Structure–Activity Studies on a Series of a 2-Aminopyrimidine-Containing Histamine H₄ Receptor Ligands

Robert J. Altenbach,^{*,†} Ronald M. Adair,[‡] Brian M. Bettencourt,[‡] Lawrence A. Black,[†] Shannon R. Fix-Stenzel,[†] Sujatha M. Gopalakrishnan,[†] Gin C. Hsieh,[†] Huaqing Liu,[†] Kennan C. Marsh,[†] Michael J. McPherson,[‡] Ivan Milicic,[†] Thomas R. Miller,[†] Timothy A. Vortherms,[†] Usha Warrior,[†] Jill M. Wetter,[†] Neil Wishart,[‡] David G. Witte,[†] Prisca Honore,[†] Timothy A. Esbenshade,[†] Arthur A. Hancock,[§] Jorge D. Brioni,[†] and Marlon D. Cowart[†]

Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, Illinois 60064-6100, and Abbott Bioresearch Center, 100 Research Drive, Worcester, Massachusetts 01605-5314

Received May 19, 2008

A series of 2-aminopyrimidines was synthesized as ligands of the histamine H₄ receptor (H₄R). Working in part from a pyrimidine hit that was identified in an HTS campaign, SAR studies were carried out to optimize the potency, which led to compound **3**, 4-*tert*-butyl-6-(4-methylpiperazin-1-yl)pyrimidin-2-ylamine. We further studied this compound by systematically modifying the core pyrimidine moiety, the methylpiperazine at position 4, the NH₂ at position 2, and positions 5 and 6 of the pyrimidine ring. The pyrimidine 6 position benefited the most from this optimization, especially in analogs in which the 6-*tert*-butyl was replaced with aromatic and secondary amine moieties. The highlight of the optimization campaign was compound **4**, 4-[2-amino-6-(4-methylpiperazin-1-yl)pyrimidin-4-yl]benzonitrile, which was potent in vitro and was active as an anti-inflammatory agent in an animal model and had antinociceptive activity in a pain model, which supports the potential of H₄R antagonists in pain.

Introduction

There are presently four known histamine receptors, H_1 , H_2 , H_3 and H_4 .¹ The most recently discovered of these, the histamine H_4 receptor (H_4R),^{*a*,2} has been shown to be present on cells of hematopoietic lineage, such as dendritic cells, mast cells, eosinophils, monocytes, basophils, natural killer cells, and T cells.³ There is a growing body of evidence that is based on animal models in which the H_4R plays a role in immune and inflammatory responses^{3a} and modulates itch responses as well.⁴ It has been reported that antagonists of the H_4R are able to block the shape change and chemotaxis of cells such as eosinophils and mast cells; these cell types are involved in modulating many inflammatory processes.⁵ Because of these findings and others, agents that interact with the H_4R have been proposed to be useful in the treatment of conditions such as asthma, rheumatoid arthritis, and pruritus.^{1c}

Indole piperazine **1** (JNJ7777120) was reported in 2003 as a potent and selective antagonist of the H₄R (Figure 1).⁶ This compound has become a standard reference agent for evaluating H₄ activity in many laboratories. For example, compound **1** has been shown to block scratching that is induced by an H₄ agonist in mice,^{4a} block the histamine-induced migration of mast cells in the mouse airway,⁷ reduce the infiltration of neutrophils in a zymosan-induced peritonitis model,⁷ and inhibit histamine-

Figure 1. Structures and in vitro potencies of 1, HTS hit (2), and 2-aminopyrimidines 3 and 4.

induced shape change and upregulation of adhesion molecules in eosinophils. 5

With the goal of finding new H₄ ligands of a structural class different from that of 1, we screened a chemical library for H₄ agonists and antagonists by using a fluorimetric imaging plate reader (FLIPR) cell-based assay that measures changes in the concentration of intracellular calcium. Perhaps not surprisingly, a large proportion of the hits was found to be imidazolecontaining compounds, which was likely due to their similarity to the natural ligand histamine that also contains an imidazole moiety. Because imidazole-containing compounds have a higher propensity to inhibit CYPs and because this class is also known to be active at the other receptor subtypes (H_1, H_2, H_3) , these hits were viewed to be less interesting than other classes of structures. A small number of the hits were pyrimidines and triazines, which were exemplified by compound 2. This analog had only very weak potency at the rat H_4R (pEC₅₀ = 5.64) and somewhat more potency at the human form ($pK_b = 6.75$), although it was anticipated that these might be improved through optimization. Increasing the potency at the rat H₄R was judged

^{*} To whom correspondence should be addressed. Address: Department R4MN, Building AP9A/2, 100 Abbott Park Road, Abbott Park, Illinois, 60064-6123. E-mail: Robert.j.altenbach@abbott.com. Phone: 847-935-4194. Fax: 847-937-9195.

[†] Abbott Laboratories.

^{*} Abbott Bioresearch Center.

[§] Deceased.

^{*a*} Abbreviations: BBB, blood-brain barrier; BMMC, bone-marrowderived mast cell; CHO, Chinese hamster ovary; COX, cyclooxygenase; CYP, cytochrome P₄₅₀ isoenzyme; FLIPR, fluorimetric imaging plate reader; GTP₇S, guanosine 5'-O-[gamma-thio]triphosphate; H₄R, histamine H₄ receptor; HEK, human embryonic kidney; MPO, myeloperoxidase; PK, pharmacokinetic; PMN, polymorphonuclear leukocytes; SAR, structure-activity relationship.

Scheme 1^a

^{*a*} Reagents and conditions: (i) guanidine hydrochloride, EtONa, EtOH. Δ ; (ii) POCl₃, Δ ; water; and (iii) amine, Δ , EtOH, Et₃N.

^{*a*} Reagents and conditions: (i) pivalic acid, AgNO₃, ammonium persulfate, CH₃CN/H₂O; (ii) *N*-Me-piperazine, Et₃N, EtOH, Δ; (iii) chromatography; (iv) compd **33**: H₂, Pd/C, MeOH; compd **34**: (R₂ = NHMe) 40% aqueous MeNH₂, 2-MeOEtOH, Δ; compd **35**: (R₂ = NMe₂): 40% aqueous Me₂NH, 2-MeOEtOH, Δ; compd **37** (R₂ = OH): 1 M HCl, 16 h, Δ; compd **38** (R₂ = OMe): excess NaOMe, MeOH, Δ.

to be the first and most important goal, one reason simply being that compounds would be tested in rodent models.

We found that by simply replacing the pyrrole moiety of **2** with an amino group we dramatically increased the potency, and we found compound **3** to be a moderately potent partial agonist at the rat H₄R (pEC₅₀ = 7.17) and a potent H₄ antagonist at the human H₄R (p K_b = 8.35) (Figure 1), which was a potency increase of greater than 30-fold. We envisioned that the lipophilic *t*-Bu group could potentially be replaced with other moieties such as dialkylamines, phenyl groups, and heteroaromatics. This hypothesis was ultimately born out by the 4-CN-phenyl analog (**4**), a compound that was identified early on in the SAR effort as a potent human H₄R antagonist that was active in vivo when profiled in several animal models. We report herein the SAR studies on analogs of compounds **3** and **4**.

Chemistry

Schemes 1-3 illustrate the routes that were used to make the majority of the compounds described herein. Analogs with various amine groups at the 4 position of the pyrimidine ring were synthesized from chloro intermediate 6, as shown in Scheme 1. The final product structures are displayed in Table 2. Compounds that evaluate the 2 position of the pyrimidine (Table 3) were synthesized from chloro intermediate 10, as depicted in Scheme 2. Derivatives that evaluate the SAR of the 5 and 6 position (Table 4) of the pyrimidine ring were generated from chloro analogs 14a-d and 46 (Scheme 3). The more reactive iodo intermediate 15 was used to make a few of the products via a copper-catalyzed coupling to amines (the Ullmann reaction). The Experimental Section contains representative reaction conditions for the syntheses of these derivatives. Detailed experimental procedures for all of the derivatives have been included in the Supporting Information.

Results

The analogs were assessed in vitro in a cell-based Ca^{2+} -flux assay (FLIPR), which allowed an assessment of the potency

Table 1. Heterocyclic Variations of the Core Ring of Compounds 3and 4

	Re	Z N			FI	LIPR (pK _b o	or pEC ₅₀) ^a	
cmpd	R ₆	х	Y	Z	human	%eff	rat	%eff
17	t-Bu	N	N	N	7.04±0.20		6.60 ± 0.06^{b}	70
18	t-Bu	CH	N	N	5.82±0.38		$5.10{\pm}0.00^{b}$	82
19	t-Bu	N	СН	N	6.28±0.04		5.33 ^c	50
20	4-CN-Ph	СН	N	СН	5.63±0.35	56	5.39±0.10 ^b	
21	4-CN-Ph	N	СН	CH	6.86±0.06		5.73 ^c	84
22	4_CN_Ph	CH	CH	N	5 05+0 14 ^b		5 14+0 15 ^b	

^{*a*} $n \ge 3$; pK_b or $pEC_{50} \pm$ the standard deviation (SD) are reported. ^{*b*} n = 2. ^{*c*} n = 1.

and of the functional activity (agonism and antagonism) in H₄Rtransfected cell lines. For this, HEK-293 cells that stably expressed either the human or the rat H₄R with a coexpressed chimeric G protein (G_{qi5}) were used. $^{8}\ \mbox{For the purpose of}$ describing the in vitro functional profiles of compounds in this assay system, antagonists were defined as having between 0 and 25% efficacy when tested alone and as having the ability to block receptor activation by added histamine, and potencies are expressed as pK_b values. Partial agonists were defined as compounds showing an efficacy between 25 and 74% (relative to the histamine, which was set at 100%), and potencies were expressed as pEC₅₀ values. Agonists were defined as compounds having an efficacy of >75% relative to histamine, and potencies were expressed as pEC50 values. Tables 1-4 display both pEC50 values and pK_b values in the columns. If a percent efficacy is reported, then the compound was found to be a partial agonist or an agonist, and the FLIPR potency that is reported in the tables is the pEC_{50} of the compound. If no percent efficacy is reported, then the compound was found to be an antagonist, and the pK_b is reported. In examining the functional activity of the compounds, we found almost all of the new analogs to be antagonists of the human H₄R. Interestingly, many of the same compounds showed partial or full agonism of the rat H₄ receptor in this assay system. On average, the potencies of these analogs as partial agonists for the rat H₄R was about 8 times weaker than their potencies as antagonists for the human H₄R. These variations in potency and efficacy between the rat and human H₄Rs could be a reflection of the reported interspecies differences in amino acid sequences of the receptor, in which there is only a 69% homology between the rat and human H₄Rs.⁹

We systematically modified the central core ring by replacing the carbon and nitrogen atoms to generate the analogs that are shown in Table 1. These analogs of compounds **3** and **4** were lower in potency (over a 10-fold loss in potency at the human H₄R). The results of the study suggest that having a nitrogen located at position X in the ring is important for H₄ potency because compounds **17**, **19**, and **21** (wherein X is nitrogen) are more potent than compounds **18**, **20**, and **22** (wherein X is CH).

We investigated the SAR of the 4 position of the pyrimidine ring by making analogs of compounds **3** and **4**. (See Table 2.) All of the examined modifications led to a loss of potency compared with the parent compounds that contained the methylpiperazine moiety. Both nitrogens of the piperazine appear to be required for activity because the replacement of either nitrogen with carbon (examples **23** and **24**) led to a 300to 1500-fold loss of potency. Even so, a small change such as merely removing the *N*-methyl group from the piperazine, as Table 2. Modification of Amine of Compounds 3 and 4

	R ₆	IH₂ [≷] N amine	FLIPR (pK_b or pEC_{50}) ^{<i>a</i>}							
cmpd	R ₆	amine	human	%eff	rat	%eff				
23	t-Bu	in the second se	5.20±0.23		4.63 ^c	64				
24	t-Bu	x ^{ad} N _	5.87±0.31		5.44 ± 0.15^{b}	55				
25	4-CN-Ph	NH	8.08 ± 0.08		6.88±0.12	67				
26	t-Bu	^{x^k} N∕N∕	7.86±0.05		6.61±0.27	55				
27	4-CN-Ph	in the second se	$5.53 {\pm} 0.06^{b}$		4.54 ± 0.52^{b}					
28	t-Bu	^{3,5°} N∕N/N/	6.44±0.20		5.62±0.26 ^b	66				
29	t-Bu	× ^s N H N	6.91±0.09		5.75 ± 0.34^{b}	39				
30	t-Bu	^{zst} N∕N∕	5.71±0.34		5.95 ± 0.37^{b}	55				
31	t-Bu	× ^s , N I I	5.13±0.40		5.01 ^c	43				
32	t-Bu	× ² 0	7.02±0.28		6.52±0.21 ^b	67				

^{*a*} $n \ge 3$; pK_b or pEC₅₀ ± SD are reported. ^{*b*} n = 2. ^{*c*} n = 1.

 Table 3. Modification of the 2 Position of Pyrimidine Ring of Compound 3

		FLIPR $(pK_b \text{ or } pEC_{50})^{\alpha}$								
cmp	R ₂	human	%eff	rat	%eff					
33	Н	7.07±0.56		6.03 ± 0.30^{b}	79					
34	NHMe	6.08±0.34		$5.29{\pm}0.19^b$	46					
35	NMe ₂	$4.94{\pm}0.36^{b}$	100	4.74 ^c	88					
10	Cl	5.31 ± 0.87^b	42	$5.06{\pm}0.03^b$	75					
37	ОН	4.39±0.65		4.64 ^c	35					
38	OMe	5.92 ± 0.18^{b}	43	5 33+0 12^{b}	90					

^{*a*} $n \ge 3$; pK_b or pEC₅₀ ± SD are reported. ^{*b*} n = 2. ^{*c*} n = 1.

in compound **25**, resulted in a 2- to 3-fold loss of activity at both the human and rat H₄Rs. The replacement of the *N*-methyl group of the piperazine with larger alkyl groups, as in compounds **26** and **27**, or an additional amine, as in compound **28**, was likewise detrimental to potency. The straight-chained diamines as well as the oxygen-linked amines, compounds **29–32**, resulted in a reduction in potency. Other diamines have been reported to allow H₄R activity, but direct comparisons to the new compounds await investigation.¹⁰

Scheme 3^a

^{*a*} Reagents and conditions: (i) *N*-Me-piperazine, Et₃N, EtOH, Δ; (ii) Compds **39–43**, catalytic hydrogenation: H₂, Pd/C, MeOH; Compounds **51–53** and **55–57**: intermediate **46**, amine, 2-ethoxyethanol, Hunig's base, 110–140°C; Compds **63–72** and **75–91**, Suzuki conditions: intermediates **14a–d** or **46**, R₆B(OH)₂, Pd(PPh₃)₄, Na₂CO₃, 1,2-dimethoxyethane, Δ; Compds **93**, **95**, **86**, **101**, and **102**, Ullmann conditions: intermediate **15**, heterocycle, CuI, K₂CO₃, DMF, 130°C; and (iii) NaI, 47% aqueous HI, 80°C, 98%. ^{*b*} **13a** (R₅=Me), **13b** (R₅=OMe), **13c** (R₅=NH₂), and **13d** (R₅=Ph). ^{*c*} **14a** (R₅=Me), **14b** (R₅=OMe), **14c** (R₅=NH₂), and **14d** (R₅=Ph).

The SAR of the 2 position of the pyrimidine ring was investigated. (See Table 3.) The replacement of the NH_2 group with a hydrogen atom (33) was the most well-tolerated change, but even this resulted in a 10-fold loss of potency relative to that of compound 3. Methylation of the NH_2 group resulted in a further loss of activity, as did the replacement with Cl, OH, or OMe. In summary, all of the compounds retained at least

Table 4. Modification of the 5 and 6 Positions of the Pyrimidine Rin
--

			FLIPR $(pK_b \text{ or } pEC_{50})^a$										
cmp	R ₆	R ₅	human	%eff	rat	%eff	cmp	R_6	R5	human %e	eff	rat	%efi
39	Н	Н	7.36±0.17	42	$6.94{\pm}0.26^{b}$	87	71	4-Cl-Ph	Н	8.32±0.28		7.43±0.31	74
40	Н	Me	7.07±0.17		7.18±0.18	81	72	3-Cl-Ph	Π	8.24±0.24		7.50 ± 0.27	50
41	Н	OMe	6.90±0.17		$6.20{\pm}0.21^b$	65	73	4-I-Ph	Н	7.83±0.18		6.56±0.15 ^h	58
42	Н	$\rm NH_2$	7.47±0.13	38	7.37±0.22	88	74	3-I-Ph	Н	8.27±0.26		6.05 ± 0.29^b	61
43	H	Ph	5.32±0.04 ^b		5.08 ^c	72	75	4-CN-Ph	Me	7.36±0.08		7.23±0.14	63
44	Me	II	7.20±0.51		6.44 ± 0.62	77	76	4-CN-Ph	OMc	6.04±0.10		5.29±0.03 ^h	51
3	t-Bu	Н	8.35±0.45		7.17±0.13	64	77	4-CN-Ph	Ph	$5.69{\pm}0.30^b$		5.29 ± 0.12^{b}	
45	adamant-1-yl	Н	7.59±0.40		$6.50 {\pm} 0.54$	61	4	4-CN-Ph	Н	8.53±0.34		7.23±0.19	64
46	Cl	II	4.75±0.40		$4.77{\pm}0.05^b$	65	78	3-CN-Ph	Н	8.06 ± 0.07		6.63±0.38	48
15	I	Н	6.33±0.15		5.69 ^c	67	79	2-CN-Ph	Н	6.75±0.11		5.92 ^c	73
48	ОН	Н	$4.44{\pm}0.10^{h}$		5.83±0.18 ^b	92	80	4-Ph-Ph	Η	6.29±0.15		6.03 ± 0.43^{b}	
49	OMe	Н	5.53±0.40		4.98 ± 0.02^{b}	55	81	3-Ph-Ph	Н	6.85±0.06		6.38±0.24 ^b	
50	NH_2	Н	$6.37{\pm}0.48$		6.66 ± 0.01^{b}	71	82	2-Ph-Ph	Н	6.79±0.39		$5.72{\pm}0.80^b$	
51	NHMe	Н	8.28±0.16		6.31 ± 0.15^{b}	93	83	naphth-2-yl	Н	7.02 ± 0.20		$6.76{\pm}0.25^b$	41
52	NMc ₂	Н	6.85±0.08		5.52 ± 0.28^{b}	59	84	naphth-1-yl	Н	7.81±0.34		7.27±0.36	
53	NEt ₂	Н	7.55 ± 0.40		6.45 ± 0.32^{b}	90	85	pyridin-4-yl	Н	7.38±0.12		$6.64{\pm}0.10^b$	63
54	pyrrolin-1-yl	Н	8.41±0.22		7.16±0.20	79	86	pyridin-3-yl	Н	7.30±0.41		6.68±0.33	70
55	3-(NMe2)-pyrrolidin-1-yl	Н	5.76±0.14 ^b		5.44 ^c	62	87	2,6-difluoropyridin-3-yl	Π	8.27±0.07		7.81±0.12	82
56	piperidin-1-yl	II	8.05±0.21		7.33±0.12	73	88	2-OMe-pyridin-3-yl	Н	7.57±0.62	32	$7.03{\pm}0.23^b$	72
57	morphonlin-1-yl	Н	7.16±0.35		$6.47{\pm}0.43^b$	87	89	6-OMe-pyridin-3-yl	П	7.39±0.15		6.63±0.22	76
58	4-Me-piperazin-1-yl	Н	6.84±0.35		5.87±0.23 ^b	68	90	pyrimidin-5-yl	Н	5.84±0.29		$5.10{\pm}0.14^{b}$	61
59	Ph-NII-	II	8.18±0.03		6.93±0.31 ^b	81	91	2-OMe-pyrimidin-5-yl	Н	5.91±0.19		5.49 ± 0.09^b	53
60	Ph-NMe-	II	6.96±0.20		6.10±0.48		92	Ph-S-	Н	5.99±0.36		5.05 ^c	68
61	Ph-CH2-NH-	Н	7.19±0.21	56	6.31 ^c	87	93	imidazol-1-yl	II	5.60±0.39 ^b	31	5.10 ^c	56
62	Ph-CH2-NMe-	Н	6.77 ± 0.07		6.47 ± 0.43		95	4-Ph-imidazol-1-yl	Н	$5.68{\pm}0.05^b$		5.74 ^c	
63	Ph	Π	8.39±0.39		$7.40{\pm}0.12$	79	96	benzimidazol-1-yl	Н	6.75±0.27 8	82	6.46 [°]	
64	4-Me-Ph	Н	8.06 ± 0.34		7.25±0.35	81	97	imidazol-4-yl	Н	7.79±0.04	41	6.41 ± 0.33^{b}	77
65	3-Mc-Ph	II	8.62±0.34		7.37±0.09	59	98	I-Me-imidazol-4-yl	Н	8.05±0.18		6.99±0.18	91
66	2-Me-Ph	Н	$8.07{\pm}0.09$		6.75 ± 0.28^b	60	99	pyrazol-4-yl	Н	8.38±0.14		5.74 ± 1.70^{b}	53
67	4-OMe-Ph	Н	8.08±0.19		6.94±0.22	71	100	1-Mc-pyrazol-4-yl	Н	7.31±0.05		6.66±0.06 ^b	78
68	3-OMe-Ph	Н	8.12±0.16		$6.99{\pm}0.18$	69	101	imidazolidin-2-one-1-yl	Н	$5.38{\pm}0.13^{b}$		4.91 [°]	27
69	2-OMe-Ph	Н	8.86±0.52		7.36±0.16	68	102	pyridin-2-one-1-yl	Н	5.41±0.52 ^b 2	27	4.85 ^c	33
70	2 6-di-OMe-Ph	Н	6 81+0 19		6.71 ± 0.15^{b}	81							

 ${}^{a} n \ge 3$; pK_b or pEC₅₀ ± SD are reported. ${}^{b} n = 2$. ${}^{c} n = 1$.

some activity at the receptor, although none approached the activity of the parent 3; therefore, such changes can be judged as being detrimental to H₄ activity.

The SAR of the 5- and 6 positions of the pyrimidine ring was quite variable, and diverse analogs showed a wide range of potencies on the order of low nanometers to low micrometers (Table 4). Unsubstituted analog **39** had significant potency, although it was less than that of **3** or **4**. Analogs that were substituted at the 5 position with Me, OMe, or Ph (**40**, **41**, **43** and **75**–**77**) were active but were of lower potency at the human H₄R. Interestingly, compounds **40** and **42** maintained activity for the rat H₄R, which resulted in comparable potencies for both the rat and human H₄Rs. A high degree of receptor activation (agonism) was seen at the rat H₄R for compounds **39**, **40**, and **42**, all of which lacked a substitution at position 6.

We note some interesting SARs by comparing the influence of these small substituents at position 5 versus position 6 of the pyrimidine core. When we used unsubstituted analog **39** as a comparator molecule, the introduction of NH₂ and OMe at position 5 did not have much of an effect on the potency (compound **41** and **42**); however, when similar changes were applied to pyrimidine position 6 (compounds **49** and **50**), there was an obvious detrimental effect on the potency. The 6 position was preferred over the 5 position as the attachment site when it was probed with the large lipophilic phenyl group; that is, the 5-Ph analog (**43**) had 5 μ M potency, whereas the 6-Ph analog (**63**) had 4 nM potency, which was 10 times more potent than unsubstituted analog **39**. Because of these intriguing findings, we investigated the SAR at position 6 in much greater detail.

Table 5.	PK	of	Compounds	1	and 4	in	Rat	and	Mouse
----------	----	----	-----------	---	-------	----	-----	-----	-------

			iv		ро					
compd	dose	$V\beta$	Clp	C_{\max}	t _{1/2}	dose	C_{\max}	$t_{\rm max}$	$t_{1/2}$	F
4 , rat	1	7.1	10.3	0.16	0.4	1	0.032	0.4	n.d. ^b	31
4, mouse	2.5	3.9	15.3	0.57	0.2	2.5	0.092	0.25	0.6	41
1 , rat	10	37	12.6	1.14	1.7	10	0.22	0.25	2.5	47
1, mouse	5	24	23.2	0.56	0.7	20	0.14	1.33	1.4	24

^{*a*} Units: dose (mg/kg), $V\beta$ (L/kg), Clp (L/h/kg), C_{max} (μ g/mL), t_{max} (h), $t_{1/2}$ (h). ^{*b*} Not able to determine.

Table 6.	Potencies	of	Compounds	1,	4,	and 2	5 at	H_3	and	H_4	Subtype
----------	-----------	----	-----------	----	----	-------	------	-------	-----	-------	---------

		H ₄ FLIPR	$(pK_b \text{ or } pE$	H ₄ bi	nding ^b	H ₃ binding ^c			
compd	human	rat	% eff	mouse	% eff	human	rat	human	rat
1	8.37 ± 0.02	8.59 ± 0.02		8.62 ± 0.05		7.92 ± 0.22	8.57 ± 0.10	5.65 ± 0.05	5.88 ± 0.09
4	8.53 ± 0.12	7.23 ± 0.08	64	6.91 ± 0.20	54	7.46 ± 0.06	6.56 ± 0.06	5.89 ± 0.04	6.61 ± 0.03
25	8.08 ± 0.05	6.61 ± 0.16	67	6.99 ± 0.05	53	7.38 ± 0.11	6.47 ± 0.02	6.03 ± 0.08	6.92 ± 0.07

^{*a*} $n \ge 3$; pK_b or pEC₅₀ ± SEM are reported. ^{*b*} $n \ge 3$; pK_i ± SEM are reported. ^{*c*} n = 2.

Relative to compound **3** containing a *t*-butyl at position 6, the bulky lipophilic adamantyl analog, **45**, was 10 times less potent. The substitution with chlorine at position 6 resulted in a compound (**46**) that appeared to be devoid of H₄ activity ($K_b > 10 \ \mu$ M), whereas the iodo analog (**15**) maintained moderate H₄R activity. It is possible that the size of the lipophilic group is critical; adamantyl is too large, and *t*-butyl, aryl, and iodo are more optimal.

Relative to compound **39** (unsubstituted at R_5 and R_6), compounds **51–62** with primary and secondary amines at the 6 position had comparable or higher H_4 potencies. A trend was seen in which primary amine substituents with a free NH adjacent to the pyrimidine ring (compounds **51**, **59**, and **61**) had higher potencies than secondary amines with no free NH (compounds **52**, **60**, and **62**). Pyrrolidine **54** was more potent than diethyl amine **53**, which perhaps points to a potential benefit for cyclic amines as compared with acyclic amines. Molecules with diamines on both sides, as in **55** and **58**, were less potent than similar 6-substituted amines, compounds **54** and **56**, respectively.

The finding that phenyl derivative 63 was equipotent with compound 3 prompted a more in depth investigation of the effects of substitutions to the phenyl ring. For the majority of the new compounds (64-74 and 78-84), high potency was retained, although most did not show a significant boost in potency. An exception was 2-OMe derivative 69, which showed a 3-fold boost in potency relative to 63. However, an additional methoxy group in diortho-OMe analog 70 showed a 100-fold reduced potency relative to 63. Biphenyl and naphthyl analogs 80-84 were also active but were not improved in potency compared with 63, although the biphenyl analogs and the 1-naphthyl derivative were in vitro antagonists in the rat.

The effect of heterocyclic substituents at the 6 position of the pyrimidine was examined next. Regardless of the position of the nitrogen, the pyridyl analogs (**85** and **86**) showed slightly reduced potencies relative to **63**. The more lipophilic and less basic difluoropyridine, **87**, retained the high potency of **63**. The incorporation of an ortho methoxy moiety on the pyridine ring, as in compounds **88** and **89**, did not result in a boost in potency, in contrast with the influence of an ortho methoxy group on the phenyl ring (**69**). Imidazole (**93**) and benzimidazole (**96**), which were both attached to the pyrimidine ring through the nitrogen atom, reduced the potency. Furthermore, full agonism was noted at the human H₄R in the case of **96**. However, other imidazoles (**97** and **98**), which were both connected to the pyrimidine ring via the carbon at the 4 position of the imidazole, maintained high potency. Pyrazol-4-yl derivative **99** was equipotent with phenyl analog **69** for the human H_4R , but it lost potency in rat. Two analogs with polar heterocycles, imidazolidinone (**101**) and pyridinone (**102**), lost a substantial amount of receptor potency.

The H_4R is known to be expressed in cells of the immune system, and H_4R antagonists have been reported to be active in different in vivo models of inflammation. Of the new compounds described here, **4** was selected to be tested in vivo.

Compound 4 was assessed for its PK properties in rat and mouse (Table 5). In the rat, at 1 mg/kg, compound 4 had a $t_{1/2}$ of 0.4 h after iv administration. After it was orally administered at 1 mg/kg, compound 4 plasma levels reached a C_{max} of 32 ng/mL at 0.4 h and an oral bioavailability (F) of 31%. Similar results were found in PK studies in the mouse, wherein the compound dosed at 2.5 mg/kg iv had a $t_{1/2}$ of 0.2 h, and the compound dosed po had a $t_{1/2}$ of 0.6 h, with maximum plasma levels reaching a Cmax of 92 ng/mL at 0.25 h and a oral bioavailability of 41%. Compound 1 was also tested in PK studies, and the results were comparable to those that were previously reported.⁷ Both 1 and 4 have high clearance values (Clp) in rat and mouse. The $t_{1/2}$ of compound **1** is longer than that of **4** in rat and mouse, which is probably due to its higher volume of distribution (V β). Despite this, compound 1 and 4 are adequate for allowing profiling in acute inflammation and pain models. We hypothesized that the methyl group of the N-methyl piperazine of 4 might be labile in vivo, and indeed this was confirmed by testing. During the PK studies, a metabolite of compound 4 was observed in plasma and was identified as the des-methyl analog, compound 25.

The H_1 through H_4 activities of compound 4 and its metabolite, compound 25, were compared with those of compound 1. Table 6 displays the FLIPR H₄R potencies in human, rat, and mouse as well as the binding potencies of these agents at the human and rat H₃Rs and H₄Rs. Compound 1 was nearly equipotent and was an antagonist in the human, rat, and mouse H₄Rs and was highly selective over the other histamine subtypes (data not shown). Compound 4 was a potent antagonist at the human H₄R but was less potent and a was partial agonist in rat and mouse. The similarity in the in vitro potencies and efficacies of the rat and mouse subtypes is consistent with the relatively high homology of 84% between the rat and mouse H₄Rs at the protein level.⁹ In binding studies, compound **4** was 30 times more selective for human H_4R over H_3R , but it was nonselective for rat H₄R over H₃R. Although compounds 1 and 4 have similar potencies in human H_4R binding, compound 4 is significantly weaker in binding at the rat H₄R ($K_i = 275$ nM) than is compound 1 ($K_i = 3$ nM). The metabolite of 4,

Figure 2. Inhibition by compound **4** of MPO activity, a biomarker for PMN infiltration, in the mouse zymosan peritonitis model.

compound **25**, was also active at H₄R and had potencies that were similar to those of compound **4** across the H₃ and H₄ receptors in binding and functional studies. Although mouse H₄R affinity studies were not conducted, compounds **4** and **25** would be expected to have binding potencies that are similar to that of the rat H₄R. This is based on the observation that for compounds for which both rat and mouse H₄R binding affinities have been reported, including compound **1**, the majority have a less than 2-fold difference in potencies.^{3a,7,9} Compounds **4** and **25** were selective over the human H₁ and H₂ sites, wherein pK_i values were <5.2.

The zymosan peritonitis model in mice has been used to assess acute inflammatory responses in vivo. The pro-inflammatory properties of zymosan are attributed to complement pathway activation as well as chemokine and cytokine release from neutrophils, mast cells, and macrophages, which leads to an accumulation of polymorphonuclear leukocytes (PMN) as a characteristic feature. The activity of the enzyme myeloperoxidase (MPO), which is found in granules of PMN, has been shown to correlate well with the number of PMNs in tissue samples, and it is consequently used as a biomarker for PMN infiltration.¹¹ The H₄R has been shown to partially mediate the zymosan-induced recruitment of neutrophils.^{7,12}

Compound **4** was tested in a model of zymosan peritonitis. Briefly, vehicle or compound **4** was dosed sc in BALB/c male mice (22-25 g) 30 min prior to zymosan injection. Zymosan (0.25 mg/mouse in 0.5 mL of saline, ip) was then injected, and after 2 h, peritoneal lavages were collected, and the MPO activity was determined. Compound **4** was found to decrease the level of MPO activity in the lavages with an ED₅₀ of 64 μ mol/kg (see Figure 2). The efficacy of compound **4** was determined relative to that for indomethacin (10 mg/kg). Compound **1** has been reported to be active in this type of inflammation model⁷ and was found to inhibit the activity of MPO with an ED₅₀ of 61 μ mol/kg, and it is almost identical in potency to the new pyrimidine analog **4**.

To profile compound **4** in in vivo models of H₄ activity further, we evaluated compound **4** in a mouse itch model.¹³ This is a relevant model because antagonists of the H₄R such as thioperamide and compound **1** have been shown to reduce H₄ agonist-mediated itch in mice.^{4a,14} When it was dosed ip, compound **4** was found to reduce the itch that was induced by the H₄R agonist clobenpropit in a dose-dependent manner with an ED₅₀ of 34 μ mol/kg. Compound **1** was also active in this model as an antagonist with an ED₅₀ of 25 μ mol/kg. To validate the H₄ antagonist activity of compound **4** in this model further, we tested compound **4** for H₄ agonist activity. Compound **4**, in doses ranging from 0.1 to 10 μ mol, was injected into the scruff of the neck of mice and did not induce a scratch response, which indicates that this compound does not function as an H₄ agonist in this model.

The in vivo profile of compound **4** in mice supports the thought that this compound is an antagonist by demonstrating potencies that are comparable to those of compound **1**. This is in conflict with the FLIPR data, in which compound **4** demonstrated partial agonist activity in both rat and mice. However, compounds that are partial agonists may induce or stabilize receptor conformations that have lower affinities for G proteins compared with receptors that are stimulated by full agonists.¹⁵ In addition, partial agonists can also act as antagonists by competing for receptor binding with full agonists.¹⁶ Therefore, a compound, such as **4**, that is a partial agonist in vitro may function as an antagonist in vivo.

The similarity of the in vivo potencies of compounds 1 and 4 is not well predicted by the in vitro potencies of compounds 1 and 4 in the rat and mouse H₄R, wherein compound 1 is over 100 times more potent than compound 4. To investigate the activities of compounds 1 and 4 in the zymosan and itch models further, we evaluated plasma levels in mouse. Compounds 1 and 4 were dosed at ~25 μ mol/kg ip, and their plasma levels at 30 min postdosing were found to be 860 ± 90 and 1150 ± 130 ng/mL, respectively. The higher plasma level of compound 4 supports the fact that compound 4 is indeed less potent than compound 1 in both the zymosan and itch models, although by less than or equal to a factor of 2 and not to the full extent that was predicted by the rat binding studies in which compound 4 was over 100 times less potent than compound 1.

To probe their H₄R functional activity further, we tested compounds **1** and **4** in a rat GTP γ S assay¹⁷ that used the same cell line that was used in the FLIPR assay. Compounds **1** and **4** were both antagonists with pK_b values of 7.19 ± 0.01 and 6.21 ± 0.04, respectively. Tested in the agonist mode, compound **1** was a potent partial agonist (pEC₅₀ = 7.37 ± 0.07) with low efficacy (23%), but compound **4** was a weak but full agonist with a pEC₅₀ of 5.33 ± 0.61. This in vitro pharmacology of compound **1** motivated us to more closely investigate assays of native H₄R function relevant to its in vivo behavior.

An important point here is that the FLIPR and GTP γ S studies were run in an artificial system that used non-native tissue and a chimeric G protein (G_{qi5}). To address the profile in a more relevant in vitro system, we tested compound **4** in an assay by using native tissue that contains the H₄R. In methodology similar to that reported for eosinophils,^{5a} a mouse bone-marrow-derived mast cell (BMMC) shape-change assay was used. Compound **4** was found to inhibit histamine-induced shape change in BMMCs with a pK_b of 6.56 (n = 3). Compound **1** was also tested in this assay and was found to inhibit shape change in BMMCs with a very similar potency (pK_b) of 6.23. In general, the sum total of the data indicates that compound **4** acts as an antagonist in vivo.

We have recently reported that H₄ antagonists are active in a variety of different pain models. Surprisingly, H₄ antagonists are active in models that assess not only inflammatory pain but also noninflammatory pain.^{18,19} Compound **4** was tested in a dose—response fashion in a model of inflammatory pain, the carrageenan-induced thermal hyperalgesia model.^{20,21} (See Figure 3.) Compound **4** was administered ip in rats and was found to increase the paw withdrawal latency relative to vehicle by 36% at 30 μ mol/kg and by 100% at 100 μ mol/kg. The ED₅₀ for efficacy in this model was 32 μ mol/kg. Plasma levels were measured and were found to be 212 ± 36, 836 ± 217, and 2468 ± 350 ng/mL at 10, 30, and 100 μ mol/kg, respectively. Since the protein plasma binding of compound **4** in rat is 67%

Figure 3. Inhibition of carrageenan-induced hyperalgesia by compound 4.

(33% free), the free fraction of compound **4** at the 30 μ mol/kg dose was 280 ng/mL, which corresponds to a concentration of 950 nM. The total plasma level for metabolite **25** at the 30 μ mol/kg dose was 201 ± 36 ng/mL, which indicates that ~20% of compound **4** was being metabolized.

Compound 1, which was also tested in this carrageenan model, was administered ip in rats and was found to increase the paw withdrawal latency relative to vehicle by 49% at 100 μ mol/kg and by 96% at 300 μ mol/kg. The ED₅₀ of compound 1 for efficacy in this model was 80 μ mol/kg. Plasma levels were measured and were found to be 432 ± 55, 1454 ± 295, and 4135 ± 633 ng/mL at 30, 100, and 300 μ mol/kg, respectively. The approximate concentration of compound 1 at a dose of 80 μ mol/kg is 1200 ng/mL. The protein plasma binding of compound 1 in rat of 72% (28% free) was taken into consideration, and the free fraction of compound 1 at the 80 μ mol/kg dose was approximately 340 ng/mL, which corresponds to a concentration of 1200 nM.

The estimated EC₅₀ plasma free fraction potencies of compounds 1 (340 ng/mL) and 4 (200 ng/mL) in the rat carrageenan model do not correspond with what was observed in the rat binding studies wherein compounds 1 is over 100 times more potent than compound 4. A point of consideration is the activity of compound 4 at the H₃R. Reports have indicated roles for both agonists²² and antagonists²³ of the H₃R in pain. Compounds 1 and 4 were evaluated in GTP γ S studies for their functional activity at the H₃R. Compounds 1 and 4 were found to be antagonists with pK_b values of 5.70 \pm 0.04 and 6.50 \pm 0.03, respectively. If the results are taken in isolation, then the finding that compound 4 has antagonism of the H₃R opens the possibility that some of the antinociceptive activity of compound 4 could be due to the contribution of both the H₃R and the H₄R. However, additional results are relevant: (1) compound **1** is a highly selective H_4R (compared with the H_3R) antagonist and is active in pain models and (2) we have found that structurally distinct (and selective vs the H₃R) H₄R antagonists are comparable to, or more active in pain than, compounds 1 and 4.24

The ancillary activity of compound **4** was evaluated across a panel of receptors, kinases, and ion channels, including opioid receptors and COX enzymes (CEREP and in-house).²⁵ At 10 μ mol, compound **4** inhibited the specific binding of competitive ligands (percent inhibition in parentheses) at α_2 (92%) and at several serotonin sites, namely, 5-HT_{1A} (99%), 5-HT_{1B} (86%), 5-HT_{2A} (71%), and 5-HT₇ (53%). Compound **4** was retested in-house, and we found that it bound to the following sites with the following potencies (K_i , μ M): 5-HT_{1A} (0.042), 5-HT_{1D} (0.12), 5-HT_{2A} (4.1), 5-HT_{2C} (3.0), 5-HT₇ (5.9), α_{2A} (0.074),

and α_{2C} (0.29).²⁶ Because compound **4** bound with moderate potency to the 5-HT_{1A} site, we examined it for functional activity in a GTP γ S binding assay. Compound **4** was found to be a weak (pEC₅₀ = 5.79 ± 0.08) but full agonist (92% efficacy relative to serotonin) in CHO cell membranes that express the 5-HT_{1A} subtype.²⁷

Compound 4 was examined for its ability to cross the blood-brain barrier (BBB). In a PK study, rats were given an ip dose of 30 μ mol/kg of compound 4. After 30 min, plasma and brain samples were evaluated. The plasma levels of compound 4 were similar to those that were seen in the carrageenan rat model, namely 600 ± 20 ng/mL. Surprisingly, compound 4 was found to enter the brain readily. The brain levels were $12.1 \pm 1.1 \,\mu$ g/g of brain tissue, which was 20 times higher than the plasma levels. The levels of metabolite 25 in the plasma and brain were 140 ± 10 ng/mL and 610 ± 40 ng/ g, respectively. The concentration of compound 4 in the brain was 19 times higher than the concentration of the metabolite, which indicates that compound 25 crosses the BBB less effectively than does compound 4 and that any central effects from the administration of compound 4 are probably due to the parent compound and not the metabolite.

As displayed in Figure 4, we examined compound 4 for motor side effects in rat by using a rotorod model to assess motor coordination and a locomotor activity model to assess spontaneous exploratory behavior.²⁸ Compound 4 had no effect at up to 300 μ mol/kg in rotorod performance (10 times greater than the ED₅₀ in the carrageenan model). At 100 μ mol/kg, 3 times greater than the ED₅₀ in the carrageenan model, a significant effect was seen in the locomotor activity of compound 4. These results indicate that there is a moderate separation between the efficacy in the carrageenan model for compound 4 and the motor side effects.

Conclusions

A series of 2-aminopyrimidines containing H₄R antagonists was discovered from pyrimidine containing high-throughput screening hits. SARs on compound 3 revealed that the t-Bu group was most amenable to substitution with a variety of nonpolar substituents such as aryl and amino groups. From this series, compound 4 was further evaluated and was found to be active in a zymosan peritonitis model of inflammation as well as a murine itch model with potencies similar to those of compound 1. Compound 4 was also found to increase the paw withdrawal latency in an inflammatory model of pain, the rat carrageenan model. Compound 1 has also been found to attenuate the hyperalgesic response to thermal and mechanical stimuli in carrageenan-treated rats significantly.^{19,29} Others have also indicated a role for the H₄ receptor beyond the immune system. For example, the murine itch response has been proposed to involve histamine that acts on peripheral terminals of sensory neurons through the activation of H₄ receptors.^{4a} Further evaluation of the role of the H₄R in pain is warranted.

Experimental Section

General. Proton NMR spectra were obtained on a Varian Mercury Plus 300 or Varian UNITY Plus 300 MHz instrument with chemical shifts (δ) that are reported relative to tetramethylsilane as an internal standard. Melting points were determined on a Thomas-Hoover capillary melting-point apparatus and are uncorrected. Elemental analyses were performed by Quantitative Technologies and Robertson Microlit Laboratories. Column chromatography was carried out on silica gel 60 (230–400 mesh). Thinlayer chromatography (TLC) was performed by the use of 250 mm silica gel 60 glass-backed plates with F254 as the indicator.

Figure 4. Compound 4 in rat rotorod model and rat locomotor model.

4-*tert***-Butyl-6-(4-methylpiperazin-1-yl)pyrimidin-2-ylamine** (**3**). A mixture of compound **6** (130 mg, 0.70 mmol), 1-methylpiperazine (77 mg, 0.77 mmol), and Et₃N (0.75 mL, 5.4 mmol) in EtOH (1.5 mL) was heated in a sealed vial to 80 °C for 16 h, was cooled, was treated with 1 M NaOH (10 mL), and was extracted with CH₂Cl₂ (2 × 25 mL). The combined CH₂Cl₂ layers were dried (MgSO₄), filtered, concentrated, and chromatographed on silica gel by elution with gradients of 2, 3.5, and 5% MeOH/concd NH₄OH (9:1) in CH₂Cl₂ to provide 0.17 g (95%) of the title compound. ¹H NMR (CDCl₃, δ): 1.24 (s, 9H), 2.33 (s, 3H), 2.45 (m, 4H), 3.60 (m, 4H), 4.66 (bs, 2H), 5.94 (s, 1H). MS (DCI/NH₃) *m/z*: 250 (M + H)⁺. Anal. Calcd for (C₁₃H₂₃N₅•0.2CH₃OH•0.08CH₂Cl₂): C, H, N.

4-[2-Amino-6-(4-methylpiperazin-1-yl)pyrimidin-4-yl]benzonitrile Maleate (4). Compound 46 (11.2 g, 49 mmol) was treated with 4-cyanophenylboronic acid (10.8 g, 74 mmol), 1,2-dimethoxyethane (150 mL), and 2 M Na₂CO₃ (54 mL, 108 mmol), and the atmosphere of the reaction was purged with nitrogen. The mixture was treated with Pd(PPh₃)₄ (4.5 g, 3.9 mmol), was heated to 90 °C overnight under a nitrogen atmosphere, was cooled to ambient temperature, was treated with 1 M NaOH (125 mL), and was extracted with CH₂Cl₂ (250 mL, followed by 3×100 mL). The combined CH₂Cl₂ layers were dried (MgSO₄), filtered, concentrated, and chromatographed on silica gel by elution with gradients of 2 and 3.5% MeOH/concd NH₄OH (9:1) in CH₂Cl₂ to provide 12.7 g (88%) of the title compound as a free base. This free base (12.7 g, 43 mmol) was suspended in acetone (100 mL) and was treated with a solution of maleic acid (5.0 g, 43 mmol) in acetone, and the salt started to fall out of solution. This mixture was heated under reflux for 10 min with mixing and was allowed to stand at ambient temperature overnight. The solid was collected by filtration, was washed with acetone, and was dried overnight under vacuum to provide 15.6 g of the title compound. mp 187–190 °C (dec). ¹H NMR (DMSO- d_6 , δ): 2.79 (s, 3H), 3.20 (bs, 4H), 3.31 (bs, 4H), 6.04 (s, 2H), 6.39 (s, 2H), 6.83 (s, 1H), 7.95 (d, J = 8.48 Hz, 2H), 8.24 (d, J = 8.82 Hz, 2H). MS (DCI/NH₃) m/z: 258 (M + H)⁺. Anal. Calcd for $(C_{16}H_{18}N_6 \cdot C_4H_4O_4)$: C, H, N.

4-tert-Butyl-6-chloropyrimidin-2-amine (6). 2-Amino-6-*tert*butylpyrimidin-4(3*H*)-one ($\mathbf{5}$)³⁰ (2.7 g, 16 mmol) was treated with POCl₃ (15 mL), was heated under reflux for 2 h, was cooled, was concentrated to a solid, and was treated with a mixture of ice and saturated NH₄OH. After standing for 1 h, the solid was collected by filtration and was washed with water. The solid was dissolved in CH₂Cl₂, dried (MgSO₄), filtered, and concentrated to provide the title compound. ¹H NMR (DMSO-*d*₆, δ): 1.21 (s, 9H), 6.64 (2, 1H), 6.95 (bs, 2H). MS (DCI/NH₃) *m/z*: 186 (M + H)⁺.

4-tert-Butyl-2,6-dichloropyrimidine (9). A mixture of 2,4dichloropyrimidine (3.0 g, 20 mmol), pivalic acid (6.2 g, 60 mmol) and silver nitrate (6.8 g, 40 mmol) in 1:1 CH₃CN/H₂O (60 mL) was degassed with N₂, heated to 80 °C, treated with a 1.2 M aqueous solution of ammonium persulfate (34 mL, 40 mmol), heated to 80 °C under N₂ for 2 h, cooled, treated with a solution of concentrated NH₄OH (15 mL) in H₂O (60 mL) and extracted twice with CH₂Cl₂. The combined CH₂Cl₂ layers were washed with NaHCO₃ sln, dried (MgSO₄), filtered, concentrated, and chromatographed by elution with 50:1, followed by 20:1, hexane/EtOAc to provide 0.57 g (14%) of the title compound. ¹H NMR (CDCl₃, δ): 1.35 (s, 9H), 7.27 (s, 1H). MS (DCI/NH₃) *m*/*z*: 205 (M + H)⁺.

4-tert-Butyl-2-chloro-6-(4-methylpiperazin-1-yl)pyrimidine (10) and 4-tert-Butyl-6-chloro-2-(4-methylpiperazin-1-yl)pyrimidine (11). The substitution of compound 9 (300 mg, 1.4 mmol) for compound 6 in the procedure for compound 3 provided a mixture of 10 and 11, which were separated by chromatography by the use of a gradient of EtOAc/HCOOH/H₂O (28:1:1, 16:1:1, 13:1:1, and 5.5:1:1) to provide, after concentration, the formic acid salts of 11 as the less polar product and 10 as the more polar product. Each product was individually converted to the free base by chromatography by elution with gradients of 2 and 3.5% MeOH/concd NH_4OH (9:1) in CH_2Cl_2 to provide 80 mg (21%) of compound 11 and 250 mg (65%) of compound 10. Compound 11: ¹H NMR $(CDCl_3, \delta)$: 1.26 (s, 9H), 2.35 (s, 3H), 2.47 (t, J = 5.1 Hz, 4H), 3.86 (t, J = 5.1 Hz, 4H), 6.52 (s, 1H). MS (DCI/NH₃) m/z: 269 (M $(+ H)^+$. Compound **10**: ¹H NMR (CDCl₃, δ): 1.28 (s, 9H), 2.36 (s, 3H), 2.50 (m, 4H), 3.68 (m, 4H), 6.34 (s, 1H). MS (DCI/NH₃) m/z: 269 (M + H)⁺. Anal. Calcd for (C₁₃H₂₁ClN₄ \cdot 0.25H₂O): C, H, N.

4-Iodo-6-(4-methylpiperazin-1-yl)pyrimidin-2-ylamine (15). A mixture of compound **46** (2.3 g, 10 mmol), NaI (7.5 g, 50 mmol), and 47% hydroiodic acid (54 mL) was heated to 80 °C for 16 h and was allowed to cool to room temperature and stand for 1 h. The solid was collected by filtration, washed with water, and partitioned between 0.5 M NaOH (50 mL) and CH₂Cl₂ (50 mL). The layers were separated, and the aqueous layer was extracted with CH₂Cl₂ (2 × 50 mL). The combined CH₂Cl₂ layers were dried (MgSO₄), filtered, and concentrated to provide 2.78 g (87%) of the title compound. ¹H NMR (CDCl₃, δ): 2.33 (s, 3H), 2.44 (t, *J* = 5.1 Hz, 4H), 3.57 (t, *J* = 5.1 Hz, 4H), 4.76 (bs, 2H), 6.40 (s, 1H). MS (DCI/NH₃) *m*/*z*: 320 (M + H)⁺. Anal. Calcd for (C₉H₁₄IN₅): C, H, N.

[4-tert-Butyl-6-(4-methylpiperazin-1-yl)pyrimidin-2-yl]methylamine (34). A mixture of compound 10 (30 mg, 0.11 mmol), 40% aqueous H₂NMe (5 drops), and 2-methoxyethanol (1 mL) was heated in a sealed tube to 110 °C for 16 h and was cooled, treated with 1 M NaOH (10 mL), and extracted with CH₂Cl₂ (2 × 25 mL). The combined CH₂Cl₂ layers were dried (MgSO₄), filtered, concentrated, and chromatographed by elution with gradients of 2, 3.5, and 5% MeOH/concd NH₄OH (9:1) in CH₂Cl₂ to provide 27 mg (94%) of the title compound. ¹H NMR (CDCl₃, δ): 1.25 (s, 9H), 2.33 (s, 3H), 2.46 (t, J = 5.4 Hz, 4H), 2.94 (d, J = 4.7 Hz, 3H), 3.62 (m, 4H), 4.64 (bs, 1H), 5.87 (s, 1H). MS (DCI/NH₃) m/z: 264 (M + H)⁺. Anal. Calcd for (C₁₄H₂₅N₅•0.09CH₂Cl₂): C, H, N.

4-Chloro-6-(4-methylpiperazin-1-yl)pyrimidin-2-ylamine (46). 2-Amino-4,6-dichloropyrimidine (15 g, 91 mmol) was treated with 1-methylpiperazine (10.1 g, 100 mmol), Et₃N (90 mL, 0.64 mol), and EtOH (185 mL), was heated to 80 °C overnight, was cooled, and was concentrated and partitioned between CH₂Cl₂ (100 mL) and 1 M NaOH (125 mL). The layers were separated, and the aqueous layer was extracted with CH₂Cl₂ (4 × 100 mL). The combined CH₂Cl₂ layers were dried (MgSO₄), filtered, concentrated, and crystallized from EtOAc to provide 14.9 g (71%) of the title compound. ¹H NMR (CDCl₃, δ): 2.34 (s, 3H), 2.45 (m, 4H), 3.60 (m, 4H), 4.82 (s, 2H), 5.96 (s, 1H). MS (DCI/NH₃) *m/z*: 228 (M + H)⁺. Anal. Calcd for (C₃H₁₄ClN₅•0.06CH₂Cl₂): C, H, N.

Example of Suzuki Conditions. 4-(4-Methylpiperazin-1-yl)-6-p-tolylpyrimidin-2-ylamine (64). A vial containing compound **46** (0.10 g, 0.44 mmol) was treated with 4-methylphenylboronic acid (90 mg, 0.66 mmol), Pd(PPh₃)₄ (51 mg, 0.044 mmol), 1,2dimethoxyethane (1.3 mL), and 2 M Na₂CO₃ (0.48 mL, 0.97 mmol) and was degassed with a stream of N₂ for 1 min. The vial was sealed and was heated to 90 °C for 16 h, was cooled, was treated with 1 M NaOH, and was extracted with CH_2Cl_2 (2 × 25 mL). The combined CH₂Cl₂ layers were dried (MgSO₄), filtered, and concentrated. The residue was purified by preparative HPLC on a Waters Symmetry C8 column ($40 \times 100 \text{ mm}^2$, 7 μ m particle size) by the use of a gradient of 10-100% acetonitrile and 0.1% aqueous TFA over 12 min (15 min run time) at a flow rate of 70 mL/min. The purified compound was converted to the free base by chromatography on silica gel by elution with 2, 3.5, and 5% MeOH/ concd NH₄OH (9:1) in CH₂Cl₂ to provide 94 mg (75%) of the title compound. ¹H NMR (CDCl₃, δ): 2.34 (s, 3H), 2.39 (s, 3H), 2.48 (t, J = 5.4 Hz, 4H), 3.68 (t, J = 5.1 Hz, 4H), 4.83 (bs, 2H), 6.33(s, 1H), 7.23 (d, J = 8.1 Hz, 2H), 7.80 (d, J = 8.5 Hz, 2H). MS (DCI/NH₃) m/z: 284 (M + H)⁺. Anal. Calcd for (C₁₆H₂₁N₅• 0.06CH2Cl2): C, H, N.

Example of Ullmann Conditions. 4-(4-Methylpiperazin-1-yl)-6-(4-phenylimidazol-1-yl)pyrimidin-2-ylamine (95). A mixture of compound 15 (160 mg, 0.5 mmol), 4-phenylimidazole (87 mg, 0.6 mmol), CuI (25 mg, 0.13 mmol), and K₂CO₃ (90 mg, 0.65 mmol) in DMF (0.5 mL) was heated to 135 °C overnight, was cooled, was treated with 1 M NaOH (10 mL), and was extracted with CH_2Cl_2 (3 \times 25 mL). The combined CH_2Cl_2 layers were dried (MgSO₄), filtered, and concentrated. The residue was purified by preparative HPLC on a Waters Symmetry C8 column (40×100 mm², 7 μ m particle size) by the use of a gradient of 10–100% acetonitrile and 0.1% aqueous TFA over 12 min (15 min run time) at a flow rate of 70 mL/min. The purified compound was converted to the free base via chromatography (2, 3.5, and 5% MeOH/NH4OH (9:1) in CH_2Cl_2) to provide 87 mg (52%) of the title compound. ¹H NMR (CDCl₃, δ): 2.36 (s, 3H), 2.50 (t, J = 5.1 Hz, 4H), 3.69 (t, J = 4.7 Hz, 4H), 4.88 (bs, 2H), 5.93 (s, 1H), 7.27 (m, 1H), 7.40 (t, J = 7.5 Hz, 2H), 7.81-7.87 (m, 3H), 8.34 (d, J = 1.4 Hz, 1H).MS (DCI/NH₃) m/z: 336 (M + H)⁺. Anal. Calcd for (C₁₈H₂₁N₇•0.25 CH₂Cl₂•0.5CH₃OH): C, H, N.

Acknowledgment. We thank Marina I. Strakhova, Tracy L. Carr, Arlene M. Manelli, Rahul Sharma, David J. Anderson, Anthony V. Daza, Eric Johnson, Matthias Mayrer, and Gilbert J. Diaz for their in vitro analysis; and Anita K. Salyers, Prasant Chandran, Madhavi Pai, and Chang Z. Zhu for their in vivo analysis of compound **4**.

Supporting Information Available: Combustion analysis, full synthetic experimental section, and description of biological methods. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (a) Akdis, C. A.; Simons, F.; Estelle, R. Histamine receptors are hot in immunopharmacology. *Eur. J. Pharmacol.* 2006, *533*, 69–76. (b) Parsons, M. E.; Ganellin, C. R. Histamine and its receptors. *Br. J. Pharmacol.* 2006, *147* (Suppl.1), S127–S135. (c) de Esch, I. J. P.; Thurmond, R. L.; Jongejan, A.; Leurs, R. The histamine H₄ receptor as a new therapeutic target for inflammation. *Trends Pharmacol. Sci.* 2005, *26*, 462–469.
- (2) (a) Oda, T.; Morikawa, N.; Saito, Y.; Masuho, Y.; Matsumoto, S.-I. Molecular cloning and characterization of a novel type of histamine receptor preferentially expressed in leukocytes. J. Biol. Chem. 2000, 275, 36781–36786. (b) Nguyen, T.; Shapiro, D. A.; George, S. R.; Setola, V.; Lee, D. K.; Cheng, R.; Rauser, L.; Lee, S. P.; Lynch, K. R.; Roth, B. L.; O'Dowd, B. F. Discovery of a novel member of the

histamine receptor family. *Mol. Pharmacol.* **2001**, *59*, 427–433. (c) Zhu, Y.; Michalovich, D.; Wu, H.-L.; Tan, K. B.; Dytko, G. M.; Mannan, I. J.; Boyce, R.; Alston, J.; Tierney, L. A.; Li, X.; Herrity, N. C.; Vawter, L.; Sarau, H. M.; Ames, R. S.; Davenport, C. M.; Hieble, J. P.; Wilson, S.; Bergsma, D. J.; Fitzgerald, L. R. Cloning, expression, and pharmacological characterization of a novel human histamine receptor. *Mol. Pharmacol.* **2001**, *59*, 434–441. (d) Liu, C.; Ma, X.-J.; Jiang, X.; Wilson, S. J.; Hofstra, C. L.; Blevitt, J.; Pyati, J.; Li, X.; Chai, W.; Carruthers, N.; Lovenberg, T. W. Cloning and pharmacological characterization of a fourth histamine receptor (H₄) expressed in bone marrow. *Mol. Pharmacol.* **2001**, *59*, 420–426.

- (3) (a) Zhang, M.; Thurmond, R. L.; Dunford, P. J. The histamine H₄ receptor: a novel modulator of inflammatory and immune disorders. *Pharmacol. Ther.* 2007, *113*, 594–606. (b) Damaj, B. B.; Beceraa, C. B.; Esber, H. J.; Wen, Y.; Maghazachi, A. A. Functional expression of H₄ histamine receptor in human natural killer cells, monocytes, and dendritic cells. *J. Immunol.* 2007, *179*, 7907–7915.
- (4) (a) Dunford, P. J.; Williams, K. N.; Desai, P. J.; McQueen, D.; Karlsson, L.; Thurmond, R. Histamine H₄ receptor antagonists are superior to traditional antihistamines in the attenuation of experimental pruritus. *J. Allergy Clin. Immunol.* 2007, *119*, 176–183. (b) Rees, J.; Murray, C. S. Itching for progress. *Clin. Exp. Dermatol.* 2005, *30*, 471–473. (c) Thurmond, R. L.; Gelfand, E. W.; Dunford, P. J. The role of histamine H₁ and H₄ receptors in allergic inflammation: the search for new antihistamines. *Nat. Rev. Drug Discovery* 2008, *7*, 41–53.
- (5) (a) Ling, P.; Ngo, K.; Nguyen, S.; Thurmond, R. L.; Edwards, J. P.; Karlsson, L.; Fung-Leung, W. P. Histamine H₄ receptor mediates eosinophil chemotaxis with cell shape change and adhesion molecule upregulation. *Br. J. Pharmacol.* **2004**, *142*, 161–171. (b) Buckland, K. F.; Williams, T. J.; Conroy, D. M. Histamine induces cytoskeletal changes in human eosinophils via the H₄ receptor. *Br. J. Pharmacol.* **2003**, *140*, 1117–1127.
- (6) Jablonowski, J. A.; Grice, C. A.; Chai, W.; Dvorak, C. A.; Venable, J. D.; Kwok, A. K.; Ly, K. S.; Wei, J.; Baker, S. M.; Desai, P. J.; Jiang, W.; Wilson, S. J.; Thurmond, R. L.; Karlsson, L.; Edwards, J. P.; Lovenberg, T. W.; Carruthers, N. I. The first potent and selective non-imidazole human histamine H₄ receptor antagonists. *J. Med. Chem.* **2003**, *46*, 3957–3960.
- (7) Thurmond, R. L.; Desai, P. J.; Dunford, P. J.; Fung-Leung, W. P.; Hofstra, C. L.; Jiang, W.; Nguyen, S.; Riley, J. P.; Sun, S.; Williams, K. N.; Edwards, J. P.; Karlsson, L. A potent and selective histamine H₄ receptor antagonist with anti-inflammatory properties. *J. Pharmacol. Exp. Ther.* **2004**, *309*, 404–413.
- (8) Intracellular calcium responses were measured in cell lines that coexpressed Gqi5 and human, rat, or mouse H4 receptors by the use of FLIPR methods, as previously described, with modifications.^{8a} Briefly, we modified the FLIPR assay by setting the FLIPR temperature to 37 °C, and cell plates and drug plates were prewarmed in a 37 °C incubator for 10 min before being placed in the FLIPR because responses in these cell lines were dramatically increased at this temperature compared with ambient temperature. Chlorpheniramine (10 uM) was also added to the wash buffer to mask any H₁-receptormediated responses. We obtained agonist potencies (EC50) and efficacies (percent max response) of H₄R ligands by measuring peak responses, which were expressed as a percentage of the maximal response that was observed for 100 mM histamine. We obtaned antagonist potencies (K_b) by measuring the inhibition of a reference response (1000, 300, and 100 nM histamine for rat, mouse, and human H₄ cell lines, respectively). Antagonists were added 5 min prior to the addition of histamine. Peak response values for the antagonist wells were expressed as a percentage of the reference-peak response for histamine in the absence of H4-receptor antagonists. We performed experiments in duplicate wells, and we analyzed data by using GraphPad Prism to obtain EC_{50} , percent max, and IC_{50} values. The generalized Cheng–Prusoff equation^{8b,c} was used to determine K_b values, which are presented as the $-\log_{10}(\text{mean}) \pm \text{SEM}$ (standard error of the mean). (a) Esbenshade, T. A.; Krueger, K. M.; Miller, T. R.; Kang, C. H.; Denny, L. I.; Witte, D. G.; Yao, B. B.; Fox, G. B.; Faghih, R.; Bennani, Y. L.; Williams, M.; Hancock, A. A. Two novel and selective nonimidazole histamine H₃ receptor antagonists A-304121 and A-317920: I. In vitro pharmacological effects. J. Pharmacol. Exp. Ther. 2003, 305, 887-896. (b) Cheng, Y. C.; Prusoff, W. Relationship between the inhibition constant K_i and the concentration of inhibitor which causes 50% inhibition (IC $_{50}$) of an enzymatic reaction. Biochem. Pharmacol. 1973, 22, 2099-2108. (c) Leff, P.; Dougall, I. G. Further concerns over Cheng-Prusoff analysis. Trends Pharmacol. Sci. 1993, 14, 110-112.
- (9) Liu, C.; Wilson, S. J.; Kuei, C.; Lovenberg, T. W. Comparison of human, mouse, rat, and guinea pig histamine H₄ receptors reveals substantial pharmacological species variation. *J. Pharmacol. Exp. Ther.* 2001, 299, 121–130.

- (10) Sato, H.; Tanaka, K.; Shimazaki, M.; Urbahns, K.; Sakai, K.; Gantner, F.; Bacon, K. Preparation of 2-Aminopyrimidine Derivatives as Histamine H₄ Antagonists for the Treatment of Asthma. International Patent WO 2005/054239A1, 2005.
- (11) Oluyomi, A. O.; Nguyen, H.; Towbin, H.; Dawson, J.; Vosbeck, K. Differential effects of prednisolone and indomethacin on zymosaninduced inflammation in a modified murine tissue-chamber model. *Inflammation Res.* **1995**, *44*, 350–356.
- (12) (a) Takeshita, K.; Sakai, K.; Bacon, K. B.; Gantner, F. Critical role of histamine H₄ receptor in leukotriene B4 production and mast celldependent neutrophil recruitment induced by zymosan in vivo. *J. Pharmacol. Exp. Ther.* **2003**, 307, 1072–1078. (b) Takeshita, K.; Bacon, K. B.; Gantner, F. Critical role of L-selectin and histamine H₄ receptor in zymosan-induced neutrophil recruitment from the bone marrow: comparison with carrageenan. *J. Pharmacol. Exp. Ther.* **2004**, *310*, 272–280.
- (13) Briefly, CD-1 mice were shaved at the back of the neck. On the day of the experiment, compound 4 was injected ip. After 30 min, clobinpropit (10 nM in 0.1 mL of saline/mouse) was injected id into the back of the neck, and the mouse was observed for the next 25 min. During this time, we measured scratching by recording the total number of individual bouts of scratching (a bout is defined as three or more individual scratching movements with the hind paws to the area around the injection site).
- (14) Bell, J. K.; McQueen, D. S.; Rees, J. L. Involvement of histamine H₄ and H₁ receptors in scratching induced by histamine receptor agonists in balb C mice. *Br. J. Pharmacol.* **2004**, *142*, 374–380.
- (15) Jasper, J. R.; Insel, P. A. Evolving concepts of partial agonism. The β-adrenergic receptor as a paradigm. *Biochem. Pharmacol.* 1992, 43, 119–130.
- (16) Ohlsen, R. I.; Pilowsky, L. S. The place of partial agonism in psychiatry: recent developments. J. Psychopharmacol. 2005, 19, 408– 413.
- (17) Harrison, C.; Traynor, J. R. The [³⁵S]GTPγS binding assay: approaches and applications in pharmacology. *Life Sci.* **2003**, *74*, 489–508.
- (18) Cowart, M. D.; Esbenshade, T. A.; Hsieh, G. C.; Brioni, J. D.; Honore, P.; Altenbach, R. J.; Liu, H.; Drizin, I.; Wishart, N.; Babinski, D. J.; Gregg, R. J. Method For Pain Treatment. U.S. Provisional Patent No. 60/848,954, Oct 2, 2006.
- (19) Hsieh, G. C.; Chandran, P.; Salyers, A. K.; Pai, M.; Zhu, C. Z.; Wensink, E. J.; Witte, D. G.; Miller, T. R.; Milicic, I.; Mikusa, J. P.; Baker, S. J.; Wetter, J. M.; Marsh, K. C.; Hancock, A. A., Decker, M. W.; Cowart, M. D.; Esbenshade, T. A.; Brioni, J. D.; Honore, P. Histamine H₄ receptor as a potential antinociceptive target: effects of a potent and selective H₄ antagonist in animal pain models. Unpublished results, manuscript submitted to *Pain*, 2008.
- (20) Hargreaves, K.; Dubner, R.; Brown, F.; Flores, C.; Joris, J. A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. *Pain* **1988**, *32*, 77–88.
- (21) (a) Carrageenan-induced thermal hyperalgesia. Male Sprague–Dawley rats (Charles River, Wilmington, MA) that weighed between 250 and 300 g were injected with 100 μL of a 1% solution of λ-carrageenan into the plantar surface of the right hind paw of the rat. The hyperalgesia to thermal stimulation was determined 2 h following injection. Compound 4 was injected ip 90 min following carrageenan injection (i.e., 30 min before testing). (b) Honore, P.; Donnelly-Roberts, D.; Namovic, M. T.; Hsieh, G.; Zhu, C. Z.; Mikusa, J. P.; Hernandez, G.; Zhong, C.; Gauvin, D. M.; Chandran, P.; Harris, R.; Medrano, A. P.; Carroll, W.; Marsh, K.; Sullivan, J. P.; Faltynek, C. R.; Jarvis, M. F. A-740003 [*N*-(1+{[(cyanoimino)(5-quinolinylamino) methyl-]amino}-2,2-dimethylpropyl)-2-(3,4-dimethoxyphenyl)acetamide], a novel and selective P2X₇ receptor antagonist, dose-dependently reduces neuropathic pain in the rat. *J. Pharmacol. Exp. Ther.* 2006, *319*, 1376–1385.
- (22) (a) Cannon, K. E.; Nalwalk, J. W.; Stadel, R.; Ge, P.; Lawson, D.; Silos-Santiago, I.; Hough, L. B. Activation of spinal histamine H₃ receptors inhibits mechanical nociception. *Eur. J. Pharmacol.* 2003, 470, 139–147. (b) Cannon, K. E.; Hough, L. B. Inhibition of chemical

and low-intensity mechanical nociception by activation of histamine H₃ receptors. *J. Pain* **2005**, *6*, 193–200. (c) Cannon, K. E.; Leurs, R.; Hough, L. B. Activation of peripheral and spinal histamine H₃ receptors inhibits formalin-induced inflammation and nociception, respectively. *Pharmacol., Biochem. Behav.* **2007**, *88*, 122–129. (d) Rouleau, A.; Garbarg, M.; Ligneau, X.; Mantion, C.; Lavie, P.; Advenier, C.; Lecomte, J.-M.; Krause, M.; Stark, H.; Schunack, W.; Schwartz, J.-C. Bioavailability and antinociceptive and antiinflammatory properties of BP 2–94, a histamine H₃ receptor agonist prodrug. *J. Pharmacol. Exp. Ther.* **1997**, *281*, 1085–1094. (e) Wijtmans, M.; Leurs, R.; de Esch, I. Histamine H₃ receptor ligands break ground in a remarkable plethora of therapeutic areas. *Expert Opin. Invest Drug.* **2007**, *16*, 967–985.

- (23) (a) Malmberg-Aiello, P.; Lamberti, C.; Ghelardini, C.; Giotti, A.; Bartolini, A. Role of histamine in rodent antinociception. Br. J. Pharmacol. 1994, 111, 1269–1279. (b) Farzin, D.; Asghari, L.; Nowrouzi, M. Rodent antinociception following acute treatment with different histamine receptor agonists and antagonists. Pharmacol., Biochem. Behav. 2002, 72, 751–760. (c) Medhurst, S. J.; Collins, S. D.; Billinton, A.; Bingham, S.; Dalziel, R. G.; Brass, A.; Roberts, J. C.; Medhurst, A. D.; Chessell, I. P. Novel histamine H₃ receptor antagonists GSK189254 and GSK334429 are efficacious in surgicallyinduced and virally-induced rat models of neuropathic pain. Pain 2008, 138, 61–69.
- (24) (a) Cowart, M. D.; Altenbach, R. J.; Liu, H.; Hsieh, G. C.; Drizin, I.; Millicic, I.; Miller, T. R.; Witte, D. G.; Wishart, N.; Fix-Stenzel, S. R.; McPherson, M. J.; Adair, R. M.; Wetter, J. M.; Bettencourt, B. M.; Marsh, K. C.; Sullivan, J. P.; Honore, P.; Esbenshade, T. A.; Brioni, J. D. Rotationally-constrained 2,4-diamino-5,6-disubstituted pyrimidines: a new class of histamine H₄ receptor antagonists with improved drug-likeness and in vivo efficacy in pain and inflammation models. *J. Med. Chem.* 2008, in press. (b) Liu, H.; Altenbach, R. J.; Carr, T. L.; Chandran, P.; Hsieh, G. C.; Lewis, L. R.; Manelli, A. M.; Milicic, I.; Marsh, K. C.; Miller, T. R.; Strakhova, M. I.; Vortherms, T. A.; Wakefield, B. D.; Wetter, J. M.; Witte, D. G.; Honore, P.; Esbenshade, T. A.; Brioni, J. D.; Cowart, M. D. *cis*-4-(Piperazin-1-yl)-5,6,7a,8,9,10,11,11a-octahydrobenzofuro[2,3-h]quinazolin-2-amine (A-987306), a new histamine H₄ antagonist that blocks pain responses against carrageenan-induced hyperalgesia. *J. Med. Chem.* 2008, in press.
- (25) Compound 4 was screened against a panel of 26 kinomes and was found to be inactive (IC₅₀ > 10 μ M). Compound 4 was also found to not interact with opioid receptors and COX enzymes, human and mouse P₂X₇ channels (IC₅₀ > 100 μ M), T-type voltage-gated calcium channels (IC₅₀ > 10 μ M), NMDA receptor (IC₅₀ > 100 μ M), neuronal nicotinc receptor ($K_i > 100 \mu$ M), and cannabinoid ($K_i > 10 \mu$ M).
- (26) Statistical analysis: 95% confidence intervals for 5-HT sites and upper and lower limits based on the SEM for the α_2 subtypes. 5-HT_{1A}: 0.042 (0.037-0.047), 5-HT_{1D}: 0.123 (0.11-0.14), 5-HT_{2A}: 4.08 (3.8-4.4), 5-HT_{2C}: 2.97 (1.7-5.2), 5-HT₇: 5.88 (5.6-6.2), α_{2A} : 0.074 (0.086, 0.064), α_{2C} : 0.288 (0.398, 0.209).
- (27) The efficacy of compound **4** (10 μ M) for stimulating the binding of GTP γ S was fully blocked by the 5-HT_{1A} antagonist WAY-100135 (10 μ M).
- (28) Zhu, C. Z.; Wilson, S. G.; Mikusa, J. P.; Wismer, C. T.; Gauvin, D. M.; Lynch, J. J.; Wade, C. L.; Decker, M. W.; Honore, P. Assessing the role of metabotropic glutamate receptor 5 in multiple nociceptive modalities. *Eur. J. Pharmacol.* **2004**, *506*, 107–118.
- (29) Coruzzi, G.; Adami, M.; Guaita, E.; de Esch, I. J. P.; Leurs, R. Antiinflammatory and antinociceptive effects of the selective histamine H₄-receptor antagonists JNJ7777120 and VUF6002 in a rat model of carrageenan-induced acute inflammation. *Eur. J. Pharmacol.* 2007, 563, 240–244.
- (30) Keizer, H. M.; Sijbesma, R. P.; Meijer, E. W. The convenient synthesis of hydrogen-bonded ureidopyrimidinones. *Eur. J. Org. Chem.* 2004, *12*, 2553–2555.

JM8005959