled reaction was filtered and the filtrate washed with $5 \% \mathrm{HCl}$ and distilled
water. The organic phase was dried over MgSO_{4} and concentrated in vacuo to give the crude amino acrylate. Purification by silica gel chromatography (petroleum ether 40-60:ethyl acetate, 4:1 as eluant) gave methyl (E)-3-[ethyl(isopropyl)amino]-2-propenoate $\mathbf{6 c}(93 \%$, yellow oil): $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 2966,1685,1600,1420,1188,1106,785$; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.10-1.25(9 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{Me}), 3.12(2 \mathrm{H}$, $\left.\mathrm{q}, J 7.5, \mathrm{CH}_{2}\right), 3.50(1 \mathrm{H}, \mathrm{m}, J 7.5, \mathrm{CH}), 3.65(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 4.55(1 \mathrm{H}, \mathrm{d}, J 13.7,=\mathrm{CH}), 7.50(1 \mathrm{H}, \mathrm{d}, J 13.7$, $=\mathrm{CH}) ; \delta_{\mathrm{C}}(75.5 \mathrm{MHz}) 11.7\left(\mathrm{CH}_{3}\right), 21.3\left[\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 40.0$ $\left(\mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 47.0\left[\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 49.3\left(\mathrm{OCH}_{3}\right), 82.1(=\mathrm{CH})$, $148.4(=\mathrm{CH}), 169.4(\mathrm{C}=\mathrm{O})$; accurate $m / z(\mathrm{ES}+) 172.1335$ ($100 \%, \mathrm{MH}^{+}, \mathrm{C}_{9} \mathrm{H}_{18} \mathrm{NO}_{2}^{+}$requires m / z 172.1337).
5. All new compounds gave satisfactory NMR, IR and HRMS data. Selected data: $\mathbf{6 b} \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.9$ $\left(6 \mathrm{H}, \mathrm{t}, J 7.5,2 \times \mathrm{CH}_{3}\right), 1.27\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 1.50(4 \mathrm{H}, \mathrm{m}$, $\left.2 \times \mathrm{CH}_{2}\right), 3.1\left(4 \mathrm{H}, \mathrm{bm}, 2 \times \mathrm{CH}_{2}\right), 3.62\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.50$ $(1 \mathrm{H}, \mathrm{d}, J 13.2,=\mathrm{CH}), 7.40(1 \mathrm{H}, \mathrm{d}, J 13.2,=\mathrm{CH}) ; \delta_{\mathrm{C}}(75.5$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 14.3\left(\mathrm{CH}_{3}\right), 20.3\left(\mathrm{CH}_{2}\right), 29.3\left(\mathrm{CH}_{2}\right), 50.6$ $\left(\mathrm{OCH}_{3}\right), 55.5\left(\mathrm{CH}_{2}\right), 83.6(=\mathrm{CH}), 152.1(=\mathrm{CH}), 170.5$ $(\mathrm{C}=\mathrm{O}), 170.7(\mathrm{C}=\mathrm{O}) ; 6 \mathbf{d} \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.90(4 \mathrm{H}$, bm, $2 \times \mathrm{CH}_{2}$), $3.10\left(4 \mathrm{H}, \mathrm{bm}, 2 \times \mathrm{CH}_{2}\right), 3.60\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, $4.45(1 \mathrm{H}, \mathrm{d}, J 13.1,=\mathrm{CH}), 7.60(1 \mathrm{H}, \mathrm{d}, J 13.1,=\mathrm{CH}) ; \delta_{\mathrm{C}}$ ($\left.75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 24.2\left(\mathrm{CH}_{2}\right), 49.3\left(\mathrm{CH}_{2}\right), 83.2(=\mathrm{CH})$, $147.7(=\mathrm{CH}), 168.9(\mathrm{C}=\mathrm{O}) ; \mathbf{6 e} \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.17$ $\left(4 \mathrm{H}, \mathrm{t}, J 7.0,2 \times \mathrm{CH}_{2}\right), 3.65\left(7 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{3}\right.$ and $\left.2 \times \mathrm{CH}_{2}\right)$, $4.67(1 \mathrm{H}, \mathrm{d}, J 13.4,=\mathrm{CH}), 7.33(1 \mathrm{H}, \mathrm{d}, J 13.4,=\mathrm{CH}) ; \delta_{\mathrm{C}}$ $\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 47.6\left(\mathrm{CH}_{2}\right), 50.3\left(\mathrm{OCH}_{3}\right), 65.1\left(\mathrm{CH}_{2}\right)$, $84.9(=\mathrm{CH}), 150.8(=\mathrm{CH}), 168.8(\mathrm{C}=\mathrm{O}) ; \mathbf{6} \delta_{\mathrm{H}}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 1.15\left(12 \mathrm{H}, \mathrm{s}, 2 \times-\left(\mathrm{CH}_{3}\right)_{2}\right), 3.60\left(5 \mathrm{H}, \mathrm{bs}, \mathrm{OCH}_{3}\right.$ and $2 \times \mathrm{CH}), 4.65(1 \mathrm{H}, \mathrm{d}, J 13.5,=\mathrm{CH}), 7.55(1 \mathrm{H}, \mathrm{d}, J 13.5$, $=\mathrm{CH}) ; \delta_{\mathrm{C}}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 20.5\left(\mathrm{~b}, \mathrm{CH}_{3}\right), 47.0(\mathrm{CH})$, $49.3\left(\mathrm{OCH}_{3}\right), 82.1(=\mathrm{CH}), 146.2(=\mathrm{CH}), 169.4(\mathrm{C}=\mathrm{O}) ; \mathbf{6 g} \delta_{\mathrm{H}}$ $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.68\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.30(4 \mathrm{H}, \mathrm{bs}$, $\left.2 \times \mathrm{CH}_{2}\right), 4.83(1 \mathrm{H}, \mathrm{d}, J 13.1,=\mathrm{CH}), 7.40-7.10(10 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH}), 7.83(1 \mathrm{H}, \mathrm{d}, J 13.1,=\mathrm{CH}) ; \delta_{\mathrm{C}}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $37.6\left(\mathrm{CH}_{2}\right), 51.7\left(\mathrm{OCH}_{3}\right), 85.9(=\mathrm{CH}), 126.9(\mathrm{ArC}), 128.8$ (ArC), 130.1 (ArC), 138.2 (ArCq), $153.2(=\mathrm{CH}), 170.6$ $(\mathrm{C}=\mathrm{O}) ; \mathbf{6 h} \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.60\left(6 \mathrm{H}\right.$, bs, $\left.3 \times \mathrm{CH}_{2}\right)$, $3.19\left(4 \mathrm{H}, \mathrm{bs}, 2 \times \mathrm{CH}_{2}\right), 3.65\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.61(1 \mathrm{H}, \mathrm{d}, J$ $13.1,=\mathrm{CH}), 7.40(1 \mathrm{H}, \mathrm{d}, J 13.1,=\mathrm{CH}) ; \delta_{\mathrm{C}}(75.5 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 24.5\left(\mathrm{CH}_{2}\right), 25.8\left(\mathrm{CH}_{2}\right), 50.8\left(\mathrm{OCH}_{3}\right), 52.0\left(\mathrm{CH}_{2}\right)$, $83.6(=\mathrm{CH}), 152.5(=\mathrm{CH}), 170.9(\mathrm{C}=\mathrm{O}) ; 8\left(\mathrm{R}^{1}=\mathrm{R}^{2}=\right.$ $\left.\left(\mathrm{CH}_{2}\right)_{4}, \mathrm{R}^{3}=\mathrm{Me}\right) \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) 2.18\left(4 \mathrm{H}, \mathrm{bm}, \mathrm{CH}_{2}\right)$, $3.44(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 3.78(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.89(4 \mathrm{H}, \mathrm{bm}$, $\left.\mathrm{CH}_{2}\right), 6.19(1 \mathrm{H}, \mathrm{d}, J 9.7,=\mathrm{CH}), 6.65(1 \mathrm{H}, \mathrm{d}, J 9.7 \mathrm{~Hz}$, $=\mathrm{CH}) ; \delta_{\mathrm{C}}\left(75.5 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) 21.8\left(\mathrm{CH}_{2}\right), 50.9(\mathrm{NMe}), 53.7$ $(\mathrm{OMe}), 68.9\left(\mathrm{CH}_{2}\right), 120.3(=\mathrm{CH}), 147.4(=\mathrm{CH}), 164.6$ $(\mathrm{C}=\mathrm{O}) ; ~\left(\mathrm{R}^{1}=\mathrm{R}^{2}=\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{O}, \mathrm{R}^{3}=\mathrm{Me}\right) \delta_{\mathrm{H}}(400 \mathrm{MHz}$, $\left.\mathrm{D}_{2} \mathrm{O}\right) 3.53(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 3.73(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.89-4.12$ $\left(8 \mathrm{H}, \mathrm{bm}, 4 \times \mathrm{CH}_{2}\right), 6.32(1 \mathrm{H}, \mathrm{d}, J 10.4,=\mathrm{CH}), 6.58(1 \mathrm{H}, \mathrm{d}$, J 10.4, $=\mathrm{CH})$; $\delta_{\mathrm{C}}\left(75.5 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) 53.7(\mathrm{NMe}), 54.2$ $(\mathrm{OMe}), 62.1\left(\mathrm{CH}_{2}\right), 64.1\left(\mathrm{CH}_{2}\right), 122.0(=\mathrm{CH}), 140.5(=\mathrm{CH})$, $164.3(\mathrm{C}=\mathrm{O}) ;\left(\mathrm{R}^{1}=\mathrm{R}^{2}=\left(\mathrm{CH}_{2}\right)_{5}, \mathrm{R}^{3}=\mathrm{Me}\right) \delta_{\mathrm{H}}(400 \mathrm{MHz}$, $\left.\mathrm{D}_{2} \mathrm{O}\right) 1.48\left(2 \mathrm{H}, \mathrm{bm}, \mathrm{CH}_{2}\right) 1.66-1.82\left(4 \mathrm{H}, \mathrm{bm}, \mathrm{CH}_{2}\right), 3.40$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 3.37-3.46\left(4 \mathrm{H}, \mathrm{bm}, \mathrm{CH}_{2}\right), 3.74(3 \mathrm{H}, \mathrm{s}$, OMe), $6.24(1 \mathrm{H}, \mathrm{d}, J 10.4,=\mathrm{CH}), 6.43(1 \mathrm{H}, \mathrm{d}, J 10.4$, $=\mathrm{CH}) ; \delta_{\mathrm{C}}\left(75.5 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) 20.2\left(\mathrm{CH}_{2}\right), 21.3\left(\mathrm{CH}_{2}\right), 53.8$ $(\mathrm{NMe}), 54.1(\mathrm{OMe}), 65.7\left(\mathrm{CH}_{2}\right), 121.0(=\mathrm{CH}), 140.6$ (=CH), 164.8 (C=O).
6. (a) Pawda, A.; Price, A. T.; Zhi, L. J. Org. Chem. 1996, 61, 2283-2292; (b) Bloxham, J.; Dell, C. P. J. Chem. Soc.,

Perkin Trans. 1 1993, 24, 3055-3060; (c) Palacios, F.; Herran, E.; Rubiales, G. J. Org. Chem. 1999, 64, 62396246; (d) Vos, G. J. M.; Benders, P. H.; Reinhoudt, D. N.; Egberink, R. J. M.; Harkema, S.; van Hummel, G. J. J. Org. Chem. 1986, 51, 2004-2011; (e) Cossu, S.; DeLucchi, O.; Durr, R. Synth. Commun. 1996, 26, 4597-4602; (f) McMullen, C. H.; Stirling, C. J. M. J. Chem. Soc. B. 1966, 1217-1220; (g) Bloxham, J.; Dell, C. P. J. Chem. Soc., Perkin Trans. 1 1993, 3055-3060.
7. (a) Baylis, A. B.; Hillman, M. E. D. Ger. Patent 2155133; (b) Basavaiah, D.; Rao, P. D.; Hyma, R. S. Tetrahedron 1996, 52, 8001-8062.
8. (a) Herkes, F. E.; Simmons, H. E. J. Org. Chem. 1973, 38, 2845-2851; (b) McCulloch, A. W.; McInnes, A. G. Can. J. Chem. 1974, 52, 3569-3576.
9. (a) Jung, M. E.; Buszek, K. R. J. Org. Chem. 1985, 50, 5440-5441; (b) Jung, M. E.; Buszek, K. R. Tetrahedron Lett. 1986, 27, 6165-6168.

[^0]: * Corresponding author.

