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Impurity analysis of retinoic acid samples
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Abstract—The structure of an impurity contained in samples of all trans-retinoic acid was established by means of NMR and MS
spectra, and confirmed by X-ray diffraction analysis. The chemical structure of the impurity 2 was found to be strictly correlated to
the synthetic procedure employed for the preparation of the retinoic acid samples. Single crystal analysis allowed us to characterise
the molecular conformation and the crystal structure of 2.
� 2005 Elsevier Ltd. All rights reserved.
Frauds in the drug industry could be unearthed by
studying the analytical �fingerprints� of pharmaceutical
substances. Efficient analytical methods are necessary
to monitor the chemical composition of pharmaceutical
products, to detect the effects of process changes on their
quality, and to establish whether a product is now on the
market that is essentially the same as that originally ap-
proved. The identification of trace impurities represents
an important step in establishing drug fingerprints, be-
cause the structures of by-products are strictly correl-
ated to the synthetic sequence. Our recent work on the
impurity analysis of commercial samples of tamoxifen1

and toremifene2 has shown that the structural character-
isation of impurities can be used to trace the synthetic
history of the sample. We report herein on the identifica-
tion of an impurity contained in commercial samples of
all trans-retinoic acid (tretinoin (1)).

Tretinoin (1) is a vitamin A derivative. The biological
significance of liposoluble vitamin A was first recognised
nearly one hundred years ago.3 Since then, there has
been continuous research in investigating the functions
of retinoids in terms of proliferation, differentiation,
and immunomodulation, to understand the mechanism
of their therapeutic action.4 In 1968, a group of
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researchers began work on modifying the structure of
vitamin A to achieve new effective derivatives with lesser
side effects.5 The search led first to all trans-retinoic acid.
Tretinoin is currently used to treat mild to moderate
acne, fine wrinkles, dark spots, or rough skin on the face
caused by damaging rays of the sun. It is also employed
for acute promyelocytic leukemia that is accompanied
by specific gene changes.

In the past few years, several methods for the synthesis
of 1 have been developed.6 The traditional industrial
method employs vinyl b-ionol as the starting material
as per the BASF patent.7

Our samples of all trans-retinoic acid (1) were prepared
by treating vitamin A propionate with Ag2O in metha-
nolic potassium hydroxide at fixed pH. The resulting
retinoic acid was found to be contaminated by an impu-
rity (0.3%, HPLC), which stickily adhered to the main
compound. Purification of 1 by fractional crystallisation
was a difficult task.

The presence of impurities in commercial drugs is
strictly regulated by law.8 All impurities that are present
at a level greater than a certain threshold established
according to maximum daily dose of the drug have to
be identified.

The samples of contaminated tretinoin were submitted
to the LC/MS analysis.9 The APCI/MS spectrum of
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Table 1. Selected geometrical parameters

Bond length (Å)

O1–C15 1.210(5)

O2–C15 1.320(4)

O3–C4 1.403(6)

C1–C2 1.480(12)

C1–C6 1.534(5)

C2–C3 1.340(13)

C3–C4 1.464(6)

C4–C5 1.521(6)

C5–C6 1.331(5)

Bond angles (�)
C1–C6–C5 123.2(3)

C1–C6–C7 114.7(3)

C5–C6–C7 122.1(3)

O1–C15–O2 121.4(4)

O1–C15–C14 126.5(4)

O2–C15–C14 112.1(4)

Torsion angles (�)
C1–C2–C3–C4 46.0(17)

C2–C1–C6–C5 2.7(7)

C1–C6–C5-C4 2.5(6)

C1–C6–C7–C8 �137.6(4)

C13–C14–C15–O2 171.8(5)

Hydrogen-bonding (Å, �)
D–H� � �A d (D–H) d (H� � �A) d (D� � �A) \(DHA)

O2–H2O� � �O1#1 1.06(6) 1.60(6) 2.658(4) 173(5)

Symmetry transformations used to generate equivalent atoms: #1

1 � x, 1 � y, 1 � z.
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the impurity, obtained by the LC/MS analysis, showed
the loss of a CH3OH molecule by fragmentation of the
molecular peak. The sample was accurately chromato-
graphed on a silica gel column to isolate the impurity.
To the latter structure, compound 2 was assigned on
the basis of NMR and MS spectra.10 The signals at
3.52 ppm (1H NMR spectrum, triplet, 1H) and at
79.34 ppm (13C NMR, CH) are characteristic of a
methine group linked to an oxygen atom. The signals
at 3.39 ppm (1H NMR spectrum, singlet, 3H) and
56.88 (13C NMR, CH3) are characteristic of a methoxy
group. The presence of two methylene groups was
shown by the 13C DEPT spectrum. The NOE observed
between H–C(4) and CH3–C(5) showed that the methine
group was spatially nearer to the methyl CH3–C(5). The
EI mass spectrum showed the highest peak at m/z 330,
corresponding to the molecular weight of compound 2.
The NMR data and the value of the melting point were
in accordance with those found in the literature.11

The structure was finally confirmed by X-ray diffrac-
tion12 (Fig. 1).

Several crystallisation procedures of the compound were
performed and many crystals were selected for a com-
plete data collection to find a good single crystal match-
ing the structure solution and refinement. However,
twinned or very thin platelet-like crystals were always
obtained. The poor quality of crystals and some extent
of disorder found in the molecular conformation caused
the refinement to be rather cumbersome. Nevertheless,
this did not significantly influence the results on the con-
formation and geometry of the molecule.

The compound crystallises in the triclinic system, a cen-
trosymmetric space group, with cell data: a = 6.000(1),
Figure 1. View of the molecular structure of 2, showing the numbering sch

ellipsoids correspond to 25% probability.
b = 8.008(1), c = 21.674(4) Å, a = 83.48(2), b = 89.26(2),
c = 71.77(1)�,V = 982.4(3) Å3,Z = 2,Dc = 1.114 g cm�3,
F (000) = 358. A total of 4087 reflections were collected in
the range 3.5�–136� of 2h.13 The six-membered ring and
its methyl and methoxy-group substituents were found
eme of the atoms. Dashed lines link disordered atoms. Displacement



Scheme 1. Hypothesis for the formation of impurity 2.

Scheme 2. A known example of allylic oxidation promoted by silver

oxide.
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to be affected by the disorder, which created considerable
problems during refinement. In the final model accepted
to interpret this disorder, the six-membered ring ap-
peared to adopt an envelope conformation, with the apex
C atom (C3) disordered over two positions located at the
opposite sides of the plane of the other ring atoms.14

Conformational disorder on the six-membered ring was
also found in 13-cis-retinoic acid15 and in 13-cis-5,6-
dihydro-5,6-epoxy retinoic acid,16 and seems to be a
common feature of the crystal structures of a number
of retinal analogues.16 The polyene chain is, as expected,
in a fully extended all trans conformation with the bond
lengths of the p system within the expected range (mean
value of the double C@C bond length of 1.347(5) and of
the single C–C bond of 1.453(5)). The torsion angles of
the conjugated chain show a slight deviation from the
ideal value of 180�, so that the zigzag backbone
appeared slightly arched, a feature usually observed in
long-chain aliphatic compounds.16–18 The carboxyl
hydrogen bond is in trans conformation with respect
to the C14–C15 double bond. Selected geometrical
parameters are given in Table 1. In the crystal, the mol-
ecules form centrosymmetric dimers via hydrogen bonds
between carboxylic groups.

Compound 2 was also prepared by an independent
chemical synthesis according to the procedure described
in Ref. 11a.

The formation of impurity 2 was tentatively attributed
to the allylic oxidation depicted in Scheme 1. The fol-
lowing considerations support our hypothesis.

It is well known that the carbon atom in position 4 of
these molecules can be easily oxidised: (i) the metabo-
lism of acid 1 is based on an oxygenation process of
the C4 position;

19 (ii) MnO2 allylic oxidation in methyl-
ene chloride has been employed for the preparation of 4-
oxo-retinoic acid derivatives.20

Interestingly enough, it has also been reported21 that
when an all trans-retinoic acid methyl ester was oxidised
with trifluoromethanesulphonic acid in the presence of
lithium chloride and methanol, formation of methyl
ester of 2 was observed.

A previous example of allylic oxidation of a CH2

promoted by Ag(I) has been reported in 1997.22

The treatment of the a,b-unsaturated aldehyde 3 with
silver oxide in aqueous ethanol gave enonic acid 4
(Scheme 2).
The structure of impurity 2 bears clues of the synthetic
steps leading to the preparation of this tretinoin sample.
Its presence in any commercial sample is the �chemical
proof� of the involvement of a silver(I)-promoted oxida-
tion. The work highlights how helpful is the structural
characterisation of the impurities of a common drug
to the definition of the fingerprint of the drug itself.
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