Pergamon Journals Ltd.

ACYLATION OF ACTIVE METHYLENE COMPOUNDS VIA PALLADIUM COMPLEX-

CATALYZED CARBONYLATIVE CROSS-COUPLING OF ORGANIC HALIDES

Toshi-aki Kobayashi and Masato Tanaka*

National Chemical Laboratory for Industry, Yatabe, Ibaraki 305, Japan

Summary: New procedures for acylation of active methylene compounds via palladium complex-catalyzed carbonylation of organic halides are disclosed.

Carbonylation of organic halides with molecular hydrogen or nucleophiles (water, alcohols, and amines) smoothly proceeds and constitutes a useful and industrially-important method for the synthesis of carboxylic acid derivatives. Since we reported the first successful examples of carbonylative cross-coupling of halides with carbon nucleophiles which gave various unsymmetrical ketones, 1 much effort has been focused on exploration for variations in this area. 2 However, with the exception of our finding of acetylenic ketone synthesis based on the carbonylative cross-coupling of halides and terminal acetylenes.^{1d} there is no paper on the carbonylation of halides with carbon acids. Successful extentions to active methylene compounds are disclosed in this communication.

Iodobenzene (1.88 mmol) and diethyl methylmalonate (2.0 mmol) in triethylamine (2 ml) were reacted with carbon monoxide (20 atm) at 120°C in the presence of a catalytic amount of dichloro[1,1'-bis(diphenylphosphino)ferrocene]palladium (1.88 \times 10⁻² mmol). Glc analysis of the resulting mixture revealed the formation of diethyl methylbenzoylmalonate in 75.3% yield. The mixture was filtered and distilled (Kugelrohr) to give the pure sample (61% isolated yield, bp 120°C/0.1 torr).

 $R^{1}X + CO + CHR^{2}Z$ Pd catalyst $R^{1}COCR^{2}Z$ $(Z = COOR^{3}, CN)$

Table 1 summarizes the results obtained through similar procedures. The yields have not been optimized. In the reactions of diethyl and diisopropyl malonate, the mono-benzoylation products (benzoylmalonates) once formed were prone to further undergo O-benzoylation to give the double-benzovlation products. However, the mono-benzoylation product was obtained in the reaction of ethyl cyanoacetate, though the yield was low. As was anticipated, ethyl acetoacetate exclusively gave the O-benzoylation product. O-Benzoylation was also observed for 1,2-diphenylethanone and acetophenone. Other active methylene

ы
triethylamine
in
acids
carbon
with
halides
organic
of
cross-coupling
Carbonylative
Table 1

	.) 		1			
Halides	Carbon acid	Catalyst	Temp	Time	Convb	Product Yi	Yield ^C
			(0°)	(h)	(%))	(%)
с ₆ н ₅ і	сн ₃ сн(соос ₂ н ₅) ₂	PdC1 ₂ (DPPF) ^d	120	33	100	$c_{6}H_{5}coc(cH_{3})(cooc_{2}H_{5})_{2}$ ((75.3 (61)
с ₆ н ₅ 1	$CH_{3}CH(COOC_{2}H_{5})_{2}$	$PdC1_2(PPh_3)_2$	120	22	83	с ₆ ^H 5coc(сH ₃)(соос ₂ H ₅) ₂ 5	55.1
C ₆ H ₅ I	$CH_3CH(COOC_2H_5)_2$	$PdC1_2(SbPh_3)_2$	120	50	49	C ₆ H ₅ COC(CH ₃)(COOC ₂ H ₅) ₂ 46	46.8
c ₆ H ₅ I ^e	$CH_{2}(COOC_{2}H_{5})_{2}$	PdC1 ₂ (DPPF)	120	33	100	$(c_{e}H_{5}\infty)(c_{e}H_{5})c=c(\infty)c_{2}H_{5})_{2}$ (7)	(23)
c ₆ H ₅ I	$CH_2[COOCH(CH_3)_2]_2$	PdC1 ₂ (DPPF)	120	18	100	$(c_{e_{H_{5}}}^{e_{H_{5}}}) = c [c_{e_{H_{5}}}^{e_{H_{5}}}] = c [c_{e_{H_{5}}}^{e_{H_{5}}}]_{2} = c $	(22)
c ₆ H ₅ I	$CH_2(CN)(COOC_2H_5)$	PdC1 ₂ (DPPF)	120	9	100	$(C_{6}H_{5})(HO)C=(CN)(COOC_{2}H_{5})$ (3)	(30)
C ₆ H ₅ I	сн ₃ сосн ₂ соос ₂ н ₅	PhPdI(PPh ₃) ₂	100	17	pu	$(c_{6}H_{5}coo)(cH_{3})c=cHcooc_{2}H_{5}$ (3)	(33)
c ₆ H ₅ I ⁶	с ₆ н ₅ сосн ₂ с ₆ н ₅	PdC1 ₂ (DPPF)	120	60	100	(c ^e H ² coo)(c ^e H ²)c=cHc ^e H ² (6	(32) ^g
с ₆ н ₅ 1 ^ћ	с ₆ н ₅ сосн ₃	PhPdI(PPh ₃) ₂	120	44	100	$(c_{6}H_{5}COO)(c_{6}H_{5})c=cH$ 10	10.5^{i}
с ₆ н ₅ вг	$CH_{3}CH(COOC_{2}H_{5})_{2}$	PdC1 ₂ (DPPF)	120	44	75	$c_{6^{H_5}}coc(cH_3)(cooc_{2^{H_5}})_2$	65.3 (63)
$p-IC_{6}H_{4}COOC_{2}H_{5}$	сн ₃ сн(соос ₂ н ₅) ₂	PdC1 ₂ (DPPF)	120	18	100	$p-H_5c_2 \cos c_6 H_4 \cos (cH_3) (\cos c_2 H_5)_2 = \binom{68}{(5)}$	68.5 (56)
$p-IC_6H_4CI$	$CH_{3}CH(COOC_{2}H_{5})_{2}$	PdC1 ₂ (DPPF)	120	17	100	$p-\text{ClC}_6\text{H}_4\text{COC(CH}_3)(\text{COOC}_2\text{H}_5)_2 \overset{80}{(6)}$	80.9 (61)
2-c ₄ H ₃ SI ^j	$CH_3CH(COOC_2H_5)_2$	PdC1 ₂ (DPPF)	120	18	100	$(2-C_4H_3S)COC(CH_3)(COOC_2H_5)_2$ ((4) ^k
с ₆ н ₅ сн=снвг	$cH_{3}cH(cooc_{2}H_{5})_{2}$	PdC1 ₂ (DPPF)	120	12	84	$c_{6}H_{5}CH=CHCOC(CH_{3})(COOC_{2}H_{5})_{2}$	35.7 [°] (28)
a Effected under	20 atm of CO using	1.88 mmol halides,	2.00 r	nmol of	carbo	n acids, 1.88×10 ⁻² mmol of cataly	lysts
in 2 ml of triet	chylamine. ^b Convers:	ion refers to the	consum	ption c	f hali	des. ^c Glc yield based on the an	amount
of halides charg	ged. Figures in paren	atheses are isolat	ed yie.	lds. ^C	DPPF	<pre>= 1,1'-bis(diphenylphosphino)fer1</pre>	rro-
cene. ^e c ₆ H ₅ I c	charged was 4.17 mmol.	. [§] C ₆ H ₅ I charged	was 4	.8 mmol	. 9 B	ased on 1,2-díphenylethanone char	arged.
N, N-Diethylbenza	umide was also formed	(37.5% yield base	d on C	^{3H5I} ch	larged)	\cdot ^{<i>h</i>} C ₆ H ₅ I charged was 4.0 mmol.	•
^λ Based on acetc	phenone charged. N,	V-Diethylbenzamide	was a	lso for	med (4)	2.0% based on C_{6H_5I} charged).	J 2-
Iodothiophene.	R N, N-Diethylthiophen	ne-2-carboxamide a	ib bu	2-thier	uyl ket	one were also formed in 23.6 and	d
56.6% yield, res	spectively. ^{<i>k</i>} <i>N</i> , <i>N</i> -Die	ethylcinnamamide w	as also	o forme	d (20.0	0%).	

-

compounds such as indene, diphenylmethane, and ethyl phenylacetate were not benzoylated at all under similar conditions. We could extend the reaction with diethyl methylmalonate to bromobenzene, substituted iodobenzenes, and β -bromostyrene. In some of these reactions, N,N-diethylbenzamide was formed as a byproduct which resulted from the cleavage of triethylamine.³

When iodobenzene was allowed to react with pre-formed magnesium enolates of active methylene compounds, different types of products were obtained (after acidification). Thus, iodobenzene (2.0 mmol) and bromomagnesium enolate of di-

ArX + CO + XMg[CH(COOR³)₂]
$$\frac{1) \text{ Pd catalyst}}{2) \text{ H}^+}$$
 ArCOCH₂COOR³ and/or (ArCO)₂CH₂

isopropyl malonate (4.0 mmol) in ether-benzene (1:1) mixture (2 ml) were exposed to carbon monoxide (20 atm) in the presence of iodophenylbis(triphenylphosphine)palladium (1.88 \times 10⁻² mmol) at 120°C for 5 h. The resulting mixture was poured into aqueous hydrochloric acid, and was extracted with ether. Glc analysis showed that isopropyl benzoylacetate was formed in 77.5% yield. Evaporation of the ether layer and distillation (Kugelrohr) gave an analytically pure sample (63.0% isolated yield, bp 122°C/1.0 torr). The results of other reactions are summarized in Table 2. Ethoxymagnesium enolate of diethyl malonate reacted similarly, though ethyl benzoate was also formed presumably due to the reaction of the ethoxy group originally bound to magnesium. However, when the reaction of magnesium enolate of diethyl malonate was effected under forcing conditions, the yield of benzoylacetate decreased, and instead, dibenzoylmethane became the main product. The reaction of the enolate of ethyl acetoacetate also gave the corresponding β -diketone. For the β -keto esters and/or β -diketones to be formed, decarbalkoxylation must intervene during the progress of the reaction. We do not have any evidence for the decarbalkoxylation mecha-However, the magnesium halide-assisted decarbalkoxylation⁴ seems to nism. rationalize the results as follows:

In summary, the present paper offers the new method for acylation of active methylene compounds via carbonylation with organic halides. The new method will be useful when acid halides are not readily accessible.

Magnesium enolate	Temp	Time	Conv ^b	Product	Yield ^C
	(°C)	(h)	(%)		(%)
BrMgCH[COOCH(CH ₃) ₂] ₂ ^d , e	120	5	81	с ₆ н ₅ сосн ₂ соосн(сн ₃) ₂	77.5 (63)
$(C_2H_5O)MgCH(COOC_2H_5)_2^{6}$	100	8	nd	C6H5COCH2COOC2H5	71.5 (67)
				C ₆ H ₅ COOC ₂ H ₅	~20
$BrMgCH(COOC_2H_5)_2^d$	90 *	21 +	98	C6H5COCH2COOC2H5	18.4 (17)
	120	4		(C ₆ H ₅ CO) ₂ CH ₂	78.8 (60)
(c ₂ H ₅ 0)MgCH(сосH ₃)(соос ₂ H ₅) ⁶	100	18	nd	C6H5COCH2COCH3	(31)
				C6H5COOC2H5	~20

Table 2 Carbonylative cross-coupling of iodobenzene with magnesium enolate^a

^a Effected under 20 atm of CO using 2.0 mmol of C_6H_5I , 2.1 mmol of enolates, 1.88 × 10⁻² mmol of PhPdI(PPh₃)₂ in 2 ml of the solvent. ^b Conversion refers to the consumption of iodobenzene. ^c Glc yield based on C_6H_5I charged. The figures in parentheses are isolated yields. ^d Benzene-ether (1:1) solvent. ^e Enolate charged = 4.0 mmol. ^f Benzene solvent.

References

- 1 a) M. Tanaka, Tetrahedron Lett., <u>1979</u>, 2601. b) M. Tanaka, Synthesis, <u>1981</u>,
 47. c) T. Kobayashi and M. Tanaka, J. Organomet. Chem., <u>205</u>, C27 (1981). d)
 T. Kobayashi and M. Tanaka, J. Chem. Soc., Chem. Commun., <u>1981</u>, 333; M.
 Tanaka, T. Kobayashi, and T. Sakakura, Nippon Kagaku Kaishi, <u>1985</u>, 537. e)
 M. Tanaka, Bull. Chem. Soc. Jpn., <u>54</u>, 637 (1981).
- 2 a) N. A. Bumagin, I. G. Bumagina, A. N. Kashin, and I. P. Beletskaya, Izv. Akad. Nauk USSR, Ser. Khim., 1981, 1675. b) N.A. Bumagin, I.G. Bumagina, A. N. Kashin, and I. P. Beletskaya, Dokl. Akad. Nauk USSR, 261, 1141 (1981). c) V. P. Baillargeon and J. K. Stille, J. Am. Chem. Soc., 105, 7175 (1983). d) Y. Tamaru, H. Ochiai, Y. Yoshimi, and Z. Yoshida, Tetrahedron Lett., 24, 3869 (1983). e) N. A. Bumagin, Y. V. Gulevich, and I. P. Beletskaya, Izv. Akad. Nauk USSR, Ser. Khim., 1984, 953. f) J. H. Meerfield, J. P. Godschalx, and J. K. Stille, Organometallics, 3, 1108 (1984). g) F. K. Sheffy, J. P. Dodschalx, and J. K. Stille, J. Am. Chem. Soc., 106, 4833 (1984). h) Y. Tamaru, H. Ochiai, and Z. Yoshida, Tetrahedron Lett., 25, 3861 (1984). i) N. A. Bumagin, Y. V. Gulevich, and I. P. Beletskaya, J. Organomet. Chem., 285, 415 (1985). j) N. A. Bumagin, A. B. Ponomaryov, and I. P. Beletskaya, Tetrahedron Lett., 26, 4819 (1985). k) N. A. Bumagin, Y. V. Gulevich, and I. P. Beletskaya, J. Organomet. Chem., 282, 421 (1985). 1) Y. Wakita, T. Yasunaga, M. Kojima, J. Organomet. Chem., 288, 261 (1985). m) J. -B. Verlhac, E. Chanson, B. Jousseaume, J. -P. Quintard, Tetrahedron Lett., 26, 6075 (1985).
- 3 T. Kobayashi and M. Tanaka, J. Organomet. Chem., <u>231</u>, C12 (1982).
- 4 Y. Tsuda and Y. Sakai, Synthesis, 1981, 119.
 - (Received in Japan 12 June 1986)