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ABSTRACT: We report for the first time cyclic phosphine-free “head to tail” N,N,N pincer-like (pincer complexes mimicking) N-
(pyrimidin-2-yl)-1,2-azole-3-carboxamide Pd(II) complexes with deprotonated amide groups as high-turnover catalysts (TON up to
106, TOF up to 1.2 × 107 h−1) for cross-coupling reactions on the background of up to quantitative yields under Green Chemistry
conditions. The potency of the described catalyst family representatives was demonstrated in Suzuki−Miyaura, Mizoroki−Heck, and
Sonogashira reactions on industrially practical examples. Corresponding ligands could be synthesized based on readily available
reagents through simple chemical transformations. Within the complex structures, a highly unusual 1,3,5,7-tetraza-2,6-dipalladocane
frame could be observed.

The formation of new carbon−carbon bonds by Pd-
catalyzed cross-coupling reactions, including stereo-

specific protocols, awarded the Nobel Prize in 2010, is a
fundamental process in modern organic synthesis and is widely
used in the development of new materials for pharmacy,
agriculture, and electronics.1 Despite the advances in the
research of cross-coupling reactions, their large-scale applica-
tions are still limited, mainly due to the toxicity and very high
cost of palladium and phosphine ligands.2 Enormous practical
interest in cross-coupling chemistry has stimulated further
research to solve the problem of replacing costly palladium
catalysts with more available transition metals, and some
progress has been made in this direction.3 However, palladium
catalysts remain out of the competition due to the high speeds,
selectivity, and yields of the cross-coupling products under
relatively mild conditions. For these reasons, the task of
developing palladium high-turnover-number (TON) and high-
turnover-frequency (TOF) catalysts that exhibit sufficient
activity even in trace (“homeopathic”, ppm level) amounts is
highly relevant.2

As in other homogeneous catalytic reactions, in cross-
coupling reactions the nature of the ligand environment
around the Pd center also holds the key to tuning the efficiency
of the catalytic system. Along with the most commonly used
phosphine ligands,2b which are toxic, oxidizable, and difficult to
reuse, many nitrogen-containing ligands were developed, with
carbene and pincer ligands occupying a special place among
them.4 Yields from high to quantitative were usually reported
for N-ligand palladium complexes in cross-coupling reactions;
however, only some of them are actually highly efficient
catalysts: complexes of 2-aminopyrimidines,4c 3-aminoisox-
azole,4d aminopyridines,4e and pipecolinic acid.4f Therefore,
the development of efficient (high TON and TOF), easily

prepared, inexpensive, stable, and also environmentally friendly
catalytic systems remains an urgent and essential task.
Initially we assumed that the combination of the 1,2-azole

and pyrimidine cores in the ligand framework can promote the
catalytic activity of palladium complexes. The 2-amino-
pyrimidine moiety (pKa = 3.66) contains effective N-
coordinating centers and easily forms palladium complexes.4c

Since isoxazole (isothiazole) and pyrimidine heterocycles differ
in their electronic structure and donor ability (electron-
withdrawing and electron-donating groups),5a we expected that
hybrid ligands on their basis might stabilize both Pd(0) and
Pd(II) species formed along the catalytic cycle and thus
increase the stability and efficiency of the catalyst. Recently, we
have synthesized dimeric 1-(isoxazol-3-yl)methyl-1H-1,2,3-
triazoles Pd-complexes containing two heterocycles with
significantly different electronic properties, and have shown
that their catalytic activities greatly exceed that of the 3-
aminoisoxazole and 1,2,3-triazole Pd-complexes.5b In contin-
uation of our previous studies of cross-coupling reactions6 and
chemistry of isoxazoles and isothiazoles,7 herein we describe
the synthesis of isoxazole/isothiazole-2-aminopyrimidine li-
gands with an amide bridge between the heterocycles and their
complexes with PdCl2 as new catalysts for the cross-coupling
reactions in aqueous media.
Amides were synthesized in 83−87% yields by acylation of

2-aminopyrimidine and 2-amino-4,6-dimethylpyrimidine with
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5-phenylisoxazole- and 4,5-dichloroisothiazole-3-carbonyl
chlorides 1, 2 in pyridine (Scheme 1). Synthesized amide
ligands 3−6 (L1-L4) easily reacted with Na2PdCl4 in methanol
forming the corresponding complexes 7−10 with 92−97%
yields. According to TLC, a complete consumption of the
starting ligands 3−6 in the reaction mixture was observed
within 5 min. The pyrimidine complexes Pd2Cl2(L

1-H)2 7 and
Pd2Cl2(L

3-H)2 9 had extremely low solubility and immediately
precipitated from the reaction mixture, while dimethylpyr-
imidine analogues Pd2Cl2(L

2-H)2 8 and Pd2Cl2(L
4-H)2 10

turned out to be moderately soluble in methanol and the
concentration of the reaction mixtures was required for their
isolation (details can be found in the Supporting Information

(SI)) (hereinafter L-H denotes the ligand with deprotonated
amide group).
The obtained palladium(II) complexes were identified by

elemental analysis and IR spectroscopy. The sufficient
solubility of complexes 8 and 10 in organic solvents made it
possible to record their 1H NMR, 13C NMR, and ESI-MS
spectra as well as obtain suitable single crystals for X-ray
analysis (details can be found in the SI).
It turned out that the complexation process proceeds

unusually. From the data of elemental analysis, it follows that
the ratio ligand/Pd/Cl is approximately 1:1:1. This is possible
due to deprotonation of the amide group NH by the

Scheme 1. Synthesis of N-(Pyrimidin-2-yl)-1,2-azole-3-carboxamide Ligands and Their “Head to Tail” N,N,N-Pincer-Type
Binuclear Palladium(II) Complexes 7−10

Figure 1. Binuclear molecules of complexes Pd2Cl2(L
2-H)2 8 (left)

and Pd2Cl2(L
4-H)2 10 (right), with the atom numbering for

coordination environment of Pd1 and Pd2 atoms. All hydrogen
atoms are omitted for clarity. Color scheme for atoms: Pd, green; Cl,
orange; N, blue; C, black; O, red; S, violet.

Table 1. Suzuki−Miyaura Reaction of 3-Bromobenzoic Acid
11 with 4-Methoxyphenylboronic Acid 12 in the Presence of
Complexes Pd2Cl2(L-H)2

a

entry “Pd” T, °C time, min yield, %b

1 Pd2Cl2(L
1-H)2 20 30 95

2 Pd2Cl2(L
1-H)2 40 15 97

3 Pd2Cl2(L
1-H)2 100 2 100

4 Pd2Cl2(L
2-H)2 20 30 100

5 Pd2Cl2(L
2-H)2 40 15 100

6 Pd2Cl2(L
2-H)2 100 <1 100

7 Pd2Cl2(L
2-H)2 0.01 mol % Pd 100 4 100

8 Pd2Cl2(L
2-H)2 0.001 mol % Pd 100 5 100

9c Pd2Cl2(L
2-H)2 0.0001 mol % Pd 100 5 100

10 Pd2Cl2(L
3-H)2 20 60 31

11 Pd2Cl2(L
3-H)2 40 15 49

12 Pd2Cl2(L
3-H)2 100 20 92

13 Pd2Cl2(L
4-H)2 20 60 37

14 Pd2Cl2(L
4-H)2 40 15 52

15 Pd2Cl2(L
4-H)2 100 20 96

16d Na2PdCl4 20 60 (240) 85 (91)
17d Na2PdCl4 100 5 99

aAryl halide (0.5 mmol), arylboronic acid (0.6 mmol), K2CO3 (1.25
mmol), 5 mL of H2O.

b1H NMR yield with 1,1,2,2-tetrachloroethane
(0.5 mmol) as internal standard. cReaction with 3-iodobenzoic acid.
dReactions in the presence of Na2PdCl4. Pd-black formation was
observed.

Scheme 2. Synthesis of the Key Structure 16 of Boscalid on
the Basis of 14 and 15 by Pd2Cl2(L

2-H)2 Catalysis
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elimination of HCl in the coordination process. A similar
deprotonation process occurs during the complex formation of
N-(2-pyridyl)pyridine-2′-carboxamide with PdCl2.

8 As a result,
palladium forms a covalent bond with the nitrogen atom of the
amide group. In addition, it can form two coordination bonds
with heterocyclic fragments of isoxazole (or isothiazole)8b,c

and pyrimidine.4c In the pyrimidine molecule, both N atoms
are equivalent; therefore, a choice between them is a priori
impossible. The accurate structural information for the
complexes was obtained by single crystal X-ray analysis of
compounds 8 and 10 (Figure 1). Crystal data and structure

refinement details for complexes 8 and 10 are gathered in
Table 1S (SI). The compounds are “head to tail” N,N,N
binuclear palladium(II) complexes of the composition
Pd2Cl2(L-H)2, where L is ligand 4 for complex 8 and ligand
6 for complex 10 (Scheme 1). The obtained complexes
conceptually mimic coordination centers of much less
accessible N,N,N-pincer-type complexes, but represent a
different type of coordination compounds. In traditional
pincer complexes, one ligand provides three coordination
centers, two of which have identical or different electronic
properties, for one palladium atom. The functionality of ligand
elements in accordance with a specific place in the
coordination sphere of the presented complexes family is
similar to that of the traditional monoligand N,N,N-pincer-
type complexes. However, the implementation of such
coordination in the discussed framework is possible only
when binuclear complexes are formed, in which one ligand
provides three coordination centers, but for two atoms of
palladium, and participation of the second ligand is mandatory.
As a result, the formation of a binuclear complex with three N-
coordinating centers per one palladium atom is observed.
Complex molecules of 8 and 10 include all atoms of their

asymmetric units. In both complexes, each of the two
palladium atoms shows distorted square planar coordination,
formed by one chlorine atom, amide and azole nitrogen atoms
of one ligand, and the pyrimidine nitrogen atom of another
ligand. The τ-descriptor of four-coordination9 takes the values
of 0.11 and 0.09 for complex 8 and of 0.09 and 0.08 for
complex 10, pointing to slight distortion of coordination
squares. Coordination bond lengths in complexes 8 and 10 are
usual (Table 2S, SI). Complexes 8 and 10 belong to highly
unusual 1,3,5,7-tetraza-2,6-dipalladocane frame.
Initially, the catalytic activity of novel complexes Pd2Cl2(L

1-
H)2−Pd2Cl2(L4-H)2 was investigated in the model Suzuki−
Miyaura reaction of 3-bromobenzoic acid 11 with 4-
methoxyphenylboronic acid 12 in the presence of 0.1 mol %
Pd. The reaction was carried out in an aqueous medium in the

Scheme 3. Synthesis of 2′,4′-Difluoro-4-hydroxy-[1,1′-
biphenyl]-3-carboxylic Acid 19 on the Basis of 17 and 18 by
Pd2Cl2(L

2-H)2 Catalysis

Table 2. Mizoroki−Heck Reaction of m-Bromobenzoic acid
11 and Acrylic Acid 20 for the Synthesis of 21 in the
Presence of Complexes Pd2Cl2(L-H)2

a

entry Pd2Cl2(L-H)2 time, min yield, %b

1 Pd2Cl2(L
1-H)2 20 97

2 Pd2Cl2(L
2-H)2 20 100 (96)c

3 Pd2Cl2(L
2-H)2 200 (20 °C) 0

4 Pd2Cl2(L
3-H)2 20 95

5 Pd2Cl2(L
4-H)2 20 98

6 Pd2Cl2(L
4-H)2 200 (20 °C) 0

aAryl halide (0.5 mmol), acrylic acid (0.6 mmol), K2CO3 (1.25
mmol), 5 mL of H2O, 100 °C. b1H NMR yield with 1,1,2,2-
tetrachloroethane (0.5 mmol) as internal standard. cIsolated yield.

Table 3. Sonogashira Reaction between Methyl p-
Iodobenzoate 22 and Prop-2-yn-1-ol 23 for the Synthesis of
24 in the Presence of Complexes Pd2Cl2(L-H)2

a

entry Pd2Cl2(L-H)2 time, min Yield, %b

1 Pd2Cl2(L
1-H)2 10 95

2 Pd2Cl2(L
2-H)2 10 100 (95)c

3 Pd2Cl2(L
2-H)2 150 (20 °C) 98

4 Pd2Cl2(L
3-H)2 10 93

5 Pd2Cl2(L
4-H)2 10 96

6 Pd2Cl2(L
4-H)2 200 (20 °C) 87

aAryl halide (0.5 mmol), prop-2-yn-1-ol (0.65 mmol), K2CO3 (1.25
mmol), Bu4NBr (1 mol %), 100 °C. b1H NMR yield with 1,1,2,2-
tetrachloroethane (0.5 mmol) as internal standard. cIsolated yield.

Scheme 4. Gram-Scale Synthesis of the UV-Sunscreen Agent
Octinoxate 25 from 26 and 27 in the Presence of the
Pd2Cl2(L

2-H)2 Complex

Scheme 5. Gram-Scale Synthesis of 2-
(Phenylethynyl)aniline 27 in the Presence of the Pd2Cl2(L

2-
H)2 Complex
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presence of K2CO3 as a base using our previously optimized
conditions.4d,e A high yield of the corresponding cross-
coupling product was obtained when the reaction proceeded
at 20−40 °C for 15−30 min using isoxazole complexes
Pd2Cl2(L

1-H)2 and Pd2Cl2(L
2-H)2 (Table 1, entries 1, 2, 4 and

5), whereas at 100 °C the reaction time decreased to 1−2 min
for isoxazole complexes (entries 3 and 6) and 20 min for
isothiazole complexes (entries 12 and 15). It is noteworthy
that under the catalysis by new complexes we did not observe
the formation of Pd black even after full completion of the
reaction (controlled by optical microscopy). It is possible that
only a “homeopathic” part of the initial palladium complex
participates in the catalytic cycle, and it is logical to try to
reduce its amount. Indeed, when the amount of palladium was
decreased to 0.01−0.001 mol % Pd [complex Pd2Cl2(L

2-H)2],
a quantitative amount of cross-coupling product was obtained
after 4−5 min at 100 °C with TON up to 100 000 and TOF up
to 1 200 000 h−1 (entries 7 and 8). When using aryl iodides in
the reaction, the amount of catalyst can be reduced even to
0.0001 mol % (1 ppm). Under these conditions, the reaction
proceeded quantitatively in 5 min with high TON of 1 000 000
and TOF of 12 000 000 h−1 (entry 9). It is important to note
that in the presence of Na2PdCl4 (without N-ligands) reaction
mixtures quickly changed to a dark color and Pd-black
formation was observed (entries 16 and 17).
The reaction of different aryl bromides 11a−d with electron-

deficient arylboronic acids 12a−f in the presence of 0.01 mol
% Pd led to the desired biaryls in high yields (93−98%, Table
3S, entries 1−7, SI). Moreover, sterically hindered 2-
formylphenyboronic acid 12d underwent coupling with 11d
to produce the bifunctional product 13dd in 95% yield (Table
3S, entry 5). These results indicate that N-(pyrimidin-2-yl)-
1,2-azole-3-carboxamide complexes Pd2Cl2(L

1-H)2−
Pd2Cl2(L

4-H)2 are very effective catalysts for the Suzuki
reaction in aqueous media (comparison with other catalytic
systems is presented in Table 6S, SI).
To demonstrate the potential utility of the new catalytic

system, the gram-scale synthesis of the key intermediate in the
synthesis of Boscalid fungicide was performed (Scheme 2,
compound 16),10 as well as one-step synthesis of 2′,4′-
difluoro-4-hydroxy-[1,1′-biphenyl]-3-carboxylic acid (diflu-
nisal) 19, a nonsteroidal anti-inflammatory drug (NSAID)
(Scheme 3).11

We also evaluated the catalytic activity of Pd2Cl2(L-H)2
complexes in the Mizoroki−Heck reaction and the Sonoga-
shira reaction (Tables 2, 3, 3S, and 4S). The practical
applicability was demonstrated by the scaled-up synthesis of
the UV-sunscreen agent octinoxate (Scheme 4) and 2-
(phenylethynyl)aniline 28 (Scheme 5), as 2-alkynyl anilines,
key intermediates in the indole synthesis.12

It should be emphasized that the reactions of water-insoluble
reagents easily proceed in water in the presence of trace
amounts (1 mol %) of Bu4NBr as the phase transfer catalyst
(Tables 2 and 3; Schemes 2, 4, and 5). No byproducts were
detected for the catalysts, and cross-coupling products were
isolated without the application of chromatography.
For the first time, cyclic phosphine-free “head to tail” N,N,N

pincer-like Pd(II) complexes on N-(pyrimidin-2-yl)-1,2-azole-
3-carboxamide frameworks with deprotonated amide groups
were obtained and used as high TON and TOF catalysts for
C−C cross-coupling reactions under green conditions. The
obtained complexes conceptually mimic the coordination
centers of much less accessible N,N,N-pincer-type complexes

and represent a new family of catalysts containing an unusual
1,3,5,7-tetraza-2,6-dipalladocane frame.
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