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Abstract" Photoactivatable analogs of the human thrombin receptor (PAR-l) antagonist, N-trans-cinnamoyl-p- 
fluoroPhe-p-guanidinoPhe-Leu-Arg-NH2 (BMS-197525), were prepared with benzophenone substitutions in the 
N-terminal, Leu, or Arg position. The analogs retained antagonist activity (with reduced potency); the tritium- 
labeled isotopomers are potential photoaffinity labels for the receptor. C-Terminal extension of the analogs with 
omithine(biotin) did not significantly alter antagonist potency. © 1999 Elsevier Science Ltd. All rights reserved. 

a-Thrombin is a multifunctional serine protease intimately involved in regulating clotting processes, 

wound healing, and inflammatory responses. It exerts many of its cellular effects by proteolytically activating the 

tethered-ligand of the 7-transmembrane segment G protein-coupled thrombin receptor (PAR-I).1 Thrombin 

receptor activating peptides (TRAP) with sequences derived from the tethered-ligand can activate the receptor 

independent of thrombin; the minimum peptide sequence that functions as an agonist is SFLLR-NH2 .2 The 

identification of a single receptor responsible for many of the events that are initiated by thrombin has stimulated 

extensive ligand structure-activity relationship (SAR) studies aimed at generating therapeutically useful 

antagonists. Recently, a potent antagonist of the PAR-1 receptor, N-trans-cinnamoyl-p-fluoroPhe-p- 

guanidinoPhe-Leu-Arg-NH2 (BMS-197525), was discovered) It bound to the receptor with high affinity (Kd = 

8 nM) and inhibited SFLLRNP-NH2-induced platelet aggregation (ICs0 = ca. 0.20/aM). 

In general, to develop a potent receptor antagonist, it is useful to obtain information about the receptor 

amino acid to define the ligand binding site. This is routinely performed by site-directed mutations of residues 

that are postulated to influence ligand-receptor interactions. Photoaffinity labeling experiments also provide the 

opportunity to directly identify receptor residues that contact the ligand. 4 In these studies, a photoactivatable 

crosslinking moiety is introduced into the ligand and the resulting compound is used to covalently label the 

receptor. Purification of the photoadduct and subsequent biochemical and chemical processing can reveal the 

receptor fragment or even individual residues that are in the vicinity of the photoactivatable region of the ligand. 

The benzophenone photophore (BP) is commonly employed in the preparation of peptide-based photoaffinity 

labels because of its chemical stability and high crosslinking efficiency with low photoreactivity towards water. 4~ 

It is also commercially available as a protected amino acid or as a side chain reactive conjugating reagent. 4c,5 

PAR- 1 photoaffinity labels based on the native SFLLRN-NH2 agonist peptide have been prepared in our 

laboratory (manuscript in preparation) and by other researchers. 6 Although the photoactivatable analogs have 
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been shown to be biologically active, clear photolabeling of  PAR-1 in cellular membranes  has yet to be 

demonstrated. These results are likely to be due to the modest  affinity of the native TRAP sequence (ca. 100 

nM) 7 and to reduction in affinity arising from the photophore substitutions. To prepare photolabels with higher 

binding affinity, we developed a series of photoactivatable peptides based on the high affinity PAR- 1 antagonist, 

BMS-197525 (Table 1). One analog was prepared by substituting the BP, p - b e n z o y l d i h y d r o c i n n a m i d e  

(BZDC) 5a, into the N-terminal position of the antagonist. Additional peptides were prepared by substituting 

p-benzoylphenylalanine (Bpa) 5b for the Leu or Arg residue. In Table 1, photoactivatable R groups are indicated 

by boldface type. The SAR generated during BMS-197525 development indicated that substitutions at the 

p-fluoroPhe or p-guanidinoPhe position would significantly reduce potency)  

In addition to the crosslinker modifications, some of the peptides were prepared with a C-terminal 

ornithine to investigate different reporter groups that could be used to experimentally identify the ligand-receptor 

photoadducts.  The ornithine was modified with three amine-reactive reagents: (1) propionate-N-hydroxy- 

succinimide (NHS) ester, a non-radioactive analog of the commercially available [3H]propionate-NHS ester, 

(2) biotin-NHS ester, which can be used with sensitive avidin-based detection methods,  and (3) 4-chloro- 

7-nitrobenzo-2-oxa-1,3-diazole (NBD-C1), a structurally compact fluorophore. The use of these reporter groups 

can facilitate detection and analysis procedures in photolabeling experiments. 8 Each of the photoactivatable 

Table  1. Physical characterization and biological activity of photoactivatable thrombin receptor antagonists, a 

F 

RI~ R/R3 

0 

H NH 2 

ID No. 
HPLC b MALDI-MS IC50 (~tM)C 

R ~ R2 R3 R4 ( m i n )  (expected, Da) 
1 TC Leu Arg 27.4 788.0 (787.7) 0.3 + 0.1 d 
2 Leu Arg 18.2 656.5 (655.8) 
3 BZDC Leu Arg 29.7 891.1 (891.8) 3.1 + 0.3 
4 TC Bpa Arg 30.5 926.8 (926.6) 6 +- 1 
5 TC Leu Bpa 34.8 882.3 (883.3) 13 + 2 
6 TC Bpa Arg Om 28.5 1039.5 (1039.0) 
6 P TC Bpa Arg Orn(propionyl) 30.4 1096.6 (1094.2) 3.1 + 0.3 
6B TC Bpa Arg Orn(biotin) 30.0 1265.8 (1269.1) 3.4 + 0.3 
6N TC Bpa Arg Om(NBD) 32.5 1202.6 (1204.8) -90 
7 TC Leu Bpa Om 32.1 995.5 (995.5) 
7P TC Leu Bpa Orn(propionyl) 34.5 1052.6 (1051.6) 9 + } 
7B TC Leu Bpa Orn(biotinyl) 33.7 1221.8 (1226.6) 9.7 + 0.9 
7 N TC Leu Bpa Orn(NBD) 37.0 1158.6 (1159.7) NA@ 110 

aChemica} abbreviations are TC = trans-cinnamoyl, BZDC = benzoyldihydrocinnamoyl, Bpa = L-4-benzoylphenylalanine and NBD = 
7-nitrobenzo-2-oxa-l,3-diazole. The structures of the benzophenone and C-terminal compounds are shown in Table 2. All peptides are 
C-terminal carboxamides, bSemi-analytical HPLC conditions. 12 CConcentration required for 50% inhibition of platelet aggregation induced 

13 with SFLLRN-NH 2 (2.7 BM). - The values are an average of three separate experiments with a single platelet-rich plasma sample. The order 
d of potency was reproducible in platelets from four separate donors. Reported value is ca. 0.20 BM. - NA = not active. 
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antagonists was evaluated in a platelet aggregation assay to determine the effect of the alterations on biological 

activity. 

Peptide Synthesis. All peptides were synthesized manually using FMOC protection chemistry and a E.I. 

du Pont RaMPs ® multiple peptide synthesis system. 9 Each cartridge contained 200 mg of E.I. du Pont 

RapidAmide ® resin (ca. 0.5 mequiv amine per g of resin) for synthesizing 0.1 mmol of peptide. Deprotection 

and l-hydroxybenzotriazole/diisopropylcarbodiimide-based coupling were performed as described by the 

manufacturer. All coupling cycles utilized 2.5 equiv of FMOC-amino acid except trans-cinnamic acid, which was 

performed with 10 equiv. Synthesis of an FMOC version of p-(N,N'-bis-Boc-guanidino)Phe was required for 

peptide construction. 1° After the last coupling cycle, the peptides were deprotected and cleaved from the resin by 

adding TFA containing 5% thioanisole, 5% H20 and 7.5% (w/v) crystalline phenolJ 1 After 24 h at rt, the resin 

was removed by filtration through glass wool, and the peptides were isolated as described to give white powdered 

TFA salts (>95% pure) after HPLC purification. 12 Sequence details, HPLC retention times and MALDI-MS data 

for all of the peptides are shown in Table 1. The structural details of the crosslinkers are shown in Table 2. 

Post-synthetic modifications were used to generate some of the photoaffinity labelsJ 3 Peptide acylations 

were performed using NHS esters. Thus, peptide 2 (5 mg), BZDC-NHS (1 equiv) and triethylamine (TEA) 

(15 equiv) were dissolved in DMF (400 ~tL) and kept overnight at rt. The product (3) was purified on a semi- 

analytical C-8 column. 12 Acylation of peptides 2, 6, and 7 (Table 1) with 1.0 equiv of the respective NHS ester 

resulted in the desired modification in greater than 80% yield. The addition of more acylating reagent resulted in 

overacylation, presumably at p-guanidinoPhe. The NBD modification of peptides 6 and 7 was performed by 

first dissolving NBD-CI (10 mg, 50 ~tmol) in MeOH (400 ~tL) containing TEA (1 equiv). The NBD-C1/TEA 

solution (2 equiv) was added to peptide 6 or 7 (5 mg) in DMF (200 ~L). The reaction vials were vortexed, 

covered in foil, and kept at rt for 24 h. NBD-C1 did not appear to react with the p-guanidinoPhe amino groups 

under the reported conditions (data not shown); the fluorescent peptides were recovered in 30% chromatographic 

Table 2. Structural features of the photoactivatable thrombin receptor antagonists, a 

Cross-Linker Groups C-Terminal Reporter Groups 

benzoyldihydrocinnamoyl L-benzoylphenylalanine Orn(propionyl) Orn(biotin) Orn(NBD) 
(BZDC) (Bpa) 

H 0 H 0 H 0 0 

HN NH 0 ~ N H  

(X-JH'aH) N)~: 

H 

aRefer to Table 1 for the location within peptide sequences. 
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yield. HPLC retention times and MALDI-MS data for the modified peptides are shown in Table 1. The purity of 

these peptides was greater than 95% except for those derived from peptide 7. These peptides were approximately 

85% pure; the major contaminants were deterrmned to be unreacted peptide and the his-acylated peptide. 

Biological Results and Discussion. The PAR-1 antagonist photoaffinity analogs were tested for 

their ability to inhibit SFLLRN-NH2-induced platelet aggregation. 14 The apparent ICs0 values of the antagonists 

differed by less than twofold between platelets from different donors, and the order of potency was reproducible 

in platelets from four donors. The ICs0 values from one platelet donor are shown in Table 1. BMS-197525 (1) 

was a potent antagonist of SFLLRN-NHz-induced platelet aggregation with an IC50 of 0.3 _+ 0.1 p.M. This is in 

agreement with the previously reported value of 0.20 + 0.07 p.M. 3 The BZDC substitution at the N-terminal 

position (3) resulted in a tenfold loss in activity. This result is consistent with the existing SAR data showing that 

bulky aryl groups at the N-terminal position reduce potency. 3 Bpa substitutions at the Leu or Arg position (4, 5) 

resulted in a 20- and 60-fold loss in potency, respectively. These effects are similar to those that were observed 

for the corresponding substitutions in the PAR-I agonist, SFLLRN-NH2 (manuscript in preparation). If the 

relative potencies of tetrapeptide antagonists, 1, 3, 4, and 5, are considered to be proportional to their binding 

affinity, it would suggest that they bind with Kd values of 80 nM or less. Substitution was best tolerated at the 

N-terminal position. This analog is of particular interest because it could be used to identify the receptor residues 

that interact with the key N-terminal group of the antagonist. It has been suggested that these residues are 

important for determining the extent of agonist or antagonist activity of a PAR- 1 ligand. 3 In addition, a tritiated 

version of this peptide can be easily prepared with [3H]BZDC-NHS ester. 5a,15 Photolabeling experiments 

utilizing this label are currently in progress. 

C-Terminal modification of the Bpa-containing analogs with ornithine followed by acylation with 

propionate-NHS ester (6P, 7P) increased antagonist potency 1.4- to 2-fold as shown in Table 1. This is in 

agreement with SAR studies that showed that C-terminal extension of BMS-197525 (1) with Orn(propionyl) 

results in 2.2-fold increase in antagonist potency 3 and indicates that tritium can be introduced into the 

Bpa-containing antagonists with [3H]propionate-NHS ester. Peptides 6 and 7 acylated with biotin-NHS (6B, 

7B) also demonstrated an increase in antagonist potency (Table 1) despite the size of the biotin group (Table 2). 

Apparently, the ligand binding site can accommodate the biotin modification without steric interference. This 

observation suggests a number of other reporter groups (i.e., fluorophores, 125I/tyrosine, photocrosslinkers) 

could be coupled to the antagonist if they can be tethered by at least a four-carbon linker. The biotin modification 

is desirable since it can be used with sensitive avidin-based detection techniques. Preliminary photoaffinity 

labeling studies were attempted with biotinylated analogs, 6B and 7B, and a streptavidin-alkaline phosphatase 

detection method. 8c We were not been able to identify a competitively labeled protein in whole platelet or 

CHRF-288 (megakaryoblastic cell type) cells, but new experimental methods are now being explored. The 

fluorescent NBD modification (6N, 7N) was not well-tolerated at the C-terminus as indicated by the greater than 

15-fold loss in activity (Table 1). This suggests the ligand binding site does not tolerate aromatic groups on the 

C-terminal ornithine side chain. The photoactivatable peptides did not inhibit irreversible induction of platelet 

aggregation induce by ADP (100 p.M), precluding involvement of this alternate platelet aggregation mechanism. 

The results described in this report outline the successful synthesis of a series of photoactivatable TR 

antagonists that contain BP photocrosslinkers and experimentally useful reporter groups. Further studies with 
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these peptides may elucidate the regions of the TR that are involved in ligand recognition and ultimately aid in the 

development of therapeutically useful TR antagonists. 
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