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Abstract: We report the highly efficient and chemoselective oxidation of benzylic alcohols catalyzed
by sodium copper chlorophyllin in water, producing corresponding arylcarbonyl compounds.
Importantly, the catalytic system exhibits a wide substrate scope and high functional group tolerance.
Moreover, secondary alcohols and even diarylmethanes were smoothly oxidized to the desired aryl
ketones with excellent yields.
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1. Introduction

The oxidation of alcohols to their corresponding carbonyls has become an essential reaction
in organic chemistry [1,2]. The most important application for these carbonyl compounds is in the
synthesis of fine chemicals, such as pharmaceuticals, flavors, fragrances, aniline-dyes, and food
additives [3,4]. Traditionally, the oxidation of alcohols is completed using stoichiometric amounts of
Cr(VI)- and Mn(VII)-based oxidants [5], which are applied in the vast majority of processes. However,
costly and toxic solvents are required [6]. Copper is a low cost, abundant metal, found in various
metalloproteins especially enzymes, which contribute to the binding of molecular oxygen or in
selective oxidative transformations [7,8]. Cu-catalyzed selective oxidation of alcohols has received
increased attention. For example, Markó et al. reported that the CuCl·Phen-catalyst can oxidize
alcohols into aldehydes and ketones in the presence of diethylhydrazinodicarboxylate (DEAD-H2)
and molecular oxygen or air [9]. Knochel et al. showed that Cu(I), in the presence of a bipyridine
ligand-bearing perfluorinated ponytails, with 2, 2, 6, 6-tetramethylpiperidinyl-1-oxy (TEMPO) and
oxygen, can mediate the fluorous biphasic oxidation of primary, secondary, allylic, and benzylic
alcohols [10]. Similarly, Gree et al. developed a series of [Cu-TEMPO]-mediated oxidation reactions of
primary and/or secondary alcohols [11–15]. Birinchi et al. described a homogeneous catalyst based on
the polymeric coordination complex [CuCl2(4-CNpy)2]n (1; 4-CNpy = 4-cyanopyridine) that catalyses
the oxidation of both primary and secondary alcohols using TBHP(aq.) as the oxidant [16]. In addition,
the selective aerobic oxidation of alcohols into their corresponding aldehydes or ketones was also
possible using a two-component system, VO(acac)2/DABCO in an ionic liquid ([bmim]PF6) [17].
From both economic and environmental points of view, the quest for efficient catalytic systems that
use simple, effective, environmentally friendly, and inexpensive catalysts for the transformation of
alcohols into carbonyl compounds on an industrial scale remains a challenge.
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Chlorophyll, a highly abundant tetrapyrollic compound, is the essential pigment necessary
for photosynthesis to occur in plants, algae, and cyanobacteria. Sodium copper chlorophyllin
(C34H31CuN4Na3O6, SCC; Figure 1) is a semi-synthetic, water-soluble derivative of chlorophyll and is
widely used in the food and medicine industries [18–20]. Due to its characteristic tetrapyrrole structure,
the photochemical properties of SCC have been well studied by organic photovoltaics and optical
spectroscopy [21–25]. However, the effectiveness of SCC as a catalyst in organic reactions has yet to be
explored in-depth [26]. Herein, we describe a highly efficient and practical protocol for the selective
catalytic oxidation of benzylic alcohols to aldehydes and carboxylic acids using SCC as a green, safe,
and cheap metal-copper catalyst in water.
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2. Results and Discussion

Optimization of the Reaction Conditions
The optimization of our oxidation reaction was completed using benzyl alcohol (1 mmol) and TBHP

(tert-Butyl hydroperoxide), as the oxidant, in the presence of SCC, as the catalyst, and 4-methylpyridine,
as an additive, in water (Table 1). After 10 h at 30 ◦C, benzaldehyde 2a and benzoic acid 3a were obtained
in 46% and 15% yields, respectively (entry 1, Table 1). By increasing the reaction temperature to 60 ◦C,
the reaction favored oxidized product 2a (entry 2, Table 1). In the absence of SCC, the desired product was
only obtained with a 18% yield (entry 3, Table 1). Further increase of the reaction temperature to 70 ◦C or
the SCC catalyst to 2 mmol % did not significantly affect the chemoselectivity and conversion (entries
4–6, Table 1). Reducing the reaction time to 5 h, although highly selective for the oxidative product, only
provided a 43% yield of 2a (entry 7, Table 1). Notably, an increase in the amount of TBHP had a noticeable
effect on the chemoselectivity of the reaction (entries 8–10, Table 1). Moreover, when the reaction was
completed in the presence of 3.0 equiv. of TBHP at 80 ◦C, benzoic acid 3a was obtained with a 95% yield
with high chemoselectivity (entry 11, Table 1).

Several benzyl alcohols underwent SCC-catalyzed oxidation using 1 equiv. of TBHP, leading to,
in most cases, the chemoselective formation of aromatic aldehyde products 2b–h (Table 2). A variety
of substituted benzyl alcohols were examined, with the more electron-rich substrates producing
good yields with high chemoselectivity (2b and 2g, entries 1 and 6, Table 2). However, benzyl
alcohols bearing electron-poor substituents produced desired aldehydes 2c–f and 2h (entries 2–5,
and 7, respectively, Table 2) in somewhat diminished yields (14–56%).

Furthermore, we evaluated the SCC catalyst for the oxidation of benzyl alcohols in the presence
of TBHP (3 equiv.) at 80 ◦C (Table 3). Both electron-rich and -poor substituted benzyl alcohols were
tolerated, affording arylcarboxylic acids 3b–j with excellent chemoselectivity and high yield (entries
2–10, Table 3). Despite the steric congestion, the reactions proceeded to completion within 15 h.

To explore the generality of our protocol, a variety of secondary alcohols were investigated.
The results are summarized in Table 4. Substituted 9H-fluoren-9-ols were successfully oxidized in the
presence of 1 mmol % SCC, 70% TBHP (3 equiv.), and acetone/H2O (1 mL/1 mL) as a solvent, to produce
9H-fluoren-9-one products 3k and 3l with excellent yields. Similarly, the oxidation of diphenylmethanol
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derivatives were also performed under the same conditions and produced the desired products 3m–p in
81–98% yields. In addition, the oxidation of 1-(naphthalen-2-yl) ethan-1-ol was also possible, producing
1-(naphthalen-2-yl) ethan-1-one 3q with a 66% yield (Supplementary Materials).

Table 1. The optimization of the oxidation reaction a.
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3 4-NO2/1d 60 10 2d/45 3d/18%
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Table 3. The oxidation of benzyl alcohol catalyzed by SCC a.
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We next examined if the oxidation of diarylmethane would enable the synthesis of diaryl ketones
(Table 5). Gratifyingly, diarylmethane substrates bearing 2-Br, 2.7-di-tert-butyl substituted 9H-fluorenes
or diphenylmethane substituents were smoothly oxidized to produce desired products, 3l, 3r, and 3m,
with excellent yields (Supplementary Materials).
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Table 5. The oxidation of diarylmethanes catalyzed by SCC a.
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Based on the above results, a possible mechanistic pathway for the oxidation of benzyl alcohol
with TBHP over SCC is proposed in Scheme 1. Under the reaction conditions, SCC, TBHP, and benzyl
alcohol initially form pentacyclic transition-state inter-mediates, and then dehydrate to produce
benzaldehyde. The addition of 4-methylpyridine as a base promoter accelerates the oxidation of
alcohols by rapid decomposition of the catalyst-substrate intermediate that forms during the reaction
under basic conditions [27,28] (Supplementary Materials).
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3. Materials and Methods

Chemicals were obtained commercially and used as received. Nuclear magnetic resonance (NMR)
spectra were recorded on a Bruker DPX–400 spectrometer (Bruker Co., Billerica, MA, USA) using
tetramethylsilane (TMS) as the internal standard. Electric impact ionization (EI) –Mass spectrum was
measured on a gas chromatography time of flight high resolution mass spectrometry (GCTOF-HRMS)
(Waters Co, Milford, MA, USA) or GC-MS (Agilent 7890A/5975C, Santa Clara, CA, USA) instrument.
All products were isolated via short chromatography on a silica gel (200–300 mesh) column using
petroleum ether (60–90 ◦C), unless otherwise noted. Alcohols and diarylmethanes were of analytical
grade quality, purchased from Adamas-beta Pharmaceuticals, Inc. (Shanghai, China) Compounds
described in the literature were characterized by 1H-NMR spectra compared to reported data.

3.1. General Procedure for the Selective Oxidation of Benzyl Alcohols Catalyzed by SCC

A solution of benzyl alcohol (1 mmol), SCC (1 mol %), 70% TBHP (1 mmol or 3 mmol),
and 4-methylpyridine (1.0 mmol) in H2O (2 mL) was stirred at 60 ◦C (or 80 ◦C) for 10 h (or 15 h).
The reaction mixture was quenched with a saturated solution of sodium thiosulfate (5 mL) and
extracted using dichloromethane (3 × 10 mL). The combined organic layers were dried over anhydrous
Na2SO4, filtrated, and then the solvent was removed under reduced pressure. The residue was purified
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by flash column chromatography on silica gel with petroleum ether/ethyl acetate as the eluent to
obtain the desired product.

3.2. General Procedure for the Oxidation of Secondary Alcohols (or Diarylmethanes) Catalyzed by SCC

A solution of secondary alcohol (or diarylmethane) (0.5 mmol), SCC (1 mol %), 70% TBHP
(1.5 mmol), and 4-methylpyridine (1.5 mmol) in acetone/H2O (1:0.5 mL) was stirred at 80 ◦C for 10 h.
The reaction mixture was quenched with the saturated solution of sodium thiosulfate (5 mL) and
extracted with dichloromethane (3 × 10 mL). The combined dichloromethane extracts were dried over
anhydrous Na2SO4, filtrated, and then the solvent was removed under reduced pressure. The residue
was purified by flash column chromatography on silica gel with PE/EtOAc as the eluent to obtain the
desired products.

4. Conclusions

In this work, we showed that the SCC-catalyzed oxidation of benzyl alcohols in water is
an efficient and highly chemoselective method to construct arylformaldehydes and arylformic acids.
Our methodology is also suitable for the efficient oxidation of secondary alcohols and diarylmethane
derivatives to produce the corresponding ketones. Further studies to explore the intriguing catalytic
abilities of the SCC system are currently underway in our laboratory.

Supplementary Materials: Supplementary materials are available online, the charts of 1H-NMR of products.
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