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Abstract: The treatment of O-glycoside with alcohol in the pres-
ence of montmorillonite K10 clay and 4-Å MS yields the 1,4-aryl
migration product with a 1,2-cis-phenyl C-glycoside scaffold and a
chiral silyl moiety with high stereoselectivity.

Key words: asymmetric synthesis, aryl C-glycosides, chiral sil-
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Aryl C-glycosides constitute an important class of the C-
glycoside family of natural products and have attracted
considerable interest because of their diverse biological
activities and resistance to acidic and enzymatic hydroly-
sis.1 Therefore a number of methods have been developed
for the stereoselective formation of the aryl C-glycoside
linkage.2 Among these methods, the reactions of glycosyl
donors by intermolecular Friedel–Crafts couplings or by
reactions with aryl metal reagents have been well estab-
lished and these reactions yielded 1,2-trans-aryl C-glyco-
sides, predominantly. In contrast, access to the
thermodynamically more unfavorable 1,2-cis-aryl C-gly-
cosides remains relatively undeveloped.3 To this end, we
have recently reported that montmorillonite K10 clay pro-
moted 1,4-aryl or alkenyl migration from silicon to the C1
carbon in cyclic N,O-acetal systems.4–6 The unique fea-
tures of this reaction are as follows: (i) the aryl or alkenyl
group on the siloxy group migrates intramolecularly in a
cis fashion, and (ii) a concomitant nucleophilic substitu-
tion of the alkoxy group on the silicon atom proceeds with
high stereoselectivity. On the basis of this result, we envi-
sioned that a similar aryl migration of O-glycoside A with

a tert-butyldiphenylsilyl group at the C2 hydroxyl group
could afford the phenyl C-glycosides B in a 1,2-cis fash-
ion (Scheme 1). Desilylation of B would provide C2 hy-
droxy phenyl C-glycoside C. Furthermore, the treatment
of phenyl C-glycosides B with a base would cause b-elim-
ination and provide enantioenriched silanols D, which are
otherwise difficult to obtain. Here, we report the details of
the aryl migration in cyclic acetal systems, which provide
an effective approach to the stereoselective synthesis of
1,2-cis-phenyl C-glycosides as well as chiral silanol.

At the outset, we attempted the phenyl migration of the
simple five-membered cyclic hemiacetal 1a with the (tert-
butyldiphenylsilyl)oxy group at the C2 position; the cy-
clic hemiacetal 1a was easily prepared from commercially
available (S)-a-hydroxy-g-butyrolactone (97% ee) in two
steps [(i) TBDPSCl, imidazole and (ii) DIBAL]. The reac-
tion was performed according to the previously developed
protocol; the cyclic hemiacetal 1a was treated with two
equivalents of benzyl alcohol in the presence of K10 and
4-Å MS in CH2Cl2 at 0 °C for 12 hours, providing the cor-
responding aryl migration product 2 in 71% yield with
90% diastereomeric ratio (Scheme 2).7,8 Some of the aryl
migration product 2 may be produced through benzyl ac-
etal 1b; indeed a similar reaction of separately prepared
1b9 also provided 2 in 46% yield with 90% dr.

The exposure of the phenyl migration product 2 to TBAF
afforded alcohol 3a as a single diastereomer, which means
that the diastereomer of 2 is derived from the silicon ste-
reocenter. The C1–C2 relationship of 3a was determined
by the NOE correlations of the corresponding acetate 3b

Scheme 1 Stereoselective synthesis of 1,2-cis-phenyl C-glycoside and chiral silanol via 1,4-phenyl migration of O-glycoside
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as a cis configuration. Next, we examined the liberation of
the chiral silicon moiety as a silanol by b-elimination. As
expected, the treatment of 2 with n-BuLi in THF smoothly
afforded enantioenriched benzyloxysilanol (S)-4 with
78% ee.10,11 This result indicates that the silicon stereo-
center of the major stereoisomer of 2 has an R configura-
tion.

A plausible mechanism of this aryl migration is shown in
Scheme 3. The reaction most likely proceeds through an
intramolecular Friedel–Crafts reaction between one of the
phenyl groups in TBDPS and an oxonium ion i generated
from 1a or 1b (vide supra) to form the silyl-stabilized cat-
ion ii, which is then collapsed by alcohol attack on silicon
to obtain the ipso-substituted product4 as the 1S,2S,RSi

configuration.

A similar reaction of pantolactone derivative 5 was also
examined (Scheme 4). Cyclic hemiacetal 5, derived from
commercially available (R)-pantolactone (>98% ee) in
two steps, was subjected to the same conditions men-
tioned above to obtain the phenyl-migration product 6 in
moderate yield with >95% cis at the C1–C2 relationship
and 93% dr at the silicon stereocenter (SSi) was yielded. Its
1,2-cis and SSi stereochemistries were established by the
transformation to 7 (>95% cis)12 or benzyloxysilanol (R)-
4 (85% ee), respectively.13

Thus, the developed phenyl migration protocol was also
applicable to the six-membered cyclic acetal system
(Scheme 5). The reaction of acetal 1014 resulted in the ex-
clusive formation of the corresponding phenyl migration
product 11 in a highly stereoselective manner to provide
>95% cis at the C1–C2 relationship and 90% dr at the sil-
icon stereocenter.15

Then, we explored the aryl migration of carbohydrate de-
rivatives leading to 1,2-cis-phenyl C-glycosides
(Scheme 6). D-Xylose-derived acetal 1314,16 was subject-
ed to similar conditions; this resulted in the formation of
the desired phenyl C-xylofuranoside 14 in 48% yield
(77% based on the recovered starting material) with >95%
dr at the C1–C2 relationship and 81% dr at the silicon cen-

Scheme 2 Phenyl migration of the five-membered cyclic hemiacetal 1a
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Scheme 4 Phenyl migration of cyclic hemiacetal 5 derived from (R)-pantolactone
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ter, but full consumption of the starting material was not
realized.17 The diastereomeric ratio based on the C1 and
C2 stereogenic centers in 14 was determined by 1H NMR
analysis of the desilylated derivative 15. The C1–C2 rela-
tive stereochemistry of 14 was determined as cis configu-
ration by the NOE correlations of 15.

In summary, we have described the aryl migration that oc-
curs on C2 (tert-butyldiphenylsilyl)oxy cyclic acetal de-
rivatives treated with alcohol under the action of K10 and
4-Å MS in a highly stereoselective manner. This reaction
is an excellent method for the stereoselective synthesis of
1,2-cis-phenyl C-glycosides, since (i) TBDPSCl, a com-
mercially available and common reagent, is a  source of
phenyl groups, (ii) reactive organometallic reagents are
not required in the aryl migration process, and (iii) the re-
action does not need extreme care about moisture, which
differs from typical Lewis acid mediated aryl substitution
in O-glycosides. Further, a combination of aryl migration
and base-treatment-induced b-elimination provides an ef-
fective method for obtaining enantioenriched silanols,
which are otherwise difficult to obtain.18
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4.61 (br dd, J = 3.3, 6.0 Hz, 1 H), 4.36 (q, J = 7.8 Hz, 0.9 H), 
4.31 (q, J = 8.1 Hz, 0.1 H), 4.05 (dt, J = 4.8, 7.8 Hz, 0.9 H), 
4.03–3.97 (m, 0.1 H), 2.29–2.14 (m, 2 H), 0.88 (s, 8.1 H), 
0.81 (s, 0.9 H). 13C NMR (75 MHz, CDCl3): d = 140.84, 
138.17, 135.42, 130.95, 129.95, 129.84, 128.35, 128.27, 
128.19, 127.87, 127.80, 127.60, 127.54, 127.43, 127.04, 
126.94, 125.66, 88.56, 85.42, 74.82, 74.59, 66.99, 66.84, 
64.79, 64.50, 36.76, 36.58, 26.10, 26.00, 19.00, 18.70. IR 
(neat): 3068, 3032, 2934, 2862, 1951, 1895, 1810, 1723, 
1669, 1605, 1593, 1495, 1475, 1456, 1431, 1064 cm–1. Anal. 
Calcd for C27H32O3Si: C, 74.96; H, 7.46. Found: C, 74.91; H, 
7.20.
Compound 3a (>95% dr by 1H NMR analysis): [a]D

24 
+130.3 (c 1.40, CHCl3). 

1H NMR (300 MHz, CDCl3): 
d = 7.43–7.27 (m, 5 H), 4.90 (d, J = 3.6 Hz, 1 H), 4.41 (br s, 
1 H), 4.27 (q, J = 8.7 Hz, 1 H), 4.03 (dt, J = 4.2, 8.7 Hz, 1 H), 
2.28 (ddt, J = 13.2, 4.2, 8.7 Hz, 1 H), 2.15 (dddd, J = 13.2, 
8.7, 4.2, 1.5 Hz, 1 H), 1.19 (s, 1 H). 13C NMR (75 MHz, 
CDCl3): d = 136.97, 128.66, 127.99, 126.80, 85.14, 73.72, 
67.07, 34.93. IR (neat): 3392, 3066, 3032, 2928, 2884, 1957, 
1895, 1820, 1493, 1454, 1125, 1083, 1060, 1029, 739, 700 
cm–1. ESI-HRMS: m/z calcd for C10H12O2Na: 187.0729; 
found: 187.0734.
Compound 6 (93% dr at Si by 1H NMR analysis): 1H NMR 
(300 MHz, CDCl3): d = 7.51–7.47 (m, 0.2 H), 7.43–7.27 (m, 
10.8 H), 7.20–7.14 (m, 2 H), 6.96–6.92 (m, 2 H), 5.10 (d, 
J = 4.8 Hz, 0.07 H), 5.04 (d, J = 4.2 Hz, 0.93 H), 4.90 (d, 
J = 13.2 Hz, 0.93 H), 4.84 (d, J = 13.2 Hz, 0.93 H), 4.64 (d, 
J = 13.5 Hz, 0.07 H), 4.56 (d, J = 13.5 Hz, 0.07 H), 4.37 (d, 
J = 4.8 Hz, 0.07 H), 4.18 (d, J = 4.8 Hz, 0.93 H), 3.98 (d, 
J = 7.8 Hz, 0.93 H), 3.91 (d, J = 7.8 Hz, 0.07 H), 3.62 (d, 
J = 7.8 Hz, 0.93 H), 3.56 (d, J = 7.8 Hz, 0.07 H), 1.23 (s, 
2.79 H), 1.15 (s, 2.79 H), 1.02 (s, 0.42 H), 0.86 (s, 8.37 H), 
0.75 (s, 0.63 H). 13C NMR (75 MHz, CDCl3): d = 140.77, 
138.54, 135.42, 131.11, 129.69, 129.08, 128.36, 127.90, 
127.64, 127.51, 127.07, 125.86, 85.66, 81.97, 79.11, 65.39, 
44.94, 26.52, 26.05, 21.02, 19.11. IR (neat): 3068, 3032, 
2966, 2862, 1949, 1870, 1810, 1740, 1607, 1593, 1473, 
1456, 1065, 733, 698 cm–1. ESI-HRMS: m/z calcd for 
C29H36O3NaSi: 483.2331; found: 483.2310.
Compound 7 (>95% dr by 1H NMR analysis):  1H NMR (300 
MHz, CDCl3): d = 7.42–7.27 (m, 5 H), 5.30 (d, J = 3.6 Hz, 1 
H), 3.96 (d, J = 7.5 Hz, 1 H), 3.80 (br t, J = 3.0 Hz, 1 H), 3.72 
(d, J = 7.5 Hz, 1 H), 1.21 (s, 3 H), 1.15 (s, 3 H), 1.07 (br s, 1 
H). 13C NMR (75 MHz, CDCl3): d = 137.80, 128.69, 127.88, 
126.73, 84.48, 80.61, 79.01, 44.21, 25.82, 19.41. IR (neat): 
3342, 2960, 1950, 1900, 1830, 1466, 1309, 1096, 1038, 739, 
700 cm–1. Anal. Calcd for C12H16O2: C, 74.97; H, 8.39. 
Found: C, 74.86; H, 8.16.
Compound 11 (90% dr at Si by 1H NMR analysis): 1H NMR 
(300 MHz, CDCl3): d = 7.63–7.61 (m, 0.3 H), 7.48–7.13 (m, 
10.7 H), 7.17 (t, J = 7.5 Hz, 2 H), 6.99 (t, J = 7.5 Hz, 2 H), 
4.76 (d, J = 13.5 Hz, 1 H), 4.65 (d, J = 13.5 Hz, 1 H), 4.43 
(s, 1 H), 4.27–4.22 (m, 1 H), 4.09 (s, 1 H), 3.90–3.80 (m, 0.1 
H), 3.66 (dt, J = 2.6, 12.6 Hz, 0.9 H), 2.42–2.00 (m, 2 H), 
1.84–1.73 (m, 1 H), 1.40 (br d, J = 13.5 Hz, 1 H), 0.95 (s, 8.1 
H), 0.83 (s, 0.9 H). 13C NMR (75 MHz, CDCl3): d = 141.02, 
140.79, 135.89, 135.47, 135.39, 131.20, 129.59, 128.28, 
128.17, 127.99, 127.88, 127.62, 127.51, 127.41, 127.28, 
127.17, 126.93, 126.78, 126.73, 125.63, 82.58, 69.80, 69.55, 
68.87, 68.77, 64.63, 31.34, 26.37, 26.31, 20.26, 19.04. IR 
(neat): 2930, 2856, 1961, 1898, 1808, 1453, 1115, 1098, 
1071, 1026 cm–1. ESI-HRMS: m/z calcd for C28H34O3NaSi: 
469.2169; found: 469.2159.
Compound 12 (>95% dr by 1H NMR analysis): 1H NMR 
(300 MHz, CDCl3): d = 7.38–7.25 (m, 5 H), 4.50 (d, J = 1.2 
Hz, 1 H), 4.18 (ddt, J = 11.1, 4.5, 1.8 Hz, 1 H), 3.94–3.91 (m, 

1 H), 3.65 (ddd, J = 12.3, 11.1, 2.4 Hz, 1 H), 2.17–2.02 (m, 
2 H), 1.92–1.78 (m, 1 H), 1.72 (d, J = 5.4 Hz, 1 H), 1.48–
1.42 (m, 1 H). 13C NMR (75 MHz, CDCl3): d = 139.64, 
128.49, 127.52, 125.81, 81.18, 68.96, 68.01, 30.25, 19.92. 
IR (neat): 3454, 2947, 2849, 1958, 1887, 1813, 1451, 1267, 
1216, 1091, 1057, 1003, 725, 699 cm–1.
Compound 13 (63% dr by 1H NMR analysis): 1H NMR (300 
MHz, CDCl3): d = 7.76–7.65 (m, 4.14 H), 7.50–7.21 (m, 
14.6 H), 7.11–7.07 (m, 1.26 H), 4.86 (s, 0.63 H), 4.63–4.58 
(m, 0.37 H), 4.62 (d, J = 12.0 Hz, 0.63 H), 4.59 (d, J = 11.7 
Hz, 0.37 H), 4.57 (d, J = 11.7 Hz, 0.37 H), 4.54 (d, J = 12.0 
Hz, 0.63 H), 4.51 (d, J = 11.7 Hz, 0.37 H), 4.46 (d, J = 11.7 
Hz, 0.37 H), 4.39 (dt, J = 6.3, 3.9 Hz, 0.37 H), 4.35–4.27 (m, 
1.63 H), 4.20 (d, J = 12.3 Hz, 0.63 H), 4.18 (d, J = 3.9 Hz, 
0.37 H), 3.95 (d, J = 12.3 Hz, 0.63 H), 3.82 (br dd, J = 5.1, 
1.2 Hz, 0.63 H), 3.74 (dd, J = 10.2, 5.1 Hz, 0.63 H), 3.70 (dd, 
J = 10.2, 6.9 Hz, 0.63 H), 3.66 (dd, J = 10.5, 3.9 Hz, 0.37 H), 
3.51 (dd, J = 10.5, 6.3 Hz, 0.37 H), 3.24 (s, 1.11 H), 3.23 (s, 
1.89 H), 1.12 (s, 3.33 H), 1.09 (s, 5.67 H). 13C NMR (75 
MHz, CDCl3): d = 138.38, 138.25, 138.28, 138.07, 136.08, 
135.90, 134.87, 133.80, 133.40, 133.22, 133.15, 130.08, 
129.85, 129.79, 128.38, 128.32, 128.24, 127.91, 127.83, 
127.70, 127.62, 127.56, 127.49, 127.44, 110.49, 101.59, 
83.54, 83.46, 81.02, 79.96, 78.01, 75.55, 73.54, 73.48, 
73.27, 71.49, 69.90, 69.68, 26.98, 26.95, 19.22. IR (neat): 
3072, 3034, 2934, 2862, 1963, 1891, 1827, 1473, 1456, 
1429, 1112, 1060, 822, 739, 700 cm–1. Anal. Calcd for 
C36H42O5Si: C, 74.19; H, 7.26. Found: C, 74.38; H, 7.36.
Compound 14 (81% dr at Si by 1H NMR analysis): 1H NMR 
(300 MHz, CDCl3): d = 7.56 (d, J = 1.5 Hz, 0.19 H), 7.54 (d, 
J = 1.5 Hz, 0.19 H), 7.47–7.12 (m, 18 H), 6.98 (d, J = 1.5 Hz, 
0.81 H), 6.95 (d, J = 1.5 Hz, 0.81 H), 5.22 (d, J = 3.0 Hz, 
0.19 H), 5.20 (d, J = 3.0 Hz, 0.81 H), 4.76 (dt, J = 3.6, 6.0 
Hz, 1 H), 4.70 (d, J = 12.0 Hz, 0.81 H), 4.68 (d, J = 12.0 Hz, 
0.19 H), 4.57 (d, J = 12.0 Hz, 0.81 H), 4.56 (d, J = 12.0 Hz, 
0.81 H), 4.55 (d, J = 12.0 Hz, 0.19 H), 4.45 (d, J = 12.0 Hz, 
0.81 H), 4.42 (dd, J = 3.3, 0.9 Hz, 0.19 H), 4.36 (dd, J = 2.7, 
1.2 Hz, 0.81 H), 4.33 (d, J = 12.0 Hz, 0.19 H), 4.21 (d, 
J = 12.0 Hz, 0.19 H), 4.18 (dd, J = 3.6, 1.2 Hz, 0.81 H), 4.05 
(dd, J = 3.6, 1.2 Hz, 0.19 H), 3.85 (dd, J = 9.9, 6.0 Hz, 0.81 
H), 3.81 (dd, J = 9.9, 6.0 Hz, 0.81 H), 3.78 (d, J = 6.0 Hz, 
0.38 H), 3.47 (s, 2.43 H), 3.07 (s, 0.57 H), 0.79 (s, 7.29 H), 
0.77 (s, 1.71 H). 13C NMR (75 MHz, CDCl3): d = 138.38, 
138.04, 137.54, 135.37, 130.55, 130.13, 129.90, 128.43, 
128.15, 128.07, 127.98, 127.93, 127.78, 127.62, 127.57, 
127.48, 127.35, 85.32, 85.09, 83.44, 80.04, 79.75, 77.17, 
73.69, 72.31, 69.08, 51.96, 26.21, 25.97, 18.62. IR (neat): 
3068, 3032, 2934, 2862, 1953, 1890, 1810, 1087 cm–1. Anal. 
Calcd for C36H42O5Si: C, 74.19; H, 7.26. Found: C, 74.09; H, 
7.09.
Compound 15 (>95% dr by 1H NMR analysis): [a]D

24 –63.2 
(c 1.07, CHCl3). 

1H NMR (300 MHz, CDCl3): d = 7.40–7.28 
(m, 15 H), 5.33 (d, J = 3.3 Hz, 1 H), 4.72 (d, J = 12.0 Hz, 1 
H), 4.69 (d, J = 12.3 Hz, 1 H), 4.67 (ddd, J = 6.6, 5.7, 4.2 Hz, 
1 H), 4.65 (d, J = 12.0 Hz, 1 H), 4,57 (d, J = 12.3 Hz, 1 H), 
4.27 (br s, 1 H), 4.17 (br dd, J = 4.2, 1.2 Hz, 1 H), 3.84 (dd, 
J = 9.9, 5.7 Hz, 1 H), 3.80 (dd, J = 9.9, 6.6 Hz, 1 H), 1.27 (br 
s, 1 H). 13C NMR (75 MHz, CDCl3): d = 138.41, 138.05, 
136.36, 128.74, 128.53, 128.43, 128.14, 127.86, 127.64, 
127.57, 126.83, 84.19, 83.01, 80.21, 76.45, 73.56, 72.70, 
68.88. IR (neat): 3432, 3066, 3032, 2924, 2870, 1955, 1883, 
1814, 1497, 1456, 1083, 737, 698 cm–1. ESI-HRMS: m/z 
calcd for C25H26O4Na: 413.1723; found: 413.1707.

(9) Benzyl acetal 1b was prepared from cyclic hemiacetal 1a 
and benzyl alcohol in the presence of a catalytic amount of 
PPTS.
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(10) The stereochemistry and ee of benzyloxysilanol (S)-4 was 
established by chiral HPLC analysis [CHIRALCEL OD 
column, hexane–i-PrOH = 150:1, flow rate = 0.6 mL/min, 
detection 254 nm light; tR = 36.5 (major isomer), 41.9 min 
(minor isomer)].

(11) A few synthetic methods for enantioenriched silanol have 
been reported. For resolution or separation of racemic or 
diastereomeric silanols, see: (a) Tacke, R.; Linoh, H.; Ernst, 
L.; Moser, U.; Mutschler, E.; Sarge, S.; Cammenga, H. K.; 
Lambrecht, G. Chem. Ber. 1987, 120, 1229. (b) Yamamoto, 
K.; Kawanami, Y.; Miyazawa, M. J. Chem. Soc., Chem. 
Commun. 1993, 436. (c) Feibush, B.; Woolley, C. L.; Mani, 
V. Anal. Chem. 1993, 65, 1130. (d) Mori, A.; Toriyama, F.; 
Kajiro, H.; Hirabayashi, K.; Nishihara, Y.; Hiyama, T. 
Chem. Lett. 1999, 549. (e) Yamamura, Y.; Toriyama, F.; 
Kondo, T.; Mori, A. Tetrahedron: Asymmetry 2002, 13, 13. 
For stereospecific oxidation of enantioenriched silanes or 
halosilanes, see: (f) Cavicchioli, M.; Montanari, V.; Resnati, 
G. Tetrahedron Lett. 1994, 35, 6329. (g) Adam, W.; 
Mitchell, C. M.; Saha-Möller, C. R.; Weichold, O. J. Am. 
Chem. Soc. 1999, 121, 2097; and references therein.

(12) All spectral data of 7 matched with those reported in the 
following literature: Angle, S. R.; Neitzel, M. L. J. Org. 
Chem. 1999, 64, 8754.

(13) A similar reaction of hemiketal 8a provided the correspond-
ing phenyl migration product 9 in 93% dr, albeit in low yield. 
The stereochemistry of 9 was assumed on the basis of the 
reaction mechanism (Scheme 7).

(14) Due to their ease of preparation, we chose acetals 10 and 13 
as substrates, rather than the corresponding hemiacetals.

(15) All spectral data of 12 matched those reported in the 
following literature: Schmidt, B. J. Org. Chem. 2004, 69, 
7672.

(16) Methyl acetal 13 was prepared from D-xylose in five steps: 
(1) acetone, cat. H2SO4, (2) 0.2% aq HCl, 97% (two steps), 
(3) NaH, BnBr, 87%, (4) cat. H2SO4, MeOH, 96%, and (5) 
TBDPSCl, imidazole, 72%. (a) Levene, P. A.; Raymond, A. 
L. J. Biol. Chem. 1933, 102, 317. (b) Baker, B. R.; Schaub, 
R. E. J. Am. Chem. Soc. 1955, 77, 5900. (c) Martin, O. R.; 
Rao, S. P.; El-Shenawy, H. A.; Kurz, K. G.; Cutler, A. B. 
J. Org. Chem. 1988, 53, 3287.

(17) The starting material 13 was not consumed after 2 d at r.t.
(18) We have already demonstrated that enantioenriched silanol 

bearing allyloxy group can be converted into a chiral 
allylsilane, which is a more useful and versatile chiral 
building block. See: Nakazaki, A.; Nakai, T.; Tomooka, K. 
Angew. Chem., Int. Ed. 2006, 45, 2235.
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