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ABSTRACT: 

We report herein a highly efficient Pd-catalyzed amination by “bulky-yet-flexible” 

Pd-PEPPSI-IPentAn complexes. The relationship between the N-heterocyclic carbenes (NHCs) 

structure and catalytic properties was discussed. Sterically hindered (hetero)aryl chlorides and a 

variety of aliphatic and aromatic amines can be applied in this cross-coupling, which smoothly 

proceeded to provide desired products. The operationally simple protocol highlights the rapid access 

to CAr-N bond formation under mild conditions without the exclusion of air and moisture. 
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 4

Introduction 

(Hetero)aryl amines presented important structural moieties in a large amount of 

pharmaceuticals (eg. Sprycel, Rilpivirine, Brexpiprazole, Buspar, etc), bioactive molecules (eg. 

R116010, RAF709, etc) and functional materials (eg. Hole transport for OLED in Figure 1).1 The 

metal-catalyzed cross-coupling reactions have provided concise routes for constructing such target 

molecular scaffolds.2-4 Among them, the Pd-catalyzed Buchwald-Hartwig amination reaction has 

been well established as the generally employed process with wide substrate scopes under mild 

reaction conditions.4, 5 

 

Figure 1. Heteroarylated amines in pharmaceuticals, bioactive compounds and hole transport 

materials.  

In the past two decades, the classes of privileged ligands including sterically demanding and 

electron-rich phosphines have been well developed and remarkable progress has been achieved in 

these catalytic systems.4-6 Nevertheless, the search for phosphine-free ligands is highly desirable 
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 5

from the environmental and economical viewpoint.7 Alternatively, N-heterocyclic carbenes (NHCs) 

have emerged as one of the most powerful phosphine-free ligands in the Pd-catalyzed cross-coupling 

reactions.8 The group of Nolan firstly demonstrated the well-defined Pd-NHC complexes to generate 

the aryl amines when aryl chlorides were used as electrophlic substrates.9 Subsequently, Organ 

developed a new type of Pd-PEPPSI-NHCs (PEPPSI: pyridine-enhanced precatalyst preparation, 

stabilization, and initiation), which could mediate C-N bond formation at a low palladium loading, 

even under room temperature.10 Afterward, numerous versatile Pd-NHCs have been disclosed to be 

effective in the arylation of amines with aryl chlorides. 11  

Despite these compelling advances in phosphine-free catalyst design, several drawbacks still 

limit their utility. First, the transformation is highly challenging when hindered aryl chlorides and 

sterically demanding anilines or heterocyclic amines were selected as coupling partners in air 

conditions.8, 12 The catalytic processes generally need strict oxygen- and moisture-free operation, 

whereas trace of oxygen would trap the LPd(0) to form the unreactive LPd(O2).
13 To ensure the 

stabilization of the low-valent active species in aerobic conditions, the ligand with bulky substituted 

groups is required.14 On the contrary, the placement of bulky steirc ligand would retard the oxidative 

addition and subsequent amine coordination. Second, the five-membered heterocyclic aryl chlorides 

(especially with sulfide unit), represented the most difficult coupling substrates and there have only 

been a few examples of catalyst systems that have successfully coupled this type of substrates to 

date.15 Presumably, it can be ascribed to the feasible coordination of heteroatoms to the palladium 

center and also reluctantly undergo reductive elimination of the Pd(II) amido complexes.16 In order 

to prevent catalyst poisoning process, the introduction of NHCs with strong σ-donation group is of 

great interest and importance.11c, 11e Very recently, we have reported a series of Pd-PEPPSI complexes 
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 6

with ancenaphthyl as backbones.14e, 17 These palladium complexes showed promise for coupling of 

sterically demanding coupling partners in the Suzuki-Miyaura cross-coupling and Buchwald-Hartwig 

amination in air. Considering the strong σ-donation and the conformational flexibility of the 

Pd-PEPPSI complexes, we envisioned that the “bulky-yet-flexible” palladium complexes would act 

as practical and modular precatalysts to extend the utility in amination reaction.18, 19 Herein, we 

report a new strategy for the challenging CAr-N bond formation by this approach.  

 

RESULTS AND DISCUSSION 

Synthesis and Characterization of Pd-PEPPSI complex 

The synthesis of the Pd-PEPPSI-IPentAn complex of C1 was followed by the previously 

reported procedure.18 An one-pot reaction of imidazolium chloride salt with PdCl2 was heated in the 

presence of pyridine and K2CO3, affording the Pd-PEPPSI-IPentAn complex in a high yield of 85%. 

The palladium complex is moisture- and air-stable either in the solid or in solution state and thus can 

be stored on benchtop for several months at r.t. The chemical structure of C1 was characterized by 

high resolution mass spectrometer (HRMS) and NMR spectroscopy, for which the peak at 

m/z=880.3351 being evidence to the cationic species of [M+H]+. Moreover, the formation of 

Pd-Ccarbene bond was confirmed by the disappearance of the imidazolium proton signal in the 1H 

NMR spectrum and the observed resonance of 159.5 ppm in the 13C NMR spectrum.  

X-ray diffraction analysis was conducted on single crystal of C1 obtained by slow diffusion of 

hexane into their concentrated solution in CH2Cl2. As shown in Figure 2, it revealed a slightly 

distorted square planar geometry for the palladium complex, in which the carbene ligand was 

positioned trans to pyridine. The bond length of Pd-C(6) and Pd-N(1) bond lengths are 1.966 (5) and 
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 7

2.107 (4) Å, respectively, which are comparable to that of the reported Pd-PEPPSI complex (Table 

1).11b, 13, 17b-d, 18 It is noteworthy that the N-aryl moieties derived from carbene ligand are oriented 

nearly perpendicularly to the coordination plane with dihedral angles of 79.41 and 84.15 o, 

respectively. These results suggest that the bulky alkyl chain would effectively protect the palladium 

center. In order to further examine the steric property of the synthesized complex, the percent buried 

volume (%Vbur) was then calculated using the application of SambVca.20, 21 As illustrated in Table 1, 

the Pd-PEPPSI-IPentAn complex of C1 with pyridine as “throw away” ligand presents a moderate 

value of 36.1, which is notably higher than that of the Pd-PEPPSI-IPr (34.3) and Pd-PEPPSI-IPrAn 

(34.7). Out of our expectation, the %Vbur value of the Pd-PEPPSI-IPentAn complex C2 with 

3-chloropyridine ligand turned out to be 38.2, which is much larger than the value of C1. 

Considering bearing the same carbene ligand, the remarkable difference between the percent buried 

volume computed for C1 and C2 highlights the flexibility of the IPentAn ligand, which would play 

profound effect on the catalytic performance.  

Table 1. Comparison of structural parameters in classical Pd–PEPPSI complexes.a 

Pd–PEPPSI complexes Pd-C (Å) Pd-N (Å) TEP (cm-1) %Vbur
b 

IPentAn (Py) C1 1.966 (5) 2.107 (4) 2041.6 36.1 

IPentAn (3-ClPy) C2 1.965(2) 3.0926(17) 2041.6 38.2 

IPent C3 1.974 (3) 2.097 (3) 2049.6 37.9 

IPr* C4 1.974 (6) 2.132 (6) 2052.7 43.1 

IPr C5 1.969 (3) 2.109 (2) 2050.2 34.3 

IPrAn 
C6 1.960 (6) 2.113 (6) 2041.8 34.7 

(IPr(OMe)*IPr)An 
C7 1.963(2) 2.162(2) NR 35.7 

(IPr**)An 
C8 1.953(6) 2.076(6) 2047.4 41.1 

aAll bond distances and %VBur have been calculated using cif files obtained from the CCDC. 

bThe %VBur calculated for Pd-C=2.00 Å. Mesh spacing 0.05 Å. Sphere radius 3.5Å. Bondi radii 

scaled by 1.17. 
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Figure 2. Molecular structure of C1 depicted in 30% thermal ellipsoids with the hydrogen atoms 

omitted for clarity. Selected bond distances (Å) and angles (o): Pd(1)-C(6) 1.966(5), Pd(1)-N(1) 

2.107(4), Pd(1)-Cl(1) 2.3049(14), Pd(1)-Cl(2) 2.2782(14), N(1)-Pd(1)-C(6) 177.97(19), 

N(1)-Pd(1)-Cl(1) 91.30(12), C(6)-Pd(1)-Cl(1) 90.70(15), N(1)-Pd(1)-Cl(2) 88.66(12), 

C(6)-Pd(1)-Cl(2) 89.34(15), Cl(1)-Pd(1)-Cl(2) 178.84(6).  

 

Application in the Pd-catalyzed amination of aryl chlorides 

In an effort to demonstrate the catalytic properties of the “bulky-yet-flexible” palladium 

complexes, the cross-coupling were carried out in air and the solvents were used as received without 

any further purification. Our investigation began by treating 2-chloro-1,3-dimethylbenzene (1a) with 

2,6-diisopropylaniline (2a). After the reaction condition evaluation (see SI, Table S2 for details), we 

were delighted to find that the optimized conditions was 0.5 mol% palladium loading, KOtBu as base 

and 1,4-dioxane as solvent at 100 °C for 2 h. Under these conditions, the expected 

N-(2,6-diisopropylphenyl)-2,6-dimethylaniline (3a) was obtained in a satisfied isolated yield of 92% 

by Pd-PEPPSI-IPentAn (C1). Nevertheless, it is deserved to note that the current reaction conditions 

without anhydrous solvents and the protection of inert gas, requires high temperature and moderate 
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 9

high palladium loading. Moreover, the effect of the “throw away” ligands was also investigated. In 

the current study, C2 bearing 3-chloropyridine was slightly less effective than that of C1 with 

pyridine. Presumably, the pyridine might remain attached to the NHC-Pd(0), which could stabilized 

the Pd(0) active species.  

Table 2. Catalyst Screening for the Pd-catalyzed Amination Reactiona 

 

aReaction conditions: 2-chloro-1,3-dimethylbenzene (1.0 mmol), 2,6-diisopropylaniline (1.2 

mmol), KOtBu (1.5 mmol), 1,4-dioxane (4.0 mL), in air. GC yields. bIsolated yields. 

To get further information on the relationship between the catalyst structure and activities, a 

series of palladium complexes, such as the Pd-PEPPSI-IPent (C3),18b Pd-PEPPSI-IPr*(C4),13a 

Pd-PEPPSI-IPr (C5),18a Pd-PEPPSI-IPrAn(C6),11b Pd-PEPPSI-(IPrOMe*IPr)An (C7),14e and 

Pd-PEPPSI-(IPr**)An (C8),17d were screened for comparison. As illustrated in Table 2, the 

precatalysts of Pd-PEPPSI-IPent (C3) and Pd-PEPPSI-IPr (C5), which were highly efficient under 
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 10

inert atmosphere (Table S3), however, afforded the desired amination product 3a in 60% and 33% 

yield, respectively. Even more, the Pd-PEPPSI-IPr* (C4) was much less efficient to give the cross 

coupling product in 9% yield under the current reaction conditions. Obviously, the steric and the 

electronic effect of NHCs ligand would play a crucial role. The C4 bearing 2,6-dibenzhydryl group 

on N-aryl moieties exhibited largest %Vbur value of 43.3, implying less flexibility of the ligands 

around to the palladium center would retard the oxidative addition and subsequent amine 

coordination. In contrast, the introduction of bulky steric of IPentAn in C1 and C2 would stabilize the 

axial site of LPd(0) species to avoid the capture of oxygen. Meanwhile, the maintained configuration 

flexibility of the alkyl group on N-aryl moieties would allow the room adjustment toward the 

incoming substrates.17b Moreover, in our previous report, we found that the Tolman electronic 

parameter (TEP) for IPentAn is 2041.6 cm-1, which indicates higher electron-donating ability than 

that of other classical Pd-NHCs, such as Pd-PEPPSI-IPent (C3) and Pd-PEPPSI-IPr (C5).10b 

Therefore, the rate of oxidative addition would be much faster than oxidative addition of O2 by 

Pd-PEPPSI-IPentAn in this study. Then the palladium complexes of C6-C8 with the same acenaphthyl 

backbones were evaluated. The palladium complexes C6 and C7 showed moderate activity of 41 and 

56% yield, whereras their Vbur% value turned out to be 34.7 and 35.7, respectively. Again, the bulky 

sterically C8 (Vbur% = 41.1) gave the product of 3a in a low yield of 8%. These results suggest that 

the catalytic activity toward deactivated substrates under aerobic conditions is mainly controlled by 

the supporting backbones as well as N-moieties on the NHCs ligand, which demonstrated that the 

“bulky-yet-flexible” Pd-PEPPSI-IPentAn would significantly promote the transformation process.  

Having established the promising results of the Pd-PEPPSI-IPentAn (C1), we then examined the 

reaction of 2-chloro-1,3-dimethylbenzene (1a) with other primary amines. As shown in Table 3, a 
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 11 

range of sterically hindered aliphatic and aromatic amines, such as 2,6-diisopropylaniline, 

2,6-diethylaniline, 2,6-dimethylaniline and 1-adamantylamine, were exclusively affording the 

corresponding products (3a-d) in high yields by using only 0.1-0.5 mol% palladium. It is significant 

that the electron-deficient 2,6-difluoroaniline and 2,4,6-trifluoroaniline, which are considered to be 

the most challenging coupling partners,10c can be installed in moderate yields. Other primary alkyl 

amines containing hexyl, benzylic, octyl, 2-furylmethyl and iophenethyl were all converted to 

desired products (3g-3k) in high to quantitative yields. Moreover, other electron-rich electrophilic 

reagents, such as 2-chloro-1,3,5-trimethylbenzene and 2-chloro-5-methoxy-1,3-dimethylbenzene, 

which are sluggish toward oxidative addition, were smoothly coupled with sterically demanding 

anilines. To our delight, the undesired byproduct of diarylated amines weren’t observed in our 

catalytic systems.22  

Table 3. C-N Cross-Coupling Reaction of Stercially Hindered Aryl Chlorides with 

amines.
a 
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 12

aReaction conditions: aryl chloride (1.0 mmol), amine (1.2 mmol), KOtBu (1.5 mmol), 1,4-dioxane 

(4.0 mL), in air. Isolated yields. 

Five-membered heteroaryl chlorides, especially with multiple heteroatoms have been 

recognized as the most challenging substrates in the C-N cross-coupling for a long time.7a Inspired by 

the aforementioned encouraging results, we extended our protocol to the synthesis of sulfide-based 

arylated amines because of the increased prevalence of such motifs in biologically active molecules 

and functional materials.  As can be seen in Table 4, in the presence of relative high palladium 

loading of 0.2-2 mol%, the sulfide containing aryl chlorides, such as 2-chlorobenzo[d]thiazole and 

3-chlorothiophene could be incorporated into the amine substrates to give the corresponding products 

(such as 4a-4d) in high yields. Importantly, the most deactivated 2-chlorothiazole exhibited excellent 

reactivity toward a wide range of substituted amines. For example, the aryl anilines with 2-methyl 

and 4-flroro-substitutents were successfully converted (4e and 4f). It is noteworthy that 

2-(4-aminophenyl)ethan-1-ol with protic functional group, was successfully coupled and nearly 

quantitative yield was afforded in product of 4g, which would enable the opportunity to be used in 

further transformations. Moreover, other primary and secondary amines bearing functional groups, 

such as hexyl, benzylic, piperidinyl, dibutyl, 4-phenylpiperazinyl, N-methylcyclohexyl, and 

N-methylphenyl were suitable cross-coupling partners, giving the desired products (4h-4n) in high 

yields. Then, we investigated the reactivity of the heteroarylamine (such as 2-aminopyridine) with 

2-chlorothiazole, unfortunately, no reaction was performed even in the presence of 5 mol% 

palladium loading after 24 hours. Probably, 2-aminopyridine would act as a competing ligand and 

inhibits the catalyst activity.16b 
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 13

To further highlight the robust palladium complex of C1, other heteroaryl chlorides, such as 

5-chlorobenzo[b]thiophene, 2-chlorobenzo[d]oxazole, 5-chlorobenzo[d][1,3]dioxole, 

2-chloropyridine, 3-chloropyridine, 2-chloroquinoline, 2-chloro-1,3,5-triazine, 2-chloroquinoxaline, 

2-chloropyrimidine were evaluated (Table 4). To our delight, at a low palladium loading of 0.1-0.2 

mol %, the desired products of 4p-4ac were obtained in high to excellent yields. Remarkably, the 

application of this protocol was further featured by the rapid access to network prescription drug of 

Piribedil (4ad), which is received as an important antiparkinsonian agent and α2-adrenergic 

antagonist.  

Table 4. C-N Cross-Coupling Reaction of Heteroryl Chlorides with amines.
a
  

Page 13 of 44

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 14

 

Reaction conditions: Heterocyclic Chloride (1.0 mmol), amine (1.2 mmol), KOtBu (1.5 
mmol), 1,4-dioxane (4.0 mL). Isolated yields, in air.  

 

CONCLUSION 

In summary, we have developed an efficient protocol for versatile C-N cross coupling by 

bulky-yet-flexible Pd-PEPPSI-IPentAn complex. This methodology can circumvent the classic 

problem emerged limited substrate scopes as well as the requirement of strict oxygen- and 

moisture-free reaction operation. Under the developed reaction conditions, a wide range of sterically 

hindered (hetero)aryl chlorides could be coupled with various aliphatic and aromatic amines with 
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 15

different electronic and steric groups, which enable the reaction to proceed in high yields. 

Considering the potential toxicology and environmental problem arised from 1,4-dioxane, further 

studies exploring the environmental, health and safety solvents for C-N cross-couplings are 

undergoing. 

 

EXPERIMENTAL SECTION 

1. Physical Measurements and Materials 

The NMR spectra were recorded on a Bruker DMX 400 MHz instrument at room temperature 

with the decoupled nucleus, employing TMS as an internal standard and CDCl3 as solvent. Elemental 

analysis was carried out using a Flash EA1112 microanalyzer. High resolution mass spectrometric 

(HRMS) data were obtained using a LTQ Orbitrap Elite instrument, using a sample concentration of 

approximately 1 ppm. The X-ray diffraction data of single crystals were obtained with the ω-2θ scan 

mode on a Bruker SMART 1000 CCD diffractionmeter with graphite-monochromated Mo Kα 

radiation (λ=0.71073Å) at 100 K for C1. Cell parameters were obtained by global refinement of the 

positions of all collected reflections. Intensities were corrected for Lorentz and polarization effects 

and empirical absorption. The structures were solved by direct methods and refined by full-matrix 

least squares on F2. All hydrogen atoms were placed in calculated positions. Structure solution and 

refinement were performed by using the SHELXL-97 package. All non-hydrogen atoms were refined 

anisotropically. Hydrogen atoms were introduced in calculated positions with the displacement 

factors of the host carbon atoms. Wattecs Parallel Reactor (WP-TEC-1020H) was equipped with 10 

tubes × 10 (mL); Power: 650 w; Temperature range: rt-220 oC; Polytetrafluoroethylene (PTFE) as 
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sealed material. 

2. The Procedures for the Synthesis of Pd-PEPPSI complex of C1. 

Imidazolium chloride salt of L1 and Pd-PEPPSI compound C2 were reported by our group.17b, 

23 A mixture of imidazolium salt L1 (1 mmol), palladium dichloride (0.177 g, 1.1 mmol), and K2CO3 

(1.38 g, 10 mmol) in pyridine (4 mL) was added to a vial under a nitrogen atmosphere. The reaction 

was refluxed at 90°C for 24 h. When the solution was cooled to room temperature, 20 mL of 

dichloromethane was added, and then the reaction mixture was passed through a short silica gel 

column using substantial dichloromethane as elute. Evaporation of the filtrate furnished a 

yellow-brown solid. The yellow-brown solid was dissolved completely with suitable 

dichloromethane, and dropped into a large amount of stirring hexane, causing the formation of a 

yellow precipitate. The suspension was filtered through a sintered funnel. Drying the solid in vacuo 

produced the desired palladium complex of C1 as yellow powders in 86% yield (758.8 mg). 1H 

NMR (400 MHz, CDCl3) δ 8.60 – 8.53 (m, 2H), 7.62 (d, J = 8.2 Hz, 2 H), 7.50 (dd, J = 13.5, 5.8 Hz, 

3 H), 7.32 (d, J = 7.8 Hz, 4 H), 7.23 (dd, J = 11.1, 4.0 Hz, 2 H), 7.06 (dd, J = 7.6, 6.5 Hz, 2 H), 6.62 

(d, J = 7.0 Hz, 2 H), 3.23 (td, J = 9.0, 5.5 Hz, 4 H), 2.00 – 1.76 (m, 8 H), 1.33 (ddd, J = 14.1, 7.5, 3.6 

Hz, 4 H), 1.22 – 1.10 (m, 4 H), 1.06 (d, J = 7.2 Hz, 12 H), 0.45 (t, J = 7.4 Hz, 12 H). 13C NMR (101 

MHz, CDCl3) δ 159.5, 151.5, 144.6, 140.6, 137.2, 135.5, 129.4, 128.9, 128.8, 127.9, 126.9, 126.8, 

126.5, 124.0, 121.6, 40.7, 26.4, 26.2, 12.4, 9.8. Anal.calcd for C50H61N3Cl2Pd: C, 68.14; H, 6.98; N, 

4.77. Found: C, 67.95; H, 7.04; N, 4.72. HRMS calcd for C50H62N3Cl2Pd [M + H]+ 880.3350, found 

880.3351.  

3. General Procedure for Buchwald−Hartwig Amination 
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Unless otherwise noted, the amination reactions were carried out in air. All solvents were used 

as received without further purification. A parallel reactor containing a stirred bar was charged with 

Pd-PEPPSI complexes (0.001−0.02 mmol), amine (1.2 mmol), aryl chloride (1.0 mmol), base (1.5 

mmol), and 4 mL of solvent. The reaction mixture was conducted at 100 °C for 2 h. After completion 

of the reaction, the reaction mixture was cooled to room temperature, and 20 mL of water was added. 

The mixture was diluted with dichloromethane (5 mL) and extracted three times (3 × 5 mL) with 

dichloromethane. The organic layer was dried with anhydrous magnesium sulfate, filtered, and 

evaporated under reduce pressure. The crude cross-coupling products were purified by silica-gel 

column chromatography using petroleum ether-dichloromethane (20/1) as the eluent 

4. NMR data of the cross-coupling products. 

N-(2,6-diisopropylphenyl)-2,6-dimethylaniline (3a).
24a The cross-coupling product was isolated in 

92% yield (258.9 mg). 1H NMR (400 MHz, CDCl3) δ 7.19 – 7.11 (m, Ar-H, 3 H), 6.96 (d, J = 7.5 Hz, 

Ar-H, 2 H), 6.75 (t, J = 7.4 Hz, Ar-H, 1 H), 4.82 (s, NH, 1 H), 3.18 (dt, J = 13.7, 6.9 Hz, CH, 2 H), 

2.00 (s, CH3, 6 H), 1.14 (d, J = 6.9 Hz, CH3, 12 H). 13C NMR (101 MHz, CDCl3) δ 144.1, 143.1, 

138.8, 129.5, 125.6, 124.8, 123.2, 119.6, 28.0, 23.4, 19.3. 

N-(2,6-diethylphenyl)-2,6-dimethylaniline (3b).
24b The cross-coupling product was isolated in 98% 

yield (248.3 mg). 1H NMR (400 MHz, CDCl3) δ 7.12 – 6.99 (m, Ar-H, 5H), 6.83 (t, J = 7.4 Hz, Ar-H, 

1 H), 4.93 (s, NH, 1 H), 2.48 (q, J = 7.5 Hz, CH2, 4 H), 2.03 (s, CH3, 6 H), 1.17 (t, J = 7.5 Hz, CH3, 6 

H). 13C NMR (101 MHz, CDCl3) δ 142.1, 140.4, 136.9, 129.0, 127.6, 126.1, 123.0, 120.6, 24.8, 19.2, 

13.8. 
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Bis(2,6-dimethylphenyl)amine (3c).
17c The cross-coupling product was isolated in 95% yield (214.1 

mg). 1H NMR (400 MHz, CDCl3) δ 7.04 – 7.00 (m, Ar-H, 4 H), 6.91 – 6.86 (m, Ar-H, 2 H), 4.84 (s, 

NH, 1 H), 2.05 (s, CH3, 12 H). 13C NMR (101 MHz, CDCl3) δ 141.7, 129.5, 128.7, 121.7, 19.1. 

(3s,5s,7s)-N-(2,6-dimethylphenyl)adamantan-1-amine (3d).
24c The cross-coupling product was 

isolated in 95% yield (242.6 mg). 1H NMR (400 MHz, CDCl3) δ 7.02 (d, J = 7.4 Hz, Ar-H, 2 H), 

6.93 – 6.85 (m, Ar-H, 1 H), 2.37 (s, CH3, 6 H), 2.05 (s, CH, 3 H), 1.78 (d, J = 2.7 Hz, CH2, 6 H), 

1.67 – 1.56 (m, CH2, 6 H). 13C NMR (101 MHz, CDCl3) δ 143.0, 134.7, 128.3, 122.9, 55.5, 44.3, 

36.4, 30.1, 20.6. 

N-(2,6-difluorophenyl)-2,6-dimethylaniline (3e). The cross-coupling product was isolated in 81% 

yield (188.9 mg). 1H NMR (400 MHz, CDCl3) δ 7.08 (s, Ar-H, 3 H), 6.87 – 6.79 (m, Ar-H, 2 H), 

6.71 – 6.64 (m, Ar-H, 1 H), 5.08 (s, NH, 1 H), 2.26 (s, CH3, 6 H). 13C NMR (101 MHz, CDCl3) δ 

152.8 (dd, J = 242.6, 7.0 Hz), 139.0, 135.2, 128.0, 125.55, 124.2 (t, J = 12.5 Hz), 117.1 (t, J = 9.2 

Hz), 112.0 – 110.8(m), 18.5. HRMS calcd for C14 H14 N F2 [M + H]+ 234.1089, found 234.1084 . 

N-(2,6-dimethylphenyl)-2,4,6-trifluoroaniline (3f). The cross-coupling product was isolated in 77% 

yield (193.5 mg). 1H NMR (400 MHz, CDCl3) δ 7.10 – 7.00 (m, Ar-H, 3H), 6.71 – 6.57 (m, Ar-H, 2 

H), 4.86 (s, NH, 1 H), 2.23 (s, CH3, 6 H).13C NMR (101 MHz, CDCl3) δ 154.3 (dt, J = 240.9, 14.7 

Hz), 152.8 (ddd, J = 244.8, 14.2, 9.1 Hz), 139.1, 134.5, 128.2, 125.3, 120.8 (td, J = 12.9, 4.5 Hz), 

100.2 (ddd, J = 26.2, 18.7, 9.7 Hz), 18.4. HRMS calcd for C14 H13 N F3 [M + H]+ 252.0995, found 

252.0989 . 

N-cyclohexyl-2,6-dimethylaniline (3g).
25a The cross-coupling product was isolated in 98% yield 

(199.3 mg). 1H NMR (400 MHz, CDCl3) δ 7.00 (d, J = 7.4 Hz, Ar-H, 2 H), 6.81 (t, J = 7.4 Hz, Ar-H, 

1 H), 2.98 (t, J = 3.7 Hz, CH, 1 H), 2.29 (s, CH3, 6 H), 1.99 (dd, J = 12.3, 2.0 Hz, CH2, 2 H), 1.76 
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(dd, J = 9.6, 3.3 Hz, CH2, 2 H), 1.65 (d, J = 11.0 Hz, CH2, 1 H), 1.34 – 1.20 (m, CH2, 3 H), 1.14 (dd, 

J = 15.5, 6.5 Hz, CH2, 2 H). 13C NMR (101 MHz, CDCl3) δ 145.1, 128.9, 128.7, 121.1, 56.1, 34.9, 

25.9, 25.5, 19.0 

N-benzyl-2,6-dimethylaniline (3h).
25b The cross-coupling product was isolated in 99% yield (209.2 

mg). 1H NMR (400 MHz, CDCl3) δ 7.44 – 7.38 (m, Ar-H, 4 H), 7.37 – 7.32 (m, Ar-H, 1 H), 7.08 (d, 

J = 7.2 Hz, Ar-H, 2 H), 6.95 – 6.88 (m, Ar-H, 1 H), 4.17 (d, J = 1.8 Hz, CH2, 2 H), 2.34 (d, J = 1.9 

Hz, CH3, 6 H). 13C NMR (101 MHz, CDCl3) δ 145.8, 140.4, 129.8, 128.8, 128.5, 127.9, 127.2, 122.1, 

52.8, 18.4. 

2,6-Dimethyl-N-octylaniline (3i).
25c The cross-coupling product was isolated in 90% yield (210.1 

mg). 1H NMR (400 MHz, CDCl3) δ 7.01 (d, J = 7.5 Hz, Ar-H, 2 H), 6.83 (t, J = 7.5 Hz, Ar-H, 1 H), 

3.01 – 2.97 (m, CH2, 2 H), 2.31 (s, CH3, 6 H), 1.59 (dd, J = 14.7, 7.7 Hz, CH2, 2 H), 1.35 (dd, J = 

17.1, 9.5 Hz, CH2, 10 H), 0.91 (t, J = 6.9 Hz, CH3, 3 H).13C NMR (101 MHz, CDCl3) δ 146.4, 129.0, 

128.7, 121.5, 48.7, 31.8, 31.2, 29.5, 29.3, 27.2, 22.6, 18.5, 14.1. 

N-(furan-2-ylmethyl)-2,6-dimethylaniline (3j).
26a The cross-coupling product was isolated in 71% 

yield (142.9 mg). 1H NMR (400 MHz, CDCl3) δ 7.41 – 7.37 (m, Ar-H, 1 H), 7.02 (d, J = 7.4 Hz, 

Ar-H, 2 H), 6.87 (t, J = 7.5 Hz, Ar-H, 1 H), 6.32 (dd, J = 3.1, 1.9 Hz, Ar-H, 1 H), 6.12 (d, J = 3.1 Hz, 

Ar-H, 1 H), 4.15 (s, CH2, 2 H), 2.29 (s, CH3, 6 H).13C NMR (101 MHz, CDCl3) δ 153.7, 145.1, 

141.8, 130.0, 128.7, 122.4, 110.3, 106.8, 45.1, 18.2. 

2,6-Dimethyl-N-(2-(thiophen-2-yl)ethyl)aniline (3k).
26b The cross-coupling product was isolated in 

89% yield (205.9 mg). 1H NMR (400 MHz, CDCl3) δ 7.23 (dd, J = 5.1, 1.2 Hz, Ar-H, 1 H), 7.03 

(ddd, J = 7.7, 6.0, 1.8 Hz, Ar-H, 3 H), 6.94 (dd, J = 3.4, 1.0 Hz, Ar-H, 1 H), 6.90 – 6.85 (m, Ar-H, 1 
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H), 3.35 (t, J = 6.7 Hz, CH2, 2 H), 3.15 (t, J = 6.7 Hz, CH2, 2 H), 2.24 (s, CH3, 6 H). 13C NMR (101 

MHz, CDCl3) δ 145.5, 142.0, 129.2, 128.8, 126.9, 125.4, 123.8, 121.8, 49.4, 31.1, 18.3. 

N-(2,6-dimethylphenyl)-2,4,6-trimethylaniline (3l).
24a The cross-coupling product was isolated in 

90% yield (215.4 mg). 1H NMR (400 MHz, CDCl3) δ 7.01 (d, J = 7.4 Hz, Ar-H, 2 H), 6.87 – 6.82 (m, 

Ar-H, 3 H), 4.76 (s, NH, 1 H), 2.30 (s, CH3, 3 H), 2.04 (d, J = 1.7 Hz, CH3, 12 H).13C NMR (101 

MHz, CDCl3) δ 142.2, 139.0, 131.5, 130.5, 129.2, 128.8, 128.4, 120.9, 20.6, 19.1, 19.0. 

Dimesitylamine (3m).
26c The cross-coupling product was isolated in 97% yield (245.8 mg). 1H 

NMR (400 MHz, CDCl3) δ 6.88 – 6.79 (m, Ar-H, 4 H), 4.66 (s, NH, 1 H), 2.29 (s, CH3, 6 H), 2.02 (s, 

CH3, 12 H).13C NMR (101 MHz, CDCl3) δ 139.4, 130.7, 129.4, 129.3, 20.5, 19.0. 

N-(4-methoxy-2,6-dimethylphenyl)naphthalen-1-amine (3n). The cross-coupling product was 

isolated in75% yield (208.0 mg). 1H NMR (400 MHz, CDCl3) δ 8.07 – 8.04 (m, Ar-H, 1 H), 7.87 – 

7.83 (m, Ar-H, 1 H), 7.54 – 7.50 (m, Ar-H, 2 H), 7.28 (d, J = 8.1 Hz, Ar-H, 1 H), 7.23 – 7.19 (m, 

Ar-H, 1 H), 6.74 (s, Ar-H, 2 H), 6.18 (dd, J = 7.5, 1.1 Hz, Ar-H, 1 H), 5.64 (s, NH, 1 H), 3.84 (s, 

CH3, 3 H), 2.20 (s, CH3, CH3, 6 H).13C NMR (101 MHz, CDCl3) δ 157.3, 142.0, 137.4, 134.5, 131.3, 

128.7, 126.6, 125.7, 124.8, 123.4, 120.1, 118.0, 113.7, 106.1, 55.3, 18.4. HRMS calcd for C19H20ON 

[M + H]+ 278.1539, found 278.1538. 

N-(2,6-diisopropylphenyl)-4-methoxy-2,6-dimethylaniline (3o).
27a The cross-coupling product 

was isolated in 92% yield (286.5 mg). 1H NMR (400 MHz, CDCl3) δ 7.12-7.09 (m, Ar-H, 2 H), 7.05 

(dd, J = 8.9, 5.9 Hz, Ar-H, 1 H), 6.56 (s, Ar-H, 2 H), 5.30 (s, NH, 1 H), 3.77 (s, OCH3, 3 H), 3.08 (dt, 

J = 13.7, 6.8 Hz, CH, 2 H), 2.01 (s, CH3, 6 H), 1.12 (d, J = 6.9 Hz, 12 H). 13C NMR (101 MHz, 

CDCl3) δ 153.9, 141.5, 139.7, 136.5, 129.9, 123.4, 123.0, 114.4, 55.4, 27.8, 23.5 19.5. 

Page 20 of 44

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 21

N-(2,6-diethylphenyl)-4-methoxy-2,6-dimethylaniline (3p). The cross-coupling product was 

isolated in 99% yield (280.6 mg). 1H NMR (400 MHz, CDCl3) δ 7.07 (d, J = 7.5 Hz, Ar-H, 2 H), 

6.98 – 6.93 (m, Ar-H, 1 H), 6.61 (s, Ar-H, 2 H), 4.80 (s, NH, 1 H), 3.81 (s, OCH3, 3 H), 2.44 (q, J = 

7.5 Hz, CH2, 4 H), 2.07 (s, CH3, 6 H), 1.17 (t, J = 7.5 Hz, CH3, 6 H).13C NMR (101 MHz, CDCl3) δ 

154.6, 141.4, 135.2, 133.9, 132.0, 126.3, 121.1, 113.8, 55.3, 24.7, 19.4, 13.7. HRMS calcd for 

C19H26ON [M + H]+ 284.2009, found 284.2008. 

N-(2,6-dimethylphenyl)-4-methoxy-2,6-dimethylaniline (3q). The cross-coupling product was 

isolated in 98% yield (250.2 mg). 1H NMR (400 MHz, CDCl3) δ 7.01 (d, J = 7.4 Hz, Ar-H, 2 H), 

6.80 (t, J = 7.4 Hz, Ar-H, 1 H), 6.64 (s, Ar-H, 2 H), 4.73 (s, NH, 1 H), 3.83 (s, OCH3, 3 H), 2.11 (s, 

CH3, 6 H), 2.04 (s, CH3, 6 H).13C NMR (101 MHz, CDCl3) δ 155.3, 142.7, 134.7, 133.8, 129.0, 

126.6, 119.9, 113.4, 55.2, 19.3, 19.1. HRMS calcd for C17H22ON [M + H]+ 256.1696, found 

256.1694. 

N-(2,6-dimethoxyphenyl)-4-methoxy-2,6-dimethylaniline (3r). The cross-coupling product was 

isolated in 89% yield (255.7 mg). 1H NMR (400 MHz, CDCl3) δ 6.72 (dd, J = 8.7, 7.7 Hz, Ar-H, 1 

H), 6.62 – 6.55 (m, Ar-H, 4 H), 5.28 (s, NH, 1 H), 3.80 (s, OCH3, 3 H), 3.65 (s, OCH3, 6 H), 2.20 (s, 

CH3, 6 H). 13C NMR (101 MHz, CDCl3) δ 156.1, 148.8, 136.8, 134.8, 127.1, 117.3, 112.4, 106.0, 

56.5, 55.2, 19.08. HRMS calcd for C17H22O3N [M + H]+ 288.1594, found 288.1594. 

4-(Benzo[d]thiazol-2-yl)morpholine (4a).
27b The cross-coupling product was isolated in 97% yield 

(213.7 mg). 1H NMR (400 MHz, CDCl3) δ 7.64 – 7.55 (m, Ar-H, 2 H), 7.31 (td, J = 7.8, 1.2 Hz, 

Ar-H, 1 H), 7.10 (td, J = 7.9, 1.1 Hz, Ar-H, 1 H), 3.86 – 3.82 (m, CH2, 4 H), 3.65 – 3.60 (m, CH2, 4 

H).13C NMR (101 MHz, CDCl3) δ 169.0, 152.5, 130.5, 126.1, 121.7, 120.8, 119.3, 66.2, 48.5. 
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2-Thiomorpholinobenzo[d]thiazole (4b).
27c The cross-coupling product was isolated in 96% yield 

(226.9 mg). 1H NMR (400 MHz, CDCl3) δ 7.60 (dd, J = 7.9, 0.8 Hz, Ar-H, 1 H), 7.54 (dd, J = 8.1, 

0.5 Hz, Ar-H, 1 H), 7.30 (td, J = 7.8, 1.3 Hz, Ar-H, 1 H), 7.08 (td, J = 7.8, 1.1 Hz, Ar-H, 1 H), 4.02 – 

3.91 (m, CH2, 4 H), 2.80 – 2.69 (m, CH2, 4 H). 13C NMR (101 MHz, CDCl3) δ 168.1, 152.6, 130.6, 

126.0, 121.5, 120.7, 119.1, 51.2, 26.5. 

N-methyl-N-phenylbenzo[d]thiazol-2-amine (4c).
27d The cross-coupling product was isolated in 93% 

yield (223.5 mg). 1H NMR (400 MHz, CDCl3) δ 7.64 (d, J = 8.1 Hz, Ar-H, 1 H), 7.53 – 7.41 (m, 

Ar-H, 5 H), 7.37 – 7.28 (m, Ar-H, 2 H), 7.08 (t, J = 7.6 Hz, Ar-H, 1 H), 3.65 (s, CH3, 3 H).13C NMR 

(101 MHz, CDCl3) δ 168.2, 152.6, 145.7, 131.1, 129.9, 127.4, 125.9, 125.8, 121.7, 120.4, 119.1, 

40.4. 

4-(Thiophen-3-yl)morpholine (4d).
28a The cross-coupling product was isolated in 90% yield (152.3 

mg). 1H NMR (400 MHz, CDCl3) δ 7.24 (dd, J = 5.2, 3.1 Hz, Ar-H, 1 H), 6.85 (dd, J = 5.3, 1.6 Hz, 

Ar-H, 1 H), 6.19 (dd, J = 3.1, 1.6 Hz, Ar-H, 1 H), 3.85 – 3.81 (m, CH2, 4 H), 3.10 – 3.05 (m, CH2, 4 

H).13C NMR (101 MHz, CDCl3) δ 152.3, 125.5, 119.5, 100.3, 66.6, 50.6. 

N-(o-tolyl)thiazol-2-amine (4e).
28b The cross-coupling product was isolated in 89% yield (169.3 

mg). 1H NMR (400 MHz, CDCl3) δ 7.61 (d, J = 8.1 Hz, Ar-H, 1 H), 7.24 (dd, J = 7.8, 4.2 Hz, Ar-H, 

3 H), 7.08 (t, J = 7.4 Hz, Ar-H, 1 H), 6.58 (d, J = 3.6 Hz, Ar-H, 1 H), 2.32 (s, CH3, 3 H).13C NMR 

(101 MHz, CDCl3) δ 167.5, 139.0, 138.8, 131.1, 129.3, 127.1, 124.5, 120.5, 107.5, 17.8. 

N-(4-fluorophenyl)thiazol-2-amine (4f).
28c The cross-coupling product was isolated in 98% yield 

(190.3 mg). 1H NMR (400 MHz, CDCl3) δ 8.98 (s, Ar-H, 1 H), 7.37 – 7.31 (m, Ar-H, 2 H), 7.27 (d, J 

= 3.5 Hz, Ar-H, 1 H), 7.10 – 7.02 (m, Ar-H, 2 H), 6.60 (d, J = 3.7 Hz, Ar-H, 1 H).13C NMR (101 
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MHz, CDCl3) δ 167.0, 158.8 (d, J = 242.7 Hz), 138.5, 136.9 (d, J = 2.5 Hz), 120.6 (d, J = 7.9 Hz), 

116.2 (d, J = 22.7 Hz), 107.1. 

N-(4-fluorophenyl)thiazol-2-amine (4g). The cross-coupling product was isolated in 99% yield 

(218.1 mg). 1H NMR (400 MHz, CDCl3) δ 7.11 (d, J = 3.8 Hz, Ar-H, 1 H), 7.05 (d, J = 8.4 Hz, Ar-H, 

2 H), 6.64 (dt, J = 8.9, 2.2 Hz, Ar-H, 3 H), 4.54 (t, J = 7.1 Hz, CH2, 2 H), 3.00 (t, J = 7.1 Hz, CH2, 2 

H).13C NMR (101 MHz, CDCl3) δ 175.0, 144.9, 136.8, 129.8, 127.3, 115.2, 110.9, 72.4, 34.3. 

HRMS calcd for C11H12ON2NaS [M + Na]+ 243.0562, found 243.0561. 

N-cyclohexylthiazol-2-amine (4h).
28d The cross-coupling product was isolated in 98% yield (178.6 

mg). 1H NMR (400 MHz, CDCl3) δ 7.08 (d, J = 3.6 Hz, Ar-H, 1 H), 6.45 (d, J = 3.6 Hz, Ar-H, 1 H), 

5.38 – 5.28 (m, NH, 1 H), 3.41 – 3.29 (m, CH, 1 H), 2.09 (dd, J = 12.5, 2.9 Hz, CH2, 2 H), 1.78 – 

1.59 (m, CH2, 3 H), 1.37 (dd, J = 13.1, 11.6 Hz, CH2, 2 H), 1.25 (dd, J = 7.4, 4.0 Hz, CH2, 3 H).13C 

NMR (101 MHz, CDCl3) δ 169.5, 138.9, 105.9, 55.0, 33.1, 25.5, 24.7. 

N-benzylthiazol-2-amine (4i).
29a The cross-coupling product was isolated in 75% yield (142.7 mg). 

1H NMR (400 MHz, CDCl3) δ 7.40 – 7.28 (m, Ar-H, 5 H), 7.06 (d, J = 3.6 Hz, Ar-H, 1 H), 6.48 (d, J 

= 3.6 Hz, Ar-H, 1 H), 5.95 (s, NH, 1 H), 4.47 (s, CH2, 2 H). 13C NMR (101 MHz, CDCl3) δ 170.2, 

139.0, 137.5, 128.7, 127.7, 127.7, 106.7, 49.9. 

2-(Piperidin-1-yl)thiazole (4j).
29b The cross-coupling product was isolated in 95% yield (159.8 mg). 

1H NMR (400 MHz, CDCl3) δ 7.15 (d, J = 3.6 Hz, Ar-H, 1 H), 6.50 (d, J = 3.7 Hz, Ar-H, 1 H), 3.46 

– 3.42 (m, CH2, 4 H), 1.69 – 1.61 (m, CH2, 6 H).13C NMR (101 MHz, CDCl3) δ 172.5, 139.4, 106.5, 

49.7, 25.0, 24.1. 

N,N-dibutylthiazol-2-amine (4k).
29c The cross-coupling product was isolated in 99% yield (210.2 

mg). 1H NMR (400 MHz, CDCl3) δ 7.12 (d, J = 3.7 Hz, Ar-H, 1 H), 6.40 (d, J = 3.7 Hz, Ar-H, 1 H), 
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3.41 – 3.37 (m, CH2, 4 H), 1.62 (ddd, J = 7.5, 6.0, 3.9 Hz, CH2, 4 H), 1.34 (dd, J = 15.1, 7.5 Hz, CH2, 

4H), 0.93 (t, J = 7.4 Hz, CH3, 6 H).13C NMR (101 MHz, CDCl3) δ 170.9, 139.5, 105.1, 51.3, 29.3, 

20.1, 13.9. 

2-(4-Phenylpiperazin-1-yl)thiazole (4l). The cross-coupling product was isolated in 98% yield 

(240.4mg). 1H NMR (400 MHz, CDCl3) δ 7.33 – 7.27 (m, Ar-H, 2 H), 7.23 (d, J = 3.6 Hz, Ar-H, 1 

H), 7.01 – 6.96 (m, Ar-H, 2 H), 6.92 (t, J = 7.3 Hz, Ar-H, 1 H), 6.61 (d, J = 3.6 Hz, Ar-H, 1 H), 3.65 

(dd, J = 6.1, 4.3 Hz, CH2, 4 H), 3.31 (dd, J = 6.2, 4.2 Hz, CH2, 4 H).13C NMR (101 MHz, CDCl3) δ 

172.1, 151.0, 139.5, 129.2, 120.5, 116.7, 107.7, 48.9, 48.5. HRMS calcd for C13H16N3S [M + H]+ 

246.1059, found 246.1058. 

N-cyclohexyl-N-methylthiazol-2-amine (4m). The cross-coupling product was isolated in 99% 

yield (194.3 mg). 1H NMR (400 MHz, CDCl3) δ 7.15 (d, J = 3.7 Hz, Ar-H, 1 H), 6.43 (d, J = 3.7 Hz, 

Ar-H, 1 H), 3.91 – 3.83 (m, CH, 1 H), 2.93 (s, CH3, 3 H), 1.86 – 1.80 (m, CH2, 4 H), 1.70 – 1.64 (m, 

CH2, 1 H), 1.49 – 1.35 (m, CH2, 4 H), 1.11 (dd, J = 12.7, 3.3 Hz, CH2, 1 H).13C NMR (101 MHz, 

CDCl3) δ 171.7, 139.4, 105.2, 59.9, 32.3, 29.8, 25.7, 25.5. HRMS calcd for C10H17N2S [M + H]+ 

197.1107, found 197.1105 

N-methyl-N-phenylthiazol-2-amine (4n).
29b The cross-coupling product was isolated in 97% yield 

(184.6 mg). 1H NMR (400 MHz, CDCl3) δ 7.40 (dd, J = 6.2, 4.3 Hz, Ar-H, 4 H), 7.29 – 7.20 (m, 

Ar-H, 2 H), 6.47 (d, J = 3.7 Hz, Ar-H, 1 H), 3.53 (s, CH3, 3 H).13C NMR (101 MHz, CDCl3) δ 170.7, 

146.4, 139.3, 129.6, 126.2, 124.8, 107.4, 40.3. 

1-(Benzo[b]thiophen-5-yl)-4-phenylpiperazine (4o). The cross-coupling product was isolated in 73% 

yield (214.9 mg). 1H NMR (400 MHz, CDCl3) δ 7.69 (d, J = 8.8 Hz, Ar-H, 1 H), 7.34 (d, J = 5.4 Hz, 

Ar-H, 1 H), 7.28 (d, J = 2.3 Hz, Ar-H, 1 H), 7.26 – 7.21 (m, Ar-H, 2 H), 7.18 (d, J = 5.4 Hz, Ar-H, 1 
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H), 7.07 (dd, J = 8.8, 2.3 Hz, Ar-H, 1 H), 6.94 (dd, J = 8.7, 0.9 Hz, Ar-H, 2 H), 6.83 (dd, J = 10.5, 

4.1 Hz, Ar-H, 1 H), 3.34 – 3.26 (m, CH2, 8 H). 13C NMR (101 MHz, CDCl3) δ 151.2, 149.1, 140.7, 

132.2, 129.2, 127.1, 123.7, 122.8, 120.1, 116.9, 116.4, 110.0, 50.6, 49.5. HRMS calcd for C18H19N2S 

[M + H]+ 295.1263, found 295.1262. 

N-cyclohexyl-N-methylbenzo[d]oxazol-2-amine (4p).
30a The cross-coupling product was isolated 

in 99% yield (228.0 mg). 1H NMR (400 MHz, CDCl3) δ 7.34 (d, J = 7.8 Hz, Ar-H, 1 H), 7.23 (d, J = 

7.9 Hz, Ar-H, 1 H), 7.13 (t, J = 7.7 Hz, Ar-H, 1 H), 6.97 (t, J = 7.7 Hz, Ar-H, 1 H), 4.17 – 4.08 (m, 

CH, 1 H), 3.06 (s, CH3, 3 H), 1.88 – 1.81 (m, CH2, 4 H), 1.70 (d, J = 12.8 Hz, CH2, 1 H), 1.56 – 1.42 

(m, CH2, 4 H), 1.19 – 1.08 (m, CH2, 1 H).13C NMR (101 MHz, CDCl3) δ 162.7, 148.6, 143.5, 123.7, 

119.9, 115.7, 108.4, 56.7, 29.9, 29.5, 25.6, 25.4.  

4-(Benzo[d][1,3]dioxol-5-yl)morpholine (4q).
30b The cross-coupling product was isolated in 71% 

yield (147.1 mg). 1H NMR (400 MHz, CDCl3) δ 6.72 (d, J = 8.4 Hz, Ar-H, 1 H), 6.54 (d, J = 2.4 Hz, 

Ar-H, 1 H), 6.34 (dd, J = 8.4, 2.4 Hz, Ar-H, 1 H), 5.89 (s, CH2, 2 H), 3.85 – 3.81 (m, CH2, 4 H), 3.04 

– 3.00 (m, CH2, 4 H). 13C NMR (101 MHz, CDCl3) δ 148.2, 147.3, 141.6, 108.5, 108.1, 100.8, 99.5, 

66.9, 50.9. 

4-(3-Methylpyridin-2-yl)morpholine (4r).
31a The cross-coupling product was isolated in 80% yield 

(142.6 mg). 1H NMR (400 MHz, CDCl3) δ 8.17 (dd, J = 4.8, 1.3 Hz, Ar-H, 1 H), 7.44 – 7.39 (m, 

Ar-H, 1 H), 6.88 (dd, J = 7.3, 4.9 Hz, Ar-H, 1 H), 3.88 – 3.84 (m, CH2, 4 H), 3.17 – 3.13 (m, CH2, 4 

H), 2.29 (s, CH3, 3 H). 13C NMR (101 MHz, CDCl3) δ 161.4, 145.4, 139.4, 124.8, 118.1, 67.2, 50.0, 

18.3. 

1-(6-Methylpyridin-2-yl)-4-phenylpiperazine (4s). The cross-coupling product was isolated in 99% 

yield (250.8 mg). 1H NMR (400 MHz, CDCl3) δ 7.46 – 7.40 (m, Ar-H, 1 H), 7.32 (t, J = 7.7 Hz, 
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Ar-H, 2 H), 7.01 (d, J = 8.5 Hz, Ar-H, 2 H), 6.92 (td, J = 7.3, 0.7 Hz, Ar-H, 1 H), 6.53 (dd, J = 14.2, 

7.8 Hz, Ar-H, 2 H), 3.74 – 3.69 (m, CH2, 4 H), 3.35 – 3.30 (m, CH2, 4 H), 2.45 (s, CH3, 3 H). 13C 

NMR (101 MHz, CDCl3) δ 159.1, 156.8, 151.3, 137.7, 129.1, 119.9, 116.3, 112.9, 103.8, 49.2, 45.3, 

24.5. HRMS calcd for C16H20N3 [M + H]+ 254.1652, found 254.1651. 

4-(Pyridin-2-yl)morpholine (4t).
31b The cross-coupling product was isolated in 93% yield (152.7 

mg). 1H NMR (400 MHz, CDCl3) δ 8.19 (dd, J = 4.9, 1.2 Hz, Ar-H, 1 H), 7.49 (ddd, J = 8.9, 7.2, 2.0 

Hz, Ar-H, 1 H), 6.69 – 6.60 (m, Ar-H, 2 H), 3.84 – 3.79 (m, CH2, 4 H), 3.51 – 3.46 (m, CH2, 4 H). 

13C NMR (101 MHz, CDCl3) δ 159.6, 147.9, 137.5, 113.8, 106.9, 66.7, 45.6. 

4-(6-Methoxypyridin-2-yl)morpholine (4u).
31c The cross-coupling product was isolated in 95% 

yield (184.5 mg). 1H NMR (400 MHz, CDCl3) δ 7.41 (t, J = 8.0 Hz, Ar-H, 1 H), 6.12 (dd, J = 9.4, 

8.0 Hz, Ar-H, 2 H), 3.86 (s, OCH3, 3 H), 3.83 – 3.79 (m, CH2, 4 H), 3.49 – 3.45 (m, CH2, 4 H). 13C 

NMR (101 MHz, CDCl3) δ 163.0, 158.3, 140.1, 98.7, 97.9, 66.7, 52.9, 45.5. 

6-Morpholinonicotinonitrile (4v).
32a The cross-coupling product was isolated in 93% yield (176.0 

mg). 1H NMR (400 MHz, CDCl3) δ 8.40 (d, J = 1.8 Hz, Ar-H, 1 H), 7.63 (dd, J = 9.0, 2.3 Hz, Ar-H, 

1 H), 6.58 (d, J = 8.8 Hz, Ar-H, 1 H), 3.81 – 3.76 (m, CH2, 4 H), 3.66 – 3.61 (m, CH2, 4 H). 13C 

NMR (101 MHz, CDCl3) δ 159.5, 152.6, 139.9, 118.4, 105.6, 96.9, 66.4, 44.6. 

N-methyl-N-phenylpyridin-2-amine (4w).
32b The cross-coupling product was isolated in 99% yield 

(182.4 mg). 1H NMR (400 MHz, CDCl3) δ 8.27 – 8.21 (m, Ar-H, 1 H), 7.41 (t, J = 7.6 Hz, Ar-H, 2 

H), 7.33 – 7.20 (m, Ar-H, 4 H), 6.63 – 6.59 (m, Ar-H, 1 H), 6.54 (d, J = 8.6 Hz, Ar-H, 1 H), 3.48 (s, 

CH3, 3 H). 13C NMR (101 MHz, CDCl3) δ 158.8, 147.7, 146.8, 136.5, 129.6, 126.3, 125.4, 113.1, 

109.1, 38.4. 
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3-(Piperidin-1-yl)pyridine (4x).
32c The cross-coupling product was isolated in 89% yield (144.4 

mg). 1H NMR (400 MHz, CDCl3) 1H NMR (400 MHz, CDCl3) δ 8.28 (d, J = 2.7 Hz, Ar-H, 1 H), 

8.02 (d, J = 3.6 Hz, Ar-H, 1 H), 7.19 – 7.06 (m, Ar-H, 2 H), 3.21 – 3.10 (m, CH2, 4 H), 1.68 (dt, J = 

11.1, 5.6 Hz, CH2, 4 H), 1.57 (dd, J = 11.0, 5.7 Hz, CH2, 2 H). 13C NMR (101 MHz, CDCl3) δ 

147.6, 139.9, 138.8, 123.3, 122.5, 49.8, 25.4, 24.0. 

N,N-dibutylpyridin-3-amine (4y).
32d The cross-coupling product was isolated in 83% yield (171.3 

mg). 1H NMR (400 MHz, CDCl3) δ 8.06 (s, Ar-H, 1 H), 7.87 (d, J = 3.7 Hz, Ar-H, 1 H), 7.07 (dd, J 

= 8.5, 4.5 Hz, Ar-H, 1 H), 6.87 (ddd, J = 8.6, 3.1, 1.2 Hz, Ar-H, 1 H), 3.28 – 3.24 (m, CH2, 4 H), 

1.59 – 1.52 (m, CH2, 4 H), 1.35 (dd, J = 15.0, 7.5 Hz, CH2, 4 H), 0.95 (t, J = 7.3 Hz, CH3, 6 H). 13C 

NMR (101 MHz, CDCl3) δ 143.9, 136.4, 134.5, 123.5, 117.7, 50.4, 29.2, 20.2, 13.9. 

2-(4-Methylpiperazin-1-yl)quinolone (4z).
33a The cross-coupling product was isolated in 82% yield 

(186.4 mg). 1H NMR (400 MHz, CDCl3) δ 7.89 (d, J = 9.1 Hz, Ar-H, 1 H), 7.70 (d, J = 8.4 Hz, Ar-H, 

1 H), 7.59 (dd, J = 8.0, 1.2 Hz, Ar-H, 1 H), 7.56 – 7.50 (m, Ar-H, 1 H), 7.25 – 7.20 (m, Ar-H, 1 H), 

6.99 (d, J = 9.1 Hz, Ar-H, 1 H), 3.82 – 3.73 (m, CH2, 4 H), 2.60 – 2.52 (m, CH2, 4 H), 2.36 (s, CH3, 

3 H). 13C NMR (101 MHz, CDCl3) δ 157.5, 147.9, 137.5, 129.5, 127.2, 126.6, 123.1, 122.4, 109.6, 

55.0, 46.2, 45.1. 

4-(4,6-Dimethoxy-1,3,5-triazin-2-yl)morpholine (4aa).
33b The cross-coupling product was isolated 

in 96% yield (217.2 mg). 1H NMR (400 MHz, CDCl3) δ 3.92 (s, OCH3, 6 H), 3.84 – 3.79 (m, CH2, 4 

H), 3.71 – 3.67 (m, CH2, 4 H). 13C NMR (101 MHz, CDCl3) δ 172.3, 166.7, 66.5, 54.5, 43.9. 

4-(Quinoxalin-2-yl)morpholine (4ab).
33c The cross-coupling product was isolated in 94% yield 

(202.3 mg). 1H NMR (400 MHz, CDCl3) δ 8.56 (s, Ar-H, 1 H), 7.90 (dd, J = 8.2, 1.3 Hz, Ar-H, 1 H), 

7.70 (dd, J = 8.4, 1.0 Hz, Ar-H, 1 H), 7.59 (ddd, J = 8.4, 7.0, 1.4 Hz, Ar-H, 1 H), 7.42 (ddd, J = 8.3, 
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6.9, 1.4 Hz, Ar-H, 1 H), 3.90 – 3.85 (m, CH2, 4 H), 3.79 – 3.74 (m, CH2, 4 H). 13C NMR (101 MHz, 

CDCl3) δ 152.3, 141.48, 137.1, 135.4, 130.2, 128.7, 126.6, 125.1, 66.6, 45.0. 

4,6-Dimethyl-2-(4-phenylpiperazin-1-yl)pyrimidine (4ac). The cross-coupling product was 

isolated in 97% yield (260.3 mg). 1H NMR (400 MHz, CDCl3) δ 7.28 (dd, J = 8.7, 7.3 Hz, Ar-H, 2 

H), 7.00 – 6.95 (m, Ar-H, 2 H), 6.88 (t, J = 7.3 Hz, Ar-H, 1 H), 6.29 (s, Ar-H, 1 H), 4.00 – 3.96 (m, 

CH2, 4 H), 3.25 – 3.21 (m, CH2, 4 H), 2.30 (s, CH3, 6 H). 13C NMR (101 MHz, CDCl3) δ 167.1, 

161.8, 1515, 129.1, 120.0, 116.5, 109.3, 49.4, 43.7, 24.1. HRMS calcd for C16H21N4 [M + H]+ 

269.1761, found 269.1760. 

2-(4-(Benzo[d][1,3]dioxol-5-ylmethyl)piperazin-1-yl)pyrimidine (4ad).
33d The cross-coupling 

product was isolated in 98% yield (292.4 mg). 1H NMR (400 MHz, CDCl3) δ 8.28 (d, J = 4.7 Hz, 

Ar-H, 2 H), 6.88 (s, Ar-H, 1 H), 6.75 (d, J = 0.7 Hz, Ar-H, 2 H), 6.45 (t, J = 4.7 Hz, Ar-H, 1 H), 5.93 

(s, CH2, 2 H), 3.84 – 3.77 (m, CH2, 4 H), 3.44 (s, CH2, 2 H), 2.50 – 2.43 (m, CH2, 4H). 13C NMR 

(101 MHz, CDCl3) δ 161.6, 157.6, 147.6, 146.6, 131.8, 122.2, 109.7, 109.4, 107.8, 100.8, 62.8, 52.8, 

43.6. 
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