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Communications 
Synthesis of Monocrotaline by Nucleophilic 
Macrolactonization 

Summary: Monocrotaline (2) has been prepared by a 
sequence involving the coupling of 10 with 6, followed by 
nucleophilic ring closure. The cyclization step involes 
mesylate displacement by carboxylate ion, generated in 
situ via the desilylation of a @-(trimethylsilyl)ethyl ester 
3. 

Sir: Macrocyclic dilactone pyrrolizidine alkaloids derived 
from retronecine (1) are remarkable for their potent he- 
patotoxic and antitumor activity and for their role as de- 
fensive agents and pheremone precursors in Danaid but- 
terflies.' Syntheses of some of the simpler dilactones are 
known,2 but the important 11-membered derivative mon- 
ocrotaline (2) poses special problems (Chart I). In par- 
ticular, its tendency for y-lactone formation complicates 
possible synthetic ~trategies .~ 

Previous work on the fulvine-crispatine series suggested 
that fluoride-induced cyclization of mesylate 3 to dilactone 
acetal 4 should be possible.2a This procedure is well-suited 
for complex pyrrolizidine dilactones because it avoids the 
risks of internal cyclization associated with electrophilic 
carboxyl activation methods. To confirm that acetal 4 
could be deprotected, monocrotaline (2) was converted into 
4 (methylal/PzO5/CHCl3, room temperature, 98%)4 and 
4 was subjected to acid hydrolysis. Although some deg- 
radation proved unavoidable, a 75% yield of monocrotaline 
could be obtained at  50% conversion by treatment of 4 
with 38% HC1+ ethylene glycol (110 OC, 2 h). The syn- 
thetic problem therefore depends on the preparation of 
3 and its conversion into 4. 

Two routes to 3 have been devised, both of which involve 
the protected glutaric anhydride derivative 5. In the first 
route, 4 derived from natural retronecine was saponified 
(LiOH, 35 "C; quantitative) and the resulting diacid was 
cyclized to optically pure 5 by using dicyclohexylcarbo- 
diimide (THF, room temperature, quantitative). A second 
route (Scheme I) involved a series of conventional steps 
from 2,3,4-trimethylcyclopent-2-enone5 and produced dJ-5. 
In either case, treatment of 5 with 2-(trimethylsilyl)ethanol 
(pyridine/THF, 40 "C, 17 h) occurred with interesting 
selectivity to give 6 and 7 in a 6:l ratio, 95%. These 
structures were established by conversion of 6 into 8 
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(NaE3H4 + BF3, 85%; 'H NMR, OCH,CH at 6 4.45,3.95, 
JAB = 11.0 Hz, JAx = 3.5 Hz, JBX = 6.0 Hz) and 7 into 9 
(86%; 'H NMR, OCH, at  6 4.20, 4.15, JAB = 11.0 Hz). 

Selective anhydride cleavage at the more highly sub- 
stituted carbonyl group has been attributed to the ap- 
proach trajectory in other systems.6 However, the dom- 
inant fador in the case of 5 is probably the electronic effect 
of an alkoxy group a to carbonyl. Attack from the exo side 
(relative to the bicyclic subunit) could thus benefit from 
the anti alkoxy orientation which is invoked in Felkin-Anh 
transition  state^.^ 
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The optically active monoester 6 was coupled in 65% 
yield by using the mixed phosphoric anhydride method 
(1 equiv of n-BuLi, THF, -78 "C; (EtO),POCl to room 
temperature) with optically pure 10, obtained from 1 by 
treatment with t-BuMe2SiC1 (TBSCl) followed by n-bu- 
tyllithium (Scheme 11). The resulting diester 11 was 
deprotected with 5% aqueous HF in THF to give 12 
(96%). This material was converted into the mesylate 3 
(MsC1/Et3N/CH2Cl2) and crude 3 was added over 3 h to 
excess Bu4N+F.3H20 in acetonitrile at 34 OC to effect ring 
closure to the monocrotaline acetal 4 (71% yield). 

The possibility of using d,l-6 in the coupling with 10 was 
explored briefly. Thus, d,l-6 was converted into the mixed 
phosphoric anhydride as before and then treated with a 
deficiency of optically pure 10. Although a modest 2:l 
enantiomer differentiation in favor of the natural isomer 
11 was observed, this procedure did not utilize the pre- 
cursor 6 efficiently. Further experiments with 11 derived 
from d,l-7 were restricted to demonstrating that this ma- 
terial could be cyclized to the d,l dilactone 4 via the de- 
silylation of 3. 

Deprotection of 4 as described earlier affords 2. Coupled 
with recent efforts in the synthesis of (&)- or (+)-retro- 
necine? this study completes the total synthesis of mon- 
ocrotaline. Furthermore, the sequence confirms the gen- 
erality of the nucleophilic cyclization method for synthesis 
of retronecine-derived dilactones. As in our earlier report,% 
the 2-(trimethylsily1)ethyl ester is converted in situ to a 
tetrabutylammonium carboxylate under dilution condi- 
tions which favor intramolecular displacement of mesylate. 
Attempts to extend this cyclization method to a relatively 
simple macrolide have not been pr~mis ing ,~  but the pro- 
cedure is remarkably effective in the case of pyrrolizidine 
alkaloids. There are now four successful examples of cy- 
clization to 11-membered retronecine dilactones,2a as well 
as a recent extension to a 12-membered analogue.2e 
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Kinetic and Product Hydrogen-Deuterium Isotope 
Effects in Ene Reactions: A Model for 
Understanding Apparently Anomalous Effects 
Summary: Cases in which a concerted and a stepwise ene 
reaction show an apparently anomalous change in a 
product hydrogen-deuterium isotope effect with electro- 
philic activation of the eneophile are reported and shown 
to be consistent with a kinetic scheme in which a reaction 
intermediate can partition between the steps of reversal, 
equilibration of geometrically defined species, and con- 
version to product. 

Sir: Comparisons of kinetic and product hydrogen-deu- 
terium isotope effects have been a powerful tool for making 
choices between concerted and stepwise mechanisms of a 
number of formal ene reactions.lt2 Equal kinetic and 
product isotope effects in inter- and intramolecular com- 
petitions usually are taken as evidence for concert in a 
single bond-making and bond-breaking step, although 
Orfanopoulous, Foote, and Smonou recently have made 
a qualitative suggestion that low isotope effects may be 
interpreted in terms of partially equilibrating reaction 
 intermediate^.^^ Unequal kinetic and product isotope 
effects usually are taken to establish the presence of a 
reaction intermediate.,-' In this paper we report apparent 
anomalies in product isotope effects accompanying acti- 
vation of the eneophile in both concerted and stepwise 
mechanisms of the ene reaction. We provide a framework 
for the interpretation of kinetic and product isotope effects 
and illustrate how such isotope effects can be quantita- 
tively interpreted in terms of partitioning of a reaction 
intermediate. 

The isotope effects for the thermal and catalyzed ene 
reactions of methylenecyclohexane (l), 2,2-dideuterio- 
methylenecyclohexane (1-d,), and 2,2,6,6-tetradeuterio- 
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