THE CHLORINATION REACTION OF O-ALKYL S-ALKYL(ARYL) THIOPHOSPHORIC(-NIC) ACID DERIVATIVES WITH PHOSPHORUS OXYCHLORIDE

ZHENG-JIE HE, WEN-BING CHEN, FU-PENG MA, ZHENG-HONG ZHOU and CHU-CHI TANG*
Institute of Elemento-Organic Chemistry, State Key Laboratory of Ele-mento-Organic Chemistry, Nankai University, Tianjin 300071, P.R. China

(Received 15 March, 1998; Revised 26 June, 1998)

It is reported that a variety of O -alkyl S-alkyl(aryl) thiophosphoric(-nic) acid derivatives 4 can be readily chlorinated with phosphorus oxychloride giving S-alkyl(aryl) thiophos-phoro(-no)chloridates 2 and O -alkyl phosphorodichloridates 3.

Keywords: Chlorination; Phosphoro(-no)thiolate; Thiophosphoro(-no)chloridate; Phosphorus oxychloride

1. INTRODUCTION

In our laboratory, the isomerization/chlorination of a variety of O,O-dialkyl phosphoro(-no) thionates 1 with phosphorus oxychloride have been systematically studied. It was found that when R^{\prime} equals aryloxy ${ }^{[1]}$, alkylthio ${ }^{[2]}$, arylthio ${ }^{[2]}$, dialkylamino ${ }^{[3]}$, phenyl ${ }^{[4]}$, methyl ${ }^{[5]}$, and nitrogen heterocyclic group ${ }^{[6]}$ in 1, respectively, this reaction can proceed smoothly and gives the desired products 2 and 3. Hence, it provides a general synthetic method for S-alkyl thiophosphoro(-no)chloridates, especially for the asymmetric ones.

During the course of investigating the isomerization/chlorination mechanism ${ }^{[7]}$, it was found that the isomerization product of $1,0, S$-dialkyl phosphorothiolate 4 , can be readily chlorinated with phosphorus oxychloride leading its one alkoxy to be replaced by a chlorine atom to give S-alkyl

[^0]

```
\(R=R^{n}=C_{r}-A\) lkyl, 2-Chioroethyl
\(\mathbf{R}^{\prime}=\) Alkoxy, Aryloxy, A kylthio, Dialkylamino, Me, Ph,
```


thiophosphorochloridate 2 and O-alkyl phosphorodichloridate 3. In this paper, we hope that the chlorination of 4 with phosphorus oxychloride can be developed a new convenient method for synthesis of S-alkyl thiophos-phoro(-no)chloridate 2, which is a key intermediate for preparation unsymmetric S-alkyl phosphoro(-no)thiolate possessing extensive biological activity. Because compound 4 is easily prepared from some cheap material, such as dialkoxy phosphite, this reaction is of some value to the synthesis.

4

2. RESULTS AND DISCUSSION

Phosphoro(-no)thiolate 4 reacted with equivalent amount of phosphorus oxychloride at $65 \sim 100^{\circ} \mathrm{C}$ until 4 disappeared from the reaction mixture (TLC control). After removal of by-product 3 under reduced pressure, the crude product 2 was purified by column chromatography on silica gel or by distillation under vacuum. The structures of product 2 were confirmed by IR, ${ }^{1}$ H NMR spectra and elementary analyses (Table II). When R
equals alkyl or phenyl, R' is alkoxy, aryloxy, alkylthio, dialkylamino, nitrogen-containing heterocyclic group, methyl and phenyl, and $\mathrm{R}^{\prime \prime}$ is C_{1-4} alkyl in compounds 4 , respectively, the chlorination of 4 can proceed smoothly giving the corresponding chlorinated products 2 in fair yields (Table I). Results show that the presence of alkylthio or arylthio RS group in 4 plays a critical role in the occurrence of this chlorination reaction. When trialkyl orthophosphoric acid ester, e.g. O,O,O-trimethyl phosphate, was treated with equivalent phosphorus oxychloride under a similar condition as 4a, the desired product, O,O-dimethyl phosphorochloridate, was not obtained in a certain amount. In the previous literature ${ }^{[8,9]}$, it was reported that O -alkyl phosphoramidates or trialkyl phosphates give only pyrophosphoric acid derivatives by treatment of phosphorus oxychloride.

TABLE I The Chlorination Reaction of 4 with POCl_{3} and Products 2

Reactants						Products		
4	R	R^{\prime}	$R^{\prime \prime}$	Reaction temp. $\left({ }^{\circ} \mathrm{C}\right)$	Reaction time (h)	2	$n_{D}{ }^{25}$	$\begin{aligned} & \text { Yield } \\ & (\%)^{*} \end{aligned}$
a	Me	MeO	Me	75	2.5	a	1.4899	72.0
b	Pr	Eto	Et	80	5	b	1.4791	77.4
c	allyl	EtO	Et	65	10	c	1.4978	63.2
d	PhCH_{2}	EtO	Et	85	5	d	1.5451	66.7
e	Ph	EtO	Et	100	5	e	1.5492	71.4
f	Et	PhO	Et	100	5	f	1.5508	42.3
g	Et	PhO	Pr	100	5	g	1.5590	71.5
h	Pr	PhO	Me	95	5	h	1.5436	85.5
i	Pr	PhO	Et	100	4	i	1.5440	55.9
j	Et	PhO	Bu	100	11	j	1.5580	74.7
k	Pr	2,4- $\mathrm{ClBrC}_{6} \mathrm{H}_{3} \mathrm{O}$	Et	100	4	k	1.4770	43.9
1	Pr	MeS	Et	85	4	1	1.5490	42.8
m	Et	PrS	Et	75	5	m	1.5382	62.0
n	Et	$\mathrm{Et}_{2} \mathrm{~N}$	Pr	100	6	n	1.4995	58.6
0	Ph	$\mathrm{Et}_{2} \mathrm{~N}$	Et	100	5	0	1.5549	75.5
p	Pr	1-Piperidyl	Et	80	5	p	1.5189	66.7
q	Et	Me	Et	90	5	q	1.5042	75.7
r	Bu	Ph	Et	100	5	r	1.5120	62.5

[^1]TABLE II Data of 2 Prepared

2	$I R\left(\right.$ film), $v\left(\mathrm{~cm}^{-1}\right)$		$\left.{ }^{1} \mathrm{HNMR}^{(C D C l} 3_{3} / \mathrm{TMS}\right) \mathrm{\delta}, \mathrm{~J}_{\text {PH }}\left(\mathrm{Hz}^{\prime}\right)$	Elementary Analyses				
			C\%	H\%				
	$P=O$	$\mathrm{P}-\mathrm{Cl}$		Cacl. Found		Cacl. Found		
a	1223	591		$2.50(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=18.4), 3.90(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=19.3)$	14.95	14.52	3.91	3.74
b	1263	594	$1.00(\mathrm{t}, 3 \mathrm{H}), 1.40(\mathrm{t}, 3 \mathrm{H}), 1.82(\mathrm{~m}, 2 \mathrm{H})$,	29.63	29.74	5.93	6.00	
			$2.92(\mathrm{dt}, 2 \mathrm{H}, \mathrm{J}=16.8), 4.20(\mathrm{dq}, 2 \mathrm{H}, \mathrm{J}=14.1)$					
c	1267	587	$1.35(\mathrm{t}, 3 \mathrm{H}), 3.64(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}=18.1), 4.29(\mathrm{dq}, 2 \mathrm{H}$,	29.92	29.79	4.98	5.13	
			$\mathrm{J}=10.4), 5.22(\mathrm{~d}, 2 \mathrm{H}), 5.88(\mathrm{~m}, 1 \mathrm{H})$					
d	1262	588	1.30(t, 3 H$), 4.11$ ($\mathrm{dq}, 2 \mathrm{H}, \mathrm{J}=14.2$),	43.10	42.84	4.79	4.82	
			$4.31(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=16.2), 7.30(\mathrm{~m}, 5 \mathrm{H})$					
e	1266	596	$1.35(\mathrm{t}, 3 \mathrm{H}), 4.29(\mathrm{dq}, 2 \mathrm{H}, \mathrm{J}=14.3), 7.40(\mathrm{~m}, 5 \mathrm{H})$	40.59	40.30	4.23	4.53	
f	1264	592	$1.45(\mathrm{t}, 3 \mathrm{H}), 3.00(\mathrm{dq}, 2 \mathrm{H}, \mathrm{J}=16.1), 7.26(\mathrm{~m}, 5 \mathrm{H})$	40.59	40.68	4.23	4.52	
g	1265	592	$1.44(\mathrm{t}, 3 \mathrm{H}), 2.96(\mathrm{dq}, 2 \mathrm{H}, \mathrm{J}=16.2), 7.28(\mathrm{~m}, 5 \mathrm{H})$	40.59	40.85	4.23	4.48	
h	1260	587	$0.98(\mathrm{t}, 3 \mathrm{H}), 1.78(\mathrm{~m}, 2 \mathrm{H}), 3.08(\mathrm{dt}, 2 \mathrm{H}, \mathrm{J}=18.7), 7.30(\mathrm{~m}, 5 \mathrm{H})$	43.11	43.19	4.79	4.85	
i	1261	586	$0.98(\mathrm{t}, 3 \mathrm{H}), 1.88(\mathrm{~m}, 2 \mathrm{H}), 3.09(\mathrm{dt}, 2 \mathrm{H}, \mathrm{J}=18.5), 7.30(\mathrm{~m}, 5 \mathrm{H})$	43.11	43.25	4.79	4.54	
j	1265	593	$1.44(\mathrm{t}, 3 \mathrm{H}), 2.95(\mathrm{dq}, 2 \mathrm{H}, \mathrm{J}=16.2), 7.28(\mathrm{~m}, 5 \mathrm{H})$	40.59	40.76	4.23	4.36	
k	1267	590	$1.02(\mathrm{t}, 3 \mathrm{H}), 1.80(\mathrm{~m}, 2 \mathrm{H}), 3.18(\mathrm{dtt}, 2 \mathrm{H}, \mathrm{J}=18.7), 7.40(\mathrm{~m}, 3 \mathrm{H})$	29.75	30.08	2.75	2.73	
1	1226	587	$1.00(\mathrm{t}, 3 \mathrm{H}), 1.74(\mathrm{~m}, 2 \mathrm{H}), 2.48(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=18.7), 2.98(\mathrm{dt}, 2 \mathrm{H}, \mathrm{J}=18.7)$	23.47	23.73	4.89	4.80	
m	1249	579	$1.02(\mathrm{t}, 3 \mathrm{H}), 1.44(\mathrm{t}, 3 \mathrm{H}), 1.80(\mathrm{~m}, 2 \mathrm{H}), 3.05(\mathrm{~m}, 4 \mathrm{H})$	27.46	27.52	5.49	5.48	
n	1240	564	$1.18(\mathrm{t}, 6 \mathrm{H}), 1.40(\mathrm{t}, 3 \mathrm{H}), 2.92(\mathrm{dq}, 2 \mathrm{H}, \mathrm{J}=17.3), 3.24(\mathrm{dq}, 4 \mathrm{H}, \mathrm{J}=14.4)$	33.41	33.72	6.96	6.75	
o	1249	559	$0.97(\mathrm{t}, 3 \mathrm{H}), 3.17-3.30(\mathrm{~m}, 4 \mathrm{H}), 7.36(\mathrm{~m}, 3 \mathrm{H}), 7.58(\mathrm{~m}, 2 \mathrm{H})$	45.54	45.39	5.69	5.47	
p	1249	576	$1.00(\mathrm{t}, 3 \mathrm{H}), 1.60(\mathrm{~m}, 6 \mathrm{H}), 1.75(\mathrm{~m}, 2 \mathrm{H}), 3.22(\mathrm{dt}, 2 \mathrm{H}, \mathrm{J}=16.7), 3.26(\mathrm{~m}, 4 \mathrm{H})$	39.75	39.38	7.04	6.90	
q	1232	593	$1.44(\mathrm{t}, 3 \mathrm{H}), 2.36(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=16.2), 3.12(\mathrm{dq}, 2 \mathrm{H}, \mathrm{J}=21.6)$	22.71	22.89	5.04	5.45	
r	1222	589	$1.00(\mathrm{t}, 3 \mathrm{H}), 1.20 \sim 1.60(\mathrm{~m}, 4 \mathrm{H}), 2.64(\mathrm{dt}, 2 \mathrm{H}, \mathrm{J}=15.1), 7.48(\mathrm{~m}, 5 \mathrm{H})$	48.29	48.01	5.63	5.75	

TABLE III Data of Compounds 4 Prepared

4	$b p\left({ }^{\circ} \mathrm{C} / \mathrm{Pa}\right)$	$n_{D}{ }^{25}$	Yield (\%)	IH NMR ($\left.\mathrm{CDCl}_{3} / \mathrm{TMS}\right) \delta^{\prime} J_{P H}(\mathrm{~Hz})$
a	78~80/266	1.4650	81.5	$2.20(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=15.1), 3.73(\mathrm{~d}, 6 \mathrm{H}, \mathrm{J}=12.6)$
b	76~80/267	1.4560	76.4	$0.93(\mathrm{t}, 3 \mathrm{H}), 1.27(\mathrm{t}, 2 \times 3 \mathrm{H}), 1.65(\mathrm{~m}, 2 \mathrm{H}), 2.76(\mathrm{~m}, 2 \mathrm{H}), 4.08(\mathrm{~m}, 2 \times 2 \mathrm{H})$
c		1.4724	85.7	$1.36(\mathrm{t}, 2 \times 3 \mathrm{H}), 3.48(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}=14.4), 4.18(\mathrm{dq}, 2 \times 2 \mathrm{H}, \mathrm{J}=8.6), 5.20(\mathrm{~d}, 2 \mathrm{H}), 5.79(\mathrm{~m}, 1 \mathrm{H})$
d	140-142/400	1.5216	67.4	$1.25(\mathrm{t}, 2 \times 3 \mathrm{H}), 4.00(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=14.4), 4.04(\mathrm{dq}, 2 \times 2 \mathrm{H}, \mathrm{J}=12.8), 7.28(\mathrm{~m}, 5 \mathrm{H})$
e	134-138/27	1.5136	93.5	$1.28(\mathrm{t}, 2 \times 3 \mathrm{H}), 4.18(\mathrm{dq}, 2 \times 2 \mathrm{H}, \mathrm{J}=8.3), 7.28-7.60(\mathrm{~m}, 5 \mathrm{~S})$
f	113-115/13.3	1.5165	69.9	$1.28(\mathrm{t}, 3 \mathrm{H}), 1.32(\mathrm{t}, 3 \mathrm{H}), 2.85(\mathrm{dq}, 2 \mathrm{H}, \mathrm{J}=15.8), 4.21(\mathrm{dq}, 2 \mathrm{H}, \mathrm{J}=9.8), 7.38(\mathrm{~m}, 5 \mathrm{H})$
g		1.5310	83.1	$0.98(\mathrm{t}, 3 \mathrm{H}), 1.31(\mathrm{t}, 3 \mathrm{H}), 1.70(\mathrm{~m}, 2 \mathrm{H}), 2.80(\mathrm{dq}, 2 \mathrm{H}, \mathrm{J}=15.0), 4.10(\mathrm{dt}, 2 \mathrm{H}, \mathrm{J}=9.8), 7.18(\mathrm{~m}, 5 \mathrm{H})$
h	155~156/400	1.5235	39.5	$1.02(1,3 \mathrm{H}), 1.72(\mathrm{~m}, 2 \mathrm{H}), 2.89(\mathrm{dt}, 2 \mathrm{H}, \mathrm{J}=13.5), 3.90(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=10.7), 7.29(\mathrm{~m}, 5 \mathrm{H})$
i	111-112/27	1.5165	49.7	$0.90(\mathrm{t}, 3 \mathrm{H}), 1.33(\mathrm{t}, 3 \mathrm{H}), 1.63(\mathrm{~m}, 2 \mathrm{H}), 2.83(\mathrm{~m}, 2 \mathrm{H}), 4.25(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{~m}, 5 \mathrm{H})$
j		1.5305	79.2	$0.82(\mathrm{t}, 3 \mathrm{H}), 1.10-1.90(\mathrm{~m}, 4 \mathrm{H}), 1.32(\mathrm{t}, 3 \mathrm{H}), 2.82(\mathrm{dq}, 2 \mathrm{H}, \mathrm{J}=14.8), 4.18(\mathrm{dt}, 2 \mathrm{H}, \mathrm{J}=9.7), 7.18(\mathrm{~m}, 5 \mathrm{H})$
k	110/0.13	1.5511	48.6	$1.00(\mathrm{t}, 3 \mathrm{H}), 1.36(\mathrm{t}, 3 \mathrm{H}), 1.72(\mathrm{~m}, 2 \mathrm{H}), 2.88(\mathrm{dt}, 2 \mathrm{H}, \mathrm{J}=15.9), 4.25(\mathrm{dq}, 2 \mathrm{H}, \mathrm{J}=9.8), 7.43(\mathrm{~m}, 3 \mathrm{H})$
1	111-112/13.3	1.5036	60.0	$1.01(\mathrm{t}, 3 \mathrm{H}), 1.37(\mathrm{t}, 3 \mathrm{H}), 1.73(\mathrm{~m}, 2 \mathrm{H}), 2.33(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=16.9), 2.87(\mathrm{dt}, 2 \mathrm{H}, \mathrm{J}=16.2), 4.21(\mathrm{dq}, 2 \mathrm{H}, \mathrm{J}=9.4)$
m	128~130/267	1.4964	87.7	$0.99(\mathrm{t}, 3 \mathrm{H}), 1.35(\mathrm{t}, 3 \mathrm{H}), 1.37(\mathrm{t}, 3 \mathrm{H}), 1.73(\mathrm{~m}, 2 \mathrm{H}), 2.88(\mathrm{~m}, 4 \mathrm{H}), 4.19(\mathrm{dq}, 2 \mathrm{H}, \mathrm{J}=9.8)$
n		1.4705	75.3	0.90-1.18(m.9H), 1.30(t, 3 H), 1.68(m, 2 H$), 2.70(\mathrm{dq}, 2 \mathrm{H}, \mathrm{J}=14.8), 3.10(\mathrm{~m}, 4 \mathrm{H}), 3.98(\mathrm{dt}, 2 \mathrm{H}, \mathrm{J}=10.2)$
0		1.5221	57.1	$0.96(\mathrm{t}, 2 \times 3 \mathrm{H}), 1.32(\mathrm{t}, 3 \mathrm{H}), 3.04(\mathrm{~m}, 2 \times 2 \mathrm{H}), 4.19(\mathrm{~m}, 2 \mathrm{H}), 7.46(\mathrm{~m}, 5 \mathrm{H})$
P	107~109/5.3	1.4916	66.4	$1.00(\mathrm{t}, 3 \mathrm{H}), 1.32(\mathrm{t}, 3 \mathrm{H}), 1.56 \sim 1.84(\mathrm{~m}, 8 \mathrm{H}) .2 .80(\mathrm{dt}, 2 \mathrm{H}, \mathrm{J}=14.0), 3.16(\mathrm{~m}, 4 \mathrm{H}), 4.06(\mathrm{dq}, 2 \mathrm{H}, \mathrm{J}=11.9)$
q	71~74/267	1.4726	78.7	$1.32(\mathrm{t}, 3 \mathrm{H}), 1.40(\mathrm{t}, 3 \mathrm{H}), 1.78(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=18.0), 2.90(\mathrm{dq}, 2 \mathrm{H}, \mathrm{J}=12.2), 4.12(\mathrm{dq}, 2 \mathrm{H}, \mathrm{J}=10.8)$
r		1.5239	41.7	$0.76(\mathrm{t}, 3 \mathrm{H}), 1.32(\mathrm{t}, 3 \mathrm{H}), 1.04 \sim 1.64(\mathrm{~m}, 4 \mathrm{H}), 2.68(\mathrm{dt}, 2 \mathrm{H}, \mathrm{J}=15.1), 4.19(\mathrm{dq}, 2 \mathrm{H}, \mathrm{J}=9.2), 7.68(\mathrm{~m}, 5 \mathrm{H})$

The chlorination reaction of phosphoro(-no)thiolates 4 can be performed under mild conditions. It also provides a new synthetic pathway for various S-alkyl(aryl) thiophosphoro(no)chloridates, particularly for chiral ones, which are often those important intermediates for synthesis of S-alkyl(aryl) thiophosphoric(-nic) acids derivatives probably possessing extensive biological activity. For example, the achiral S-propyl thiophosphate $4 \mathrm{~b},(\mathrm{EtO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{SPr}$, can be converted into the chiral S-propyl thiophosphorochloridate $\mathbf{2 b}$, (EtO) $(\mathrm{PrS}) \mathrm{P}(\mathrm{O}) \mathrm{Cl}$, in a good yield (Table I$), \mathbf{2 b}$ is a key synthetic intermediate for several excellent S-propyl O-ethyl O-aryl thiophosphates insecticides, such as Profenofos, Diphenprofos, Heterophos, and Pyraclofos.

EXPERIMENTAL

All temperatures are uncorrected. IR spectra were recorded on a NICOLET 5DX spectrophotometer as thin film. ${ }^{1} \mathrm{H}$ NMR spectra were measured on a JEOL FX-90Q instrument at 90 MHz , using TMS as internal standard and CDCl_{3} as solvent. Elementary microanalysis data were determined with a Yanaco MT-3 instrument. For column chromatography, Qingdao silica gel (200~300 mesh) was used as a stationary phase. Phosphorus oxychloride was used after redistilled. Other reagents are commercial.

O-Alkyl S-alkyl(aryl) thiophosphoric(-nic) acid derivatives 4

According to a general procedure described in a previous literature ${ }^{[10]}, 4 a$ was prepared from the reaction of O, O-dimethyl ammonium thiophosphate with methyl iodide. Similarly, 4b~d, 4f and 4i were prepared from reactions of their corresponding ammonium or sodium thiophosphates with appropriate alkyl halides RX (R is the same as in $4, \mathrm{X}$ is Cl, Br), respectively. O-Ethyl S-propyl ammonium phosphorodithioate and O-ethyl sodium phenylphosphonothioate reacted separately with butyl bromide giving 4 m and 4 r . According to an ordinary method, S-ethyl thiophosphoryl dichloride reacted with diethylamine or phenol to produce the corresponding thiophosphorochloridate, which in turn condensed with propanol or butanol giving $4 \mathrm{~g}, 4 \mathrm{j}$ and $4 \mathrm{n} .4 \mathrm{~h}, 4 \mathrm{k}$ and 41 were prepared as
described in the literatures ${ }^{[2,11,12]}$, Using a known procedure ${ }^{[13]}$, triethyl phosphorous acid ester reacted with phenylsulfur chloride to afford 4 e , which further reacted with phosphorus oxychloride followed by condensation with diethylamine to give 40 . Compounds 4 prepared above were purified by distillation under reduced pressure or by column chromatography on silica gel. Their data are listed in Table III.

The chlorination reaction of thiophosphoric(-nic) acids deriveratives 4 with phosphorus oxychloride (General procedure)

A mixture of 4 and phosphorus oxychloride (equiv.) was heated with stirring at $65 \sim 100^{\circ} \mathrm{C}$ for $2.5 \sim 11 \mathrm{~h}$ until 4 disappeared from the reaction mixture (TLC control, petroleum ether / ethyl acetate 5:1 as eluent, iodine as detecting reagent). After the reaction was complete, by-product 3 was removed by distillation under reduced pressure. The crude product 2 was purified by vacuum liquid chromatography on silica gel (petroleum ether / ethyl acetate, gradient elution) to give pure 2 (Table I, II).

Acknowledgements

The authors wish to thank Natural Science Foundation of Tianjin City and State Key Laboratory of Elemento-Organic Chemistry for financial support.

References

[1] C.C. Tang, G.P. Wu, G.Z. Zhang, Synthesis, 1991, 454.
[2] C.C. Tang, G.P. Wu, Chem. J. Chinese Univ., 1993, 14, 642.
[3] C.C. Tang, G.P. Wu, G.Y. Huang, Z. Li, G.Y. Jin, Phosphorus, Sulfur and Silicon, 1993, 84, 159.
[4] C.C. Tang, G.P. Wu, S.J. He, Z.J. He, ibid, 1995, 101, 91.
[5] C.C. Tang, F.P. Ma, K. Zhang, Z.J. He, Y.C. Jin, Heteroatom Chem., 1995, 6, 413.
[6] C.C. Tang, H.F. Lang, Z.J. He, ibid, 1996, 7, 207.
[7] C. C. Tang, F. P. Ma, Z. J. He, Chem. J. Chinese Univ., 1997, 18, 229.
[8] H. Tolkmith, U.S. Patent 2654780 (1953).
[9] E. Cherbuliez, G. Cordahi, J. Rabinowitz, Helv. Chim. Acta, 1959, 42, 590.
[10] C.C. Tang, G.P. Wu, Y.X. Chai, Chem. J. Chinese Univ., 1981, 2, 70.
[11] C.C. Tang, F.P. Ma, M.J. Zhang, Z. Li, Chem. J. Chinese Univ., 1994, 15, 1327.
[12] C.C. Tang, L.Z. Liu, G.P. Wu, Z. Li, Chinese Patent 94108485 (1994).
[13] N.M. Yousif, K.Z. Gadalla, S.M. Yassin, Phosphorus, Sulfur and Silicon, 1991, 60, 261.

[^0]: * Correspondence author.

[^1]: * The isolated yields by column chromatography

