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ABSTRACT: The catalytic utility of [RuL1(CO)2I2] (1), containing an
annelated π-conjugated imidazo-naphthyridine-based mesoionic carbene
(MIC) ligand (L1), is evaluated for E-selective alkyne semihydrogenation.
The precatalyst 1, in combination with 2 equiv of AgBArF, semihydrogenates a
broad range of internal alkynes with molecular hydrogen (5 bar) in water. (E)-
Alkenes are accessed in high yields, and a number of reducible functional
groups are tolerated. A chelate MIC ligand and two cis carbonyls provide a
well-defined platform at the Ru center for hydrogenation and isomerization.
The loss of two iodides and the presence of two carbonyls render the Ru
center electron deficient and thus the formation of metal vinylidenes with
terminal alkynes is avoided. This is leveraged for the semihydrogenation of
terminal alkynes by the same catalytic system in isopropyl alcohol. Reaction
profile, isomerization, kinetic, and DFT studies reveal initial alkyne
hydrogenation to a (Z)-alkene, which further isomerizes to an (E)-alkene
via metal-catalyzed Z → E isomerization.

■ INTRODUCTION

The interest in metal complexes bearing N-heterocyclic
carbene (NHC) ligands stems largely from their ability to
catalyze a wide variety of organic transformations.1 A subclass
of NHC ligands is mesoionic carbene (MIC), which binds the
metal through the imidazole C4 or C5 site instead of C2,
giving rise to a stronger σ donation to the metal in comparison
to its C2-bound congeners.2 Metal NHC catalysts are well
suited for oxidation reactions because of their stability under
oxidative conditions.3 However, their applications in hydro-
genation chemistry are still a considerable challenge.4 This is
due to the susceptibility of the putative (NHC)metal hydride
intermediate toward reductive elimination under the reaction
conditions, leading to the breakdown of the catalysts.5

An effective approach to suppress ligand dissociation via
reductive elimination is to employ chelate ligands.6 We
previously designed a fused π-conjugated imidazo-naphthyr-
idine system that resembles a MIC analogue of 1,10-
phenanthroline. [Ru(COD)(MIC)Br2] (COD = 1,5-cyclo-
octadiene) was synthesized, which was found to be an excellent
catalyst for the selective oxidative scission of olefins to
aldehydes (Scheme 1a).3d Annelation on the ligand construct
restricts the rotational flexibility and thus diminishes the
prospect of ligand extrusion.7 The π delocalization on the
ligand architecture offers a higher conjugational stability and
enhances the ligand donor capacity in compaison to its

nonannelated analogue.8 Our interest in hydrogenation
chemistry began with the isolation of the Ru complex 1
(Scheme 1b), bearing the related annelated MIC ligand L1 and
two mutually cis oriented carbonyls.9 A chelate MIC ligand
scaffold along with two cis CO groups in 1 could provide an
ideal platform for hydrogenation and isomerization.
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Scheme 1. Annelated MIC Complexes of Ru and Their
Catalytic Utilities
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Transition-metal-mediated semihydrogenation of alkynes
toward stereoselective alkene formation is well documented.10

A major challenge for alkyne semihydrogenation is the
selective formation of an (E)-alkene. Most transition-metal
catalysts, under either homogeneous11 or heterogeneous12

conditions, deliver two hydrogen atoms suprafacially to the π-
bond of the alkyne, resulting in a Z-selective alkene. Because of
this intrinsic feature of Z selectivity, the synthesis of (E)-
alkenes is inherently difficult. Conventional methods for the
synthesis of (E)-alkenes are stoichiometric in nature. A Birch-
type reduction of alkynes using alkali metals (Li, Na) is a
widely used method for accessing (E)-alkenes.13 However, low
functional group tolerance due to the harsh reaction conditions
has been a major drawback. Although some improvement in
the scope of selectivity was achieved with the aid of over-
stoichiometric amounts of chromium reagents, the use of toxic
noncatalytic reagents and the production of copious waste
remain significant problems.
Transfer hydrogenation protocols have been employed for

alkyne to alkene conversions.14 In 1999, Tani and co-workers
used methanol as the hydrogen source for trans-alkene
synthesis catalyzed by an Ir complex.15 Trost et al. developed
a two-stage trans-hydrosilylation/proto-desilylation pathway
for alkyne reduction to (E)-alkenes.16 Selective E config-
urations were also achieved by using organic or inorganic acids
in the form of hydrogen sources via a transfer hydrogenation
methodology.17 Liu and Luo reported ligand-controlled Co-
PNP catalysts for semihydrogenation of alkynes to (Z)- and
(E)-alkenes using ammonia−borane.18 Yang and Sun showed
ligand-controlled selectivity to access (E)- and (Z)-alkenes
with EtOH as the hydrogen source using an Ir catalyst.19

Recently, Kann and co-workers have employed alcohols as
hydrogen donors with 1 equiv of tBuOK to hydrogenate
alkynes with a Ru catalyst.20 Although these transfer
hydrogenation methodologies are superior alternatives to
Birch reduction in terms of functional group compatibility,
they invariably produce stoichiometric amounts of waste.
Bargon21 and Fürstner22 demonstrated ruthenium-catalyzed
direct E hydrogenation using molecular H2. Milstein,23 Fout,24

and Beller25 have reported base-metal catalytic systems for
accessing (E)-alkenes under a hydrogen atmosphere. Bimetallic
complexes have also been reported for catalytic hydrogenation
of alkynes with molecular hydrogen.26 A major limitation that
persists in the homogeneous catalytic alkyne hydrogenation
with molecular hydrogen is that most of the catalysts are
ineffective for terminal alkynes possibly due to the formation of
a stable metal vinylidene complex or catalyst decomposition
under the reaction conditions.27

Herein we report the catalytic utility of complex 1 for
semihydrogenation of both internal and terminal alkynes. We
reasoned that the removal of two iodo ligands from the metal
would give rise to a dicationic complex with diminished
electron density on the metal center. The presence of two CO
groups would further boost the metal electrophilicity. The
electron deficiency at the ruthenium is likely to make the
catalyst reluctant toward the formation of a metal vinylidene
with terminal alkynes. Thus, catalyst 1 efficiently hydrogentates
internal and terminal alkynes to their coresponding alkenes.

■ RESULTS AND DISCUSSION
Catalytic Studies. Complex 1 was synthesized following a

procedure reported previously.9 The reaction of [L1I]I with
[Ru2(CH3CN)6(CO)4][BF4]2 in a 2:1 molar ratio in CH2Cl2

at room temperature afforded the neutral complex [Ru(L1)-
(CO)2I2] (1) as an orange solid in 82% yield (Scheme 2). The

molecular structure reveals an annelated MIC ligand that
chelates the Ru center through the carbene carbon and the
naphthyridine nitrogen. Two mutually cis oriented carbonyls
and two iodides occupy the remaining sites to complete an
octahedral geometry around the metal center.
The catalytic utility of 1 was evaluated for the semi-

hydrogenation of internal and terminal alkynes. AgBArF was
employed to create vacant sites at the metal center by the
removal of the iodides. The initial reaction of diphenylacety-
lene (0.2 mmol), catalyst 1 (5 mol %), and AgBArF (10 mol %)
in dry isopropyl alcohol in the presence of 5 bar of H2 pressure
at 80 °C afforded full conversion of the alkyne to (E)-stilbene
and 1,2-diphenylethane in a 92:8 ratio after 4 h (entry 1, Table
S1). Using water as a solvent, 92% conversion was observed for
the model reaction with a 90:10 E:Z ratio (entry 2). When the
reaction time was increased from 4 to 7 h, 98% of the alkyne
was converted with an excellent E selectivity (entry 3).
Acetonitrile, toluene, dioxane, tetrahydrofuran, methanol, and
ethanol were proved to be inefficient in terms of yield and
selectivity (entries 4−9). Further, reduction of diphenylacety-
lene was carried out in water with various additives, such as,
KBArF, AgOTf, AgSbF6, AgBF4, AgPF6, KPF6, NH4PF6, and
TlPF6 (entries 10−17). A maximum 35% conversion was
achieved with poor selectivity. In the absence of any additive,
only 12% conversion was achieved after 12 h (entry 18).
Reducing the catalyst loading from 5 to 3 mol % did not
amend the conversion and selectivity for the model reaction
(entry 19). Further reduction of the catalyst loading
diminished the rate of the reaction and the selectivity as
well. Decreasing the H2 pressure from 5 to 4 bar resulted in a
lower conversion of the diphenylacetylene. The reaction
temperature has a critical effect on this reaction. An abrupt
decrease in the reaction rate was observed when the reaction
was carried out at an elevated temperature (>90 °C).
Under the optimized reaction conditions (alkyne/pH2/

catalyst/AgBArF = 0.2 mmol/5 bar/3 mol %/6 mol % in 4 mL
of H2O at 80 °C), a variety of internal alkynes were subjected
to semihydrogenation catalyzed by 1, and the results are
summarized in Table 1. Diphenylacetylene and its electron-
rich derivatives 1,2-di-p-tolylethyne and 1-methoxy-4-
(phenylethynyl)benzene afforded the corresponding (E)-
alkene products in excellent yields (90−94%) and selectivity
(97:3 to 99:1, E:Z) (entries 1−3). An amino-group-substituted
internal alkyne showed a slightly lower yield of 81% (entry 4).
The semihydrogenation of 4-(phenylethynyl)benzaldehyde
gave an 88% yield with good E selectivity (93:7, E:Z) after 9
h (entry 5). Internal alkynes bearing electron-withdrawing keto
and ester groups on the para position afforded the
corresponding (E)-alkenes (86% and 82% yields, respectively,
entries 6 and 7) with good selectivity (90:10, E:Z). 4-

Scheme 2. Synthesis of 1
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(Phenylethynyl)benzonitrile gave the semireduced alkene
product with 80% yield with high selectivity (89:11, E:Z)
(entry 8). These observations clearly show that the nitrile,
ester, aldehyde, and ketones are well tolerated under the mild
reaction conditions. The poor selectivity observed for internal
alkynes having hydroxy and pyridine groups are accounted for
by its coordination to the metal center (entries 9 and 10). A
significant amount of alkane also formed in the case of pyridine
containing an internal alkyne. The hydrogenation of internal
alkynes with a carbonyl functionality directly attached to the
acetylenic carbon was also investigated. These substrates are
completely converted to their corresponding alkenes within 4 h
with high E selectivity. 4-Phenyl-3-butyn-2-one and 1,3-
diphenyl-2-propyn-1-one afforded 96% and 93% of the

corresponding (E)-alkene products, respectively (entries 11
and 12). Methyl phenylpropiolate resulted in 87% of the
corresponding (E)-alkene (entry 13). An internal alkyne
containing a trimethylsilyl (TMS) group gave acetophenone
under the reaction conditions. However, using iPrOH as
solvent, an excellent yield of 94% with high selectivity (99:1,
E:Z) was obtained after 5 h (entry 14). Internal alkynes
bearing an aliphatic group such as aryl alkyl and dialkyl
substituted acetylenes were also converted to their desired
alkene products with an excellent yield of 96% and selectivity
of 99:1 (E:Z) (entries 15 and 16).
Semihydrogenation of terminal alkynes is challenging due to

the propensity to form a stable vinylidene complex with the
catalyst.27 Bargon21 and Fürstner22 noted that the Ru-based
catalysts form the corresponding metal vinylidene complexes
and become inactive for terminal alkynes. Removal of two iodo
ligands from the metal and the presence of two carbonyls may
make the metal center sufficiently electron deficient to prevent
the formation of the metal vinylidene with terminal alkynes.
This exciting possibility for the catalyst 1 prompted us to
explore semihydrogenation of the terminal alkynes. The
reaction was performed under the optimized conditions
using iPrOH as a solvent instead of water, since terminal
alkynes give the alkyne hydration product ketones in the
presence of silver salts and water.28 The results are summarized
in Table 2. Phenylacetylene and its electron-donating
derivatives such as 4-methyl-, 3-methyl-, and 4-methoxyphe-
nylacetylene gave full conversions with an excellent selectivity
of up to 99:1 (alkene:alkane) within 2 h (entries 1−4).
Electron-withdrawing groups on the aromatic ring such as 4-
acetoxy- and 4-cyanophenylacetylene afforded 88% and 83%
yields, respectively, with 99:1 alkene:alkane ratio (entries 5 and
6). 4-Fluoro- and 2-fluorophenylacetylenes were converted to
their corresponding alkenes in 79% (96:4, alkene:alkane) and
76% yields (98:2, alkene:alkane), respectively, after 4 h (entries
7 and 8). 4-Chloro- and 4-bromophenylacetylene gave 83%
and 86% yields, respectively, with a 98:2 alkene:alkane ratio
(entries 9 and 10). 2-Ethynylnaphthalene afforded a 94% yield
of the corresponding terminal alkene (entry 11). The
heterocyclic alkyne 3-ethynylpyridine gave a 63% yield in 2 h
with an 85:15 alkene:alkane ratio (entry 12). Using
ethynylcyclohexyl as a substrate, an 89% yield was observed
in 1 h with a product ratio of alkene to over-reduced alkane of
99:1 (entry 13). The same protocol was extended for aliphatic
terminal alkynes. Long-chain aliphatic alkynes showed
excellent yields and selectivity. 4-Phenyl-1-butyne gave 4-
phenyl-1-butene in 90% yield (entry 14). Reduction of 1-
hexyne and 4-pentyn-1-ol afforded the corresponding terminal
alkenes with 85% and 82% yields, respectively, in 1 h (entries
15 and 16). Continuing the reaction for a longer time increases
the over-reduced alkane product. Semihydrogenation of alkyne
appended to a purine base gave the corresponding alkene in
92% yield (entry 17).
A comparison of the catalytic performances of a select set of

reported catalysts (Figure S4) reveals the catalytic efficacy of 1
toward the semihydrogenation of terminal alkynes.

Reaction Profile. To gain mechanistic insight, the reaction
profile was monitored using diphenylacetylene as the model
substrate (Figure 1). Initially, (Z)-stilbene is formed and
reaches a maximum (∼50%) at 110 min. Then onward it
slowly isomerizes to (E)-stilbene and is finally consumed
completely at 300 min. Although (E)-stilbene appears at the
initial stage of the reaction, its growth is improved rapidly at

Table 1. Semihydrogenation of Internal Alkynesa

aReaction conditions unless specified otherwise: alkynes (0.2 mmol),
catalyst (3 mol %), AgBArF (6 mol %), 80 °C, H2O (4 mL), 5 bar of
H2.

bIsolated yield. cDetermined by GC-MS analysis. dReaction in
iPrOH.
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around 110 min, finally reaching a maximum plateau after 300
min. The decreasing alkyne concentration leads to an increase
in the rate of alkene isomerization process. The isomerization

process is inhibited by the alkyne at a higher concentration due
to the greater affinity of diphenylacetylene for 1 in comparison
to (Z)-stilbene.

cis−trans Isomerization Study. The reaction profile
indicates that the alkyne is initially reduced to (Z)-stilbene,
which is then isomerized to (E)-stilbene under the reaction
conditions. To investigate the Z to E isomerization, a series of
controlled reactions was carried out. Under the optimized
reaction conditions, (Z)-stilbene is completely converted to
the thermodynamically stable (E)-stilbene with a trace amount
of alkane (entry 1, Table 3). However, when (E)-stilbene was

employed, no isomerization was observed (entry 2). Carrying
out a reaction with (Z)-stilbene in the absence of the catalyst
led to 40% isomerized product (entry 3). The isomerization
process did not occur when the reaction was conducted in the
absence of H2 (entry 4). It can thus be concluded that (Z)-
stilbene is a feasible kinetic intermediate that isomerizes into
the thermodynamically stable (E)-stilbene under the reaction
conditions. The cis−trans isomerization is accelerated by a H2-
derived metal hydride species that is consistent with the
observation by Mankad26a and Fout.22 Liu and Luo also
emphasized the role of ammonia−borane for the isomerization
process by a cobalt catalyst.18

Kinetic Studies. The initial rate of the reaction was
monitored (up to <10−15% conversion) to determine the
reaction order with respect to catalyst 1, alkyne (diphenyla-
cetylene), and hydrogen. To find out the order with respect to
H2 pressure, the concentrations of diphenylacetylene and
catalyst 1 were kept constant and the H2 pressure was varied
between 0 and 40 bar. The reaction rate increased with
increasing H2 pressure. A plot of ln[rate] vs ln[pH2] yielded a
linear dependence with a slope value of ∼1.0 (Figure 2a). It
reveals the first-order dependence of the reaction rate with
respect to hydrogen and thus indicates the involvement of one
molecule of hydrogen in one of the slow steps of the catalytic
cycle. With respect to the substrate, the concentration of
diphenylacetylene was varied, with H2 pressure and catalyst
concentration kept constant, which led to an increased rate of
the reaction with increasing substrate concentration. A plot of
ln[rate] vs ln[substrate] resulted in a straight line with a slope
of 0.56 (Figure 2b). To derive the order with respect to the
catalyst, its amount was varied, with the concentration of
substrate and hydrogen pressure kept constant. With
increasing catalyst concentration, the rate of the reaction also
increased. A plot of ln[rate] vs ln[catalyst] showed a straight
line with a slope value of 0.46 (Figure 2c). Hence, the
experimental rate law for the reaction is

Table 2. Semihydrogenation of Terminal Alkynesa

aReaction conditions: alkynes (0.2 mmol), catalyst (3 mol %) AgBArF

(6 mol %), 80 °C, iPrOH (4 mL), 5 bar of H2.
bIsolated yield.

cDetermined by GC-MS analysis.

Figure 1. Reaction profile for alkyne semihydrogenation.

Table 3. Alkene Isomerization Studya

entry alkene reaction conditions E:Z:alkaneb

1 (Z)-stilbene same 96:0:4
2 (E)-stilbene same 98:0:2
3 (Z)-stilbene no catalyst 40:60:0
4 (Z)-stilbene no H2 <1:99:0

aReaction conditions: alkynes (0.2 mmol), catalyst (3 mol %),
AgBArF (6 mol %), 80 °C, H2O (4 mL), 5 bar of H2.

bProduct ratio
was determined by GC-MS analysis (Figures S5−S8 in the Supporting
Information) using mesitylene as an internal standard.
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Eyring Plot. The effect of temperature on the rate of
diphenylacetylene semihydrogenation catalyzed by 1 was also
examined. An Eyring plot of ln(k/T) versus 1/T in the
temperature range 323−358 K was used to determine the
activation parameters (Figure 3). The estimated entropy of

activation (ΔS⧧) is −26.95 ± 1.88 cal mol−1 K−1, and the
enthalpy of activation (ΔH⧧) is 12.9 ± 0.64 kcal mol−1. A large
negative value of ΔS⧧ is indicative of an ordered transition
state and also supports an associative pathway for the reaction.
Hammett Plot. The initial rates of the reactions of

electronically varied para-substituted diphenylacetylene (p-
YPhCCPh; Y = OMe, Me, H, COCH3, COOCH3) with “1
+ AgBArF” were measured. The Hammett plot of log[initial
rate] vs σ (Hammett constant) resulted in a straight line with a
ρ value of −0.34 (Figure 4). A negative ρ value suggests that
the electron-donating substituents should accelerate the rate of
the reaction. However, when log[initial rate] was plotted
against standared σ+ values, linearity could not be obtained.
These observations indicate that the turnover-limiting
transition state of the reaction has partial positive charge
deployment over the entire system, which points to a
concerted mechanism.
Proposed Mechanism. Reaction profile, isomerization,

and kinetic studies suggest the initial formation of a (Z)-alkene
which subsequently isomerizes to the E isomer under the
catalytic conditions. Accordingly, a plausible mechanism is
proposed which consists of two sequential catalytic cycles
(Figure 5). The active catalyst is likely to be A, which is

derived from 1 and was characterized spectroscopically. A
solution of 1 and AgBArF in CH3CN was stirred at room
temperature for 30 min, resulting in a yellow precipitate of AgI.
The reddish solution was filtered off and then subjected to ESI-
MS analysis. A signal at m/z 250.5377 (z = 2) corresponds to
the [Ru(L1)(CO)2(CH3CN)2]

2+ unit (Figure S12). IR spectral
analysis of the same solution showed a shift in carbonyl
stretching frequencies to 2020 and 2082 cm−1 from the
corresponding values 1986 and 2062 cm−1 in 1 (Figure S13).29

This is consistent with a significant reduction in electron
density at the metal center caused by the removal of two
iodides and further augmented by two carbonyls.
In the next step, alkyne becomes bound to the metal to

generate the active catalyst B. From kinetic experiments, we
observed a half-order dependency with respect to the catalyst
that prompted us to invoke the off-cycle dimeric species C,
which is in equilibrium with the catalytically active monomer
B.30 It is pertinent to note here that alkyne-bridged binuclear
ruthenium and rhodium complexes have been proposed as
potential intermediates for the hydrogenation of alkynes to
(E)-alkenes.31,21 The proposed alkyne-bridged dimer C, prior
to the resumption of the catalytic cycle, also accounts for the
half-order dependence on alkyne. The derived rate equation
(see the Supporting Information) is consistent with the
observed rate law (eq 1). A fractional order reaction with
respect to alkyne, as discussed by Elsevier and co-workers,
suggests that the substrate is involved in an equilibrium that
precedes the rate-determining step.32 The subsequent reaction
of B with H2 leads to the formation of metal-bound
dihydrogen intermediate D.21,22 To avoid coordinative over-
saturation at the metal center by H2 oxidative addition, we
opted for a concerted oxidative hydrogen migration in species

Figure 2. Plot of ln[rate] vs ln[pH2] (a), ln[substrate] (b), and ln[catalyst] (c).

Figure 3. Eyring plot for semihydrogenation of diphenylacetylene
with catalyst 1.

Figure 4. Hammett plot for the competitive hydrogenation of
diphenylacetylene and para-substituted derivatives catalyzed by
catalyst 1.
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D to the metal-coordinated alkyne, leading to the formation of
the metal hydride intermediate E. A similar oxidative hydrogen
migration was reported for the hydrogenation of styrene with
the cationic ruthenium(II) pyridyl(benzoazole) system.33 The
development of partial positive charge on the transition state
evident from the Hammett studies and a large negative ΔS⧧
value obtained from the Eyring plot support such a concerted
oxidative hydrogen migration as the rate-determining step of
the reaction. The catalytic cycle is closed after the release of
the (Z)-alkene via reductive elimination from the Ru center,
and alkyne readily occupies the vacant site to regenerate B.
The second catalytic cycle begins with the coordination of

an H2 molecule to the metal center in F, leading to the
formation of G. A similar hydride migration to metal-bound
alkene leads to the formation of intermediate H, a Ru(IV)
species which leads to the intermediate I via carbon−carbon
bond rotation. Subsequent β-hydride elimination with
concomitant release of (E)-stilbene closes the cycle with
regeneration of the intermediate F. Similar (Z)- to (E)-alkene
isomerization has been reported by Fout24 and Beller.25 A
competitive reductive elimination of the alkane product from
intermediate I is also possible, though it is likely to be a
kinetically slower process in comparison to a β-hydride
elimination. Detailed DFT studies from the Beller group
have shown that the barrier for a competitive reductive
elimination path for alkane formation is 6 kcal mol−1 higher in
comparison to the β-hydride elimination.25 Overall, the

proposed mechanistic cycles correlate well with the exper-
imental findings.
DFT computations were carried out with the M06

functional (full computational details are provided in the
Experimental Section) to support the experimentally proposed
mechanism using dimethylacetylene as the model substrate.34

The Gibbs free energy values for all computed intermediate/
transition state (TS) structures are displayed in Figure 5, and
all optimized geometries are provided in Figures S14−S16 in
the Supporting Information. A monomeric η2-alkyne-bound
pentacoordinated Ru species, B, is used as the entry point to
the cis-hydrogenation cycle. Upon coordination of a hydrogen
molecule, B transforms into D in an endergonic reaction step.
The oxidative hydrogen migration to the alkyne moiety occurs
through TS_DE, which lies at 33.5 kcal mol−1. The reductive
elimination from E has a rather low free energy barrier, leading
to the intermediate, F. TS_EF lies only 1.4 kcal mol−1 above E.
The E to F transformation is highly exergonic and the overall
cis-hydrogenation process is thermodynamically favored by
32.0 kcal mol−1. F corresponds to (one of) the resting state(s)
of the reaction. This justifies the lag between the cis-
hydrogenation and isomerization processes, as observed during
the kinetic analysis of the reaction profile. The overall free
energy activation barrier for the cis-hydrogenation cycle
corresponds to TS_DE and it is consistent with the observed
reactivity at the experimental temperature. The subsequent
isomerization cycle begins with F as the entry point. First, an
H2 molecule coordinates to F to yield G, which converts to H

Figure 5. Proposed mechanism of alkyne semihydrogenation. Dimethylacetylene is used as the model substrate for DFT calculations. The free
energy of F is set as 0 for the isomerization cycle. Energy values are given in kcal mol−1.
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after oxidative insertion of the hydride in an endergonic
reaction step. After the rotation of the C−C bond in H, I is
formed in a marginally endergonic step. A β-hydride
elimination followed by the expulsion of the H2 returns back
F for resumption of the catalytic cycle. The β-hydride
elimination proceeds with a low energy barrier with TS_βhe
lying only 1.2 kcal mol−1 above I. Overall, our computational
results are in line with the experimental observations.

■ CONCLUSIONS

An annelated chelate MIC and two cis carbonyls at the Ru sets
up a platform for alkyne semihydrogenation and subsequent Z
→ E isomerization. The catalytic system 1/BArF displays broad
substrate scope and excellent functional group tolerance to
afford (E)-alkenes from internal alkynes and molecular
hydrogen in water. The catalyst is further distinguished by
its ability to semihydrogenate terminal alkynes to the
corresponding alkenes in isopropyl alcohol. Reaction profile
and isomerization studies confirm the initial formation of (Z)-
alkenes and subsequent metal-catalyzed isomerization to the E
products. A two-cycle mechanism, a reduction cycle and an
isomerization cycle, is proposed on the basis of experimental
results and also supported by DFT calculations. This work
further underlines the general utility of the annelated π-
conjugated carbene ligand for hydrogenation chemistry.

■ EXPERIMENTAL SECTION
General Procedures. All reactions with metal complexes were

carried out under an atmosphere of purified nitrogen using standard
Schlenk-vessel and vacuum-line techniques. Glassware was flame-
dried under vacuum prior to use. 1H NMR spectra were obtained on
JEOL JNM-LA 400 and 500 MHz spectrometers. 1H NMR chemical
shifts were referenced to the residual hydrogen signal of the
deuterated solvents. The chemical shift is given as a dimensionless
δ value and is frequency-referenced relative to TMS for 1H and 13C
NMR spectroscopy. GC-MS experiments were performed on an
Agilent 7890A GC and 5975C MS system. Hydrogenation reactions
were performed at constant pressures using a stainless steel 25 mL
Parr hydrogenation reactor. ESI-MS measurements were recorded on
a Waters Micromass Quattro Micro triple-quadrupole mass
spectrometer. Infrared spectra were recorded on a Bruker Vertex 70
FTIR spectrophotometer in the range 400−4000 cm−1. Elemental
analyses were performed on a Thermoquest EA1110CHNS/O
analyzer. The crystallized compound was washed several times with
dry diethyl ether, powdered, and dried under vacuum for at least 48 h
prior to elemental analyses. TLC analyses were performed on
commercial TLC paper, and silica gel (100−200 mesh) was used for
column chromatography.
Materials. Solvents were dried by conventional methods, distilled

under nitrogen, and deoxygenated prior to use. RuCl3·xH2O was
purchased from Arora Matthey, India. All other chemicals were
purchased f rom Sigma−Aldr ich . The l igand [L1I] I , 9

[Ru2(CH3CN)6(CO)4][BF4]2,
35 and AgBArF36 were prepared

according to literature procedures.
Synthesis and Characterization of 1. The synthesis of complex

1 were reported previously by us.9 A dichloromethane solution (10
mL) of [L1I]I (56 mg, 0.11 mmol) was added dropwise to a
dichloromethane solution (15 mL) of [Ru2(CO)4(CH3CN)6][BF4]2
(40 mg, 0.054 mmol), and the solution was stirred for 12 h at room
temperature. A bright yellow solution appears during the reaction.
After completion of the reaction dichloromethane was evaporated and
the residue was washed with diethyl ether and dried under vacuum. X-
ray-quality crystals were grown again, and the cell parameters match
those of the earlier report. Yield: 52 mg (82%). 1H NMR (500 MHz,
CD3CN, 294 K): δ 9.01 (d, J = 4.6 Hz, 1H), 8.54 (d, J = 8 Hz, 1H),
8.11 (s, 1H), 7.93 (s, 1H), 7.87 (m, 1H), 7.59 (m, 3H), 7.49 (d, J =

6.9 Hz, 2H), 3.39 (s, 3H), 13C NMR (125 MHz, CD3CN, 294 K):
195.3, 187.4, 178.5, 150.1, 142.9, 140.1 138.8, 136.2, 135.3, 133.3,
130.1, 129.8, 129, 125.9, 124.9, 124.7, 118.9, 29.4. Anal. Calcd for
(C19H15I2N3O2Ru)(CH3CN)0.5: C, 34.61; H, 2.39; N, 7.07. Found:
C, 33.49; H, 2.28; N, 7.26. ESI-MS, m/z: 543.9171 [RuL1(CO)2I]

+.
General Procedure for the Semihydrogenation of Internal

Alkynes. A cleaned and predried autoclave was charged with the
calculated amount of alkyne derivative (0.2 mmol), catalyst (0.006
mmol), and AgBArF (0.012 mmol) in 4 mL of deionized water. The
autoclave was then pressurized with H2 (5 bar), and the mixture was
stirred at 80 °C. After 2−9 h, the autoclave was cooled and the
hydrogen pressure was released carefully. The reaction mixture was
extracted with EtOAc (5 mL), and the extract was passed through a
short column of silica gel and subjected to GC-MS analysis. To
characterize the alkene via NMR spectroscopy, after completion, the
reaction mixture was extracted with EtOAc (3 × 10 mL). The
combined extracts were dried over Na2SO4 and concentrated under
vacuum, and the residue was purified by column chromatography
using silica gel (hexane/EtOAc 10/0 → 9/1) to afford the alkene.

General Procedure for the Semihydrogenation of Terminal
Alkynes. An identical procedure was followed for the semi-
hydrogenation of terminal alkynes, using the calculated amount of
alkyne derivative (0.2 mmol), catalyst (0.006 mmol), and AgBArF

(0.012 mmol) in 4 mL of iPrOH. After 1−4 h, the reaction mixture
was diluted with EtOAc (5 mL), passed through a short column of
silica gel, and subjected to GC-MS analysis. To characterize the
alkene via NMR spectroscopy, after completion, the reaction mixture
was dried under vacuum and the residue was purified by column
chromatography using silica gel (hexane/EtOAc 10/0 → 9/1).

General Procedure to Obtain Reaction Profile. A cleaned and
predried autoclave was charged with the calculated amount of
diphenylacetylene (0.1 mmol), catalyst (0.003 mmol), AgBArF (0.006
mmol), and mesitylene (0.1 mmol) in 2 mL of deionized water. The
autoclave was then pressurized with H2 (5 bar) and the mixture was
stirred at 80 °C. After 5 min, the autoclave was cooled and the
hydrogen pressure was released carefully. The reaction mixture was
extracted with EtOAc (5 mL), passed through a short column of silica
gel, and subjected to GC-MS analysis. The same methodology was
repeated to find out the conversion at different time intervals.

General Procedure for Alkene Isomerization Study. A
cleaned and predried autoclave was charged with the calculated
amount of cis or trans-stilbene (0.1 mmol), catalyst (0.003 mmol),
AgBArF (0.006 mmol), and mesitylene (0.1 mmol), in 2 mL deionized
water. The autoclave was then pressurized with H2 (5 bar), and the
mixture was stirred at 80 °C. After 7 h, the autoclave was cooled and
the hydrogen pressure was released carefully. The reaction mixture
was extracted with EtOAc (5 mL), and the extract was passed through
a short column of silica gel and subjected to GC-MS analysis.

Computational Details. All molecular geometries were fully
optimized in water (in accordance with the experiments) with the
M0634 functional using the 6-31+g(d,p) basis set for lighter atoms
and the LANL2DZ basis set along with the corresponding
pseudopotential for the Ru atom. Solvent effects (water) were
considered within the framework of the SMD model by Truhlar and
Cramer.37 All geometry optimizations were followed by a harmonic
vibrational analysis to characterize the nature of the stationary points:
transition states (one imaginary frequency) or minima (no imaginary
frequencies). Intrinsic reaction coordinate (IRC) calculations were
performed to verify the transition states. The computed enthalpies
and Gibbs free energy values include zero-point energy and thermal
corrections at 353.15 K and 1 atm pressure. The thermochemical
corrections were obtained within the quasi-harmonic approximation
by Cramer and Truhlar, in which all vibrational frequencies below 100
cm−1 were raised to 100 cm−1.38 All Gibbs free energy data reported
in the manuscript were computed at the SMD(water)/M06/{6-
31+G(d,p)+(LANL2DZ+ECP)} level of theory. All calculations were
performed using the Gaussian 16 suite of programs.39
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Fernańdez, R.; Brown, J. M.; Lassaletta, J. M. Imidazo[1,5-a]pyridine:
A Versatile Architecture for Stable N-Heterocyclic Carbenes. J. Am.
Chem. Soc. 2005, 127, 3290−3291. (d) Song, G.; Zhang, Y.; Li, X.
Rhodium and Iridium Complexes of Abnormal N-Heterocyclic
Carbenes Derived from Imidazo[1,2-a]pyridine. Organometallics
2008, 27, 1936−1943. (e) Saravanakumar, S.; Oprea, A. I.;
Kindermann, M. K.; Jones, P. G.; Heinicke, J. Anellated N-
Heterocyclic Carbenes: 1,3-Dineopentylnaphtho[2,3-d]imidazol-2-
ylidene: Synthesis, KOH Addition Product, Transition Metal
Complexes, and Anellation Effects. Chem. - Eur. J. 2006, 12, 3143−
3154.
(8) Selected examples: (a) Kriechbaum, M.; List, M.; Berger, R. J. F.;
Patzschke, M.; Monkowius, U. Silver and Gold Complexes with a
New 1,10-Phenanthroline Analogue N-Heterocyclic Carbene: A
Combined Structural, Theoretical, and Photophysical Study. Chem. -
Eur. J. 2012, 18, 5506−5509. (b) Phukan, A. K.; Guha, A. K.; Sarmah,
S.; Dewhurst, R. D. Electronic and Ligand Properties of Annelated
Normal and Abnormal (Mesoionic) N Heterocyclic Carbenes: A
Theoretical Study. J. Org. Chem. 2013, 78, 11032−11039. (c) Sand-
erson, M. D.; Kamplain, J. W.; Bielawski, C. W. Quinone-Annulated
N-Heterocyclic Carbene-Transition-Metal Complexes: Observation
of π-Backbonding Using FT-IR Spectroscopy and Cyclic Voltamme-
try. J. Am. Chem. Soc. 2006, 128, 16514−16515. (d) Suresh, C. H.;
Ajitha, M. J. DFT Prediction of Multitopic N Heterocyclic Carbenes
Using Clar’s Aromatic Sextet Theory. J. Org. Chem. 2013, 78, 3918−
3924.
(9) Saha, S.; Daw, P.; Bera, J. K. Oxidative Route to Abnormal NHC
Compounds from Singly-Bonded [M-M] (M = Ru, Rh, Pd)
Precursors. Organometallics 2015, 34, 5509−5512.
(10) For semihydrogenation of alkynes, see the following references
and literature cited therein: (a) De Vries, J. G.; Elsevier, C. J.
Handbook of Homogeneous Hydrogenation; Wiley-VCH: Weinheim,
Germany, 2007. (b) Blaser, H.-U.; Schnyder, A.; Steiner, H.; Rössler,
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