TABLE 1. Isotopic Composition of the Methane Obtained in the Reactions $(\mathrm{t}-\mathrm{BuO})_{2} \mathrm{VMe}_{2}+\mathrm{D}_{2} \mathrm{O},(\mathrm{t}-\mathrm{BuO})_{2} \mathrm{~V}\left(\mathrm{CD}_{3}\right)_{2}+\mathrm{D}_{2} \mathrm{O}$

Reaction	$\mathrm{D}_{2} \mathrm{O} /(\mathrm{I})$	$\mathrm{CH}_{4} /(\mathrm{I})$	$\mathrm{CH}_{3} \mathrm{D} /(\mathrm{I})$	Reaction	$\mathrm{D}_{2} \mathrm{O} /(\mathrm{II})$	$\mathrm{CD}_{3} \mathrm{H} /(\mathrm{II})$	$\mathrm{CD}_{4} /(\mathrm{II})$
$(\mathrm{I})+\mathrm{D}_{2} \mathrm{O}$	0,05	0,143	0,008	$(\mathrm{II})+\mathrm{D}_{2} \mathrm{O}$	0,05	0,16	0,007
	0,18	0,06	0,002		0,25	0,08	0,002
	0,45	0,28	0,03		1,7	0,91	0,6
	1,72	0,9	0,63		3,2	0,8	0,7

The solubility of water in heptane was found to be $3.7 \cdot 10^{-6} \mathrm{~mole} / \mathrm{ml}$. The amount of methane evolved in the reaction was measured chromatographically using a circulatory vacuum apparatus connected to an LKhM-8MD chromatograph (Porapak T column). To determine the isotopic composition of the methane, it was drawn off from the reaction vessel cooled in liquid nitrogen into an ampul, and analyzed in an MI-1305 spectrometer.

CONCLUSIONS

1. Reaction of ($\mathrm{t}-\mathrm{BuO})_{2} \mathrm{VMe}_{2}$ with water occurs by both homolytic and hydrolytic fission of the $\mathrm{V}-\mathrm{C}$ bond.
2. At low concentrations, water functions as a catalyst for the decomposition of $(\mathrm{t}-\mathrm{BuO})_{2} \mathrm{VMe}_{2}$.

LITERATURE CITED

1. L. F. Borisova, É. A. Fushman, A. N. Chchupik, E. I. Vizen, L. N. Sosnovskaya, and S. S. Lalyan, Vysokomol. Soedin., 23A, 1984 (1981).
2. L. A. Volkov, B. G. Gerasimov, G. B. Sakharovskaya, and S. S. Medvedev, Vysokomol. Soedin, 15B, 455(1973).
3. S. P. Gubin, N. A. Vol'kenau, L. G. Makarova, and L. P. Yur'eva, Methods in Heteroorganic Chemistry [in Russian], Nauka, Moscow (1976), p. 271.
4. G. A. Razuvaev, V. N. Latyaeva, V. V. Drobotenko, A. N. Linyova, L. I. Vishinskaya, and V. K. Cherkasov, J. Organometal. Chem., 131, 43 (1977).
5. A. Weisberger, E. Proskauer, G. Riddick, and E. Toops, Organic Solvents [Russiantranslation], Inostr . Lit. , Moscow (1958).

REACTIONS OF ORGANOMETALLIC COMPOUNDS CATALYZED

BY COMPLEXES OF TRANSITION METALS

COMMUNICATION 5. ORGA NOMAGNESIUM, -ZINC, -CADMIUM, AND -ALUMINUM
COMPOUNDS IN ALLYLDEMETALLATION REACTIONS CATALYZED BY

PALLADIUM COMPLEXES

N. A. Bumagin, A. N. Kasatkin,

UDC 542.97:547.1'13 and I. P. Beletskaya

The allylic alkylation of stable carbanions of type (I) catalyzed by palladium complexes is well known [1, 2].

The application of organotin compounds in reactions (I), which open new vistas for the synthesis of various allylated products, was brought about for the first time in the example of allyl-and enolstannanes in [3, 4] and extended to various aryl, vinyl, and allyl derivatives of tin including stannylated ketones and esters in [5].

[^0]TABLE 1. Reactions of Organometallic Compounds PhM with $\mathrm{CH}_{2}=$ $\mathrm{CHCH}_{2} \mathrm{X}$ Catalyzed by $\mathrm{Pd}_{\left(\mathrm{PPh}_{3}\right)_{4}}(5 \mathrm{~mole} \%)\left(\mathrm{THF}, 20^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{RM}}=\right.$ $\mathrm{C}_{\left.\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{X}=0.21 \mathrm{~mole} / \text { Iiter }\right) ~}^{\text {(}}$

Number according to time	PhM	X	Time, h	Ph ハV	Ph_{2}
				\%	
1	PhMgBr	$\stackrel{\mathrm{Br}}{ }{ }_{\text {¢Ph }}$	$15 \min _{1,5}$	$\begin{aligned} & 96 \\ & 39 \end{aligned}$	0 60
3		$\stackrel{+}{\mathrm{NE}} \mathrm{t}_{3}$	1.5	11	84
4	PhZnCl	Br	3,5	100	0
5		OAC	5	100	0
6		OPh	8	98	0
7		$\stackrel{+}{\mathrm{NE}^{+}{ }_{3}}$	4	69	25
8	PhCdBr	Br	12	71	24
9		OAc	16	50	46
10		OPh	20	34	60
		$\stackrel{+}{\mathrm{NEt}}{ }_{3}$		12	85
12	$\mathrm{PhAlCl}_{2} \dagger$	Br	20	Traces	Traces
13		OAc	20	0	"
14		OPh	20	0	"
15	$\mathrm{Ph}_{2} \mathrm{AlCl}+$	Br	20	37)

* In the absence of catalyst 23% allylbenzene was formed after 3 h .
\dagger Reactions were carried out in ether.

$$
\begin{equation*}
\mathrm{RSnMe}_{3}+/ \mathbb{O A c} \xrightarrow[\mathrm{HMPA}, 20^{\circ}]{\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4} \text { s mole } \%} \mathrm{R} / / /+\mathrm{Me}_{3} \operatorname{snOAc} \tag{2}
\end{equation*}
$$

More reactive organometallic compounds were introduced in cross combination with $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{X}$. These were mainly alkenyl derivatives of aluminum and zirconium [6, 7].

$$
\begin{equation*}
\mathrm{M}=\mathrm{AlMe}_{2}, \mathrm{Z}_{\mathrm{r}} \mathrm{Cp}_{2} \mathrm{Cl} ; \mathrm{X}=\mathrm{OAc}, \mathrm{Br} \tag{3}
\end{equation*}
$$

It was suggested in [1] that the intermediate in catalytic processes (1)-(3) was the cationic π-allylpalladium complex $\left[\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+} \mathrm{X}^{-}$which forms the allyldemetallation product on interaction with the organometallic compound RM.

$$
\begin{equation*}
\left[\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+} \mathrm{X}-+\mathrm{RM} \rightarrow \mathrm{R} \wedge / 4+\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2}+\mathrm{MX} \tag{4}
\end{equation*}
$$

Moreover, the data available in the literature do not permit an answer to the problem how the nature of the metal in RM influences the process of reaction (5) since in the studied reactions of various metal derivatives the nature of the organic radical R, the leaving group X, the palladium catalyst, and also the conditions of carrying out the reaction (solvent, temperature) differ appreciably from one to another.

$$
\begin{equation*}
\mathrm{RM}+\nsim / \mathrm{X} \xrightarrow{* \mathrm{Pd}} \mathrm{R} / / \mathscr{}+\mathrm{MX} \tag{5}
\end{equation*}
$$

In the present work we have studied the influence of the nature of M, R, and X on the rate of reaction (5) and on the yield of allyldemetallation product.

With the aim of varying the nature of the metal the reaction was carried out with $\mathrm{PhMgBr}, \mathrm{PhZnCl}$, PhCdBr , and PhAlCl_{2}, and $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{X}\left(\mathrm{X}=\mathrm{Br}, \mathrm{OAc}, \mathrm{OPh},{ }^{+} \mathrm{NEt}_{3}\right.$) in tetrahydrofuran (THF) at $\sim 20^{\circ} \mathrm{C}$ in the presence of 5 mole\% $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ (Table 1).

$$
\begin{align*}
& \mathrm{PhM}+\mathscr{A} / \mathrm{X} \frac{\mathrm{Pd}\left(\mathrm{PPh}_{)_{2}, 5} \text { mole } \%\right.}{\mathrm{THF},{ }^{20^{\circ}}} \xrightarrow{\longrightarrow} \mathrm{Ph} / / /+\mathrm{Ph}_{2}+\mathrm{MX} \\
& \mathrm{MgEr}, \mathrm{ZnCl}, \mathrm{CdBr}, \mathrm{AlCl}_{2} ; \mathrm{X}=\mathrm{Br}, \mathrm{OAc}, \mathrm{OPh},+\mathrm{NEt}_{3} \tag{6}
\end{align*}
$$

As follows from the data of Table 1 the reactivity of organometallic compounds decreases in the following series in reactions with ally bromide : $\mathrm{PhMgBr} *>\mathrm{PhZnCl}>\mathrm{PhCdBr} \gg \mathrm{PhAlCl}_{2}$. Thus, PhMgBr and PhZnCl

[^1]TABLE 2. Variation of the Nature of the Palladium Catalyst in Reactions of Organometallic Compounds PhM with Allyl Bromide (THF, $20^{\circ} \mathrm{C}, 5$ mole $\%$ catalyst, $\mathrm{C}_{\mathrm{RM}}=\mathrm{C}_{\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{Br}}=0.21 \mathrm{~mole} /$ liter $)$

Number according to time	PhM	Catalyst	Time, h	Ph / $/$ \%	Ph_{2}, \%
	PhMgBr				
2		$\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$	15 min	63 20	35
3	PhZnCl	$\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{PdCl}\right)_{2}$ $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	15 min	20 100	$\begin{array}{r} 74 \\ 0 \end{array}$
5	PhZnCl	$\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{PdCl}\right)_{2}$	$3{ }^{3}$	55.	40
6	PhAlCl_{2} *	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}{ }^{\text {a }}$	20	Traces	Traces
7		$\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{PdCl}\right)_{2}$	8	94	Traces

* Reactions were carried out in ether.
react with $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{Br}$ forming allylbenzene in quantitative yield after 15 min and 3.5 h respectively but in the reaction with $\mathrm{PhCdBr} 24 \%$ diphenyl was obtained together with allylbenzene (71%). $\mathrm{Ph}_{2} \mathrm{AlCl}$ proved to be significantly more reactive than PhAlCl_{2}. The latter generally did not react with allyl bromide after 20 h and in the reaction of $\mathrm{Ph}_{2} \mathrm{AlCl}$ with $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{Br}$ the yield of allylbenzene was 37% after 20 h .

On going over from allyl bromide to allyl acetate, allylphenyl ether, and triethylallylammonium chloride an increase was observed in the amount of Ph_{2} formed. Thus, in the reaction of PhCdBr with $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{Br}$ 24% diphenyl was formed and in reaction with $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{OAc}, \mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{OPh}$, and $\left(\mathrm{Et}_{3} \mathrm{NCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right) \mathrm{Cl}$ the yield of Ph_{2} was 46,60 , and 85% respectively. A possible explanation is that the three latter compounds were less reactive than allyl bromide in the oxidative addition to $\operatorname{Pd}(0)$ which is one stage of the catalytic cycle [1]. This leads to an increase in the contribution of the side reaction leading to the formation of Ph_{2} (reaction 7).

The reason for the formation of diphenyl in reaction (6) is evidently "dimerization" of the organometallic compound which, as in the cross combination is catalyzed by $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$.

Independently it was established by experiment that is reality PhMgBr underwent "dimerization" in the presence of 5 mole $\% \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ in THF at $\sim 20^{\circ} \mathrm{C}$. After 5 h the yield of Ph_{2} was 52%. It was shown by us previously in [8] that this process also occurred in the case of the organotin compound $\mathrm{RSnMe}_{3}(\mathrm{R}=\mathrm{Ph}, \mathrm{PhC} \equiv \mathrm{C}$, $2-\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~S}$) in hexamethylphosphoramide (HMPA).

Replacement of $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{Br}$ by cinnamyl bromide in the reaction with PhMgBr catalyzed by $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ also led to the formation of a 22% yield of Ph_{2} in addition to the cross combination product 1 , 3 -diphenylpropene (77\%).

In reactions with allyl acetate (see Table 1, No. 5, 9), allylphenyl ether (No. 2, 6, 10) and triethylallylpalladium chloride (No. $3,7,11$), PhZnCl proved to be less inclined to the formation of Ph_{2} in comparison with PhMgBr and PhCdBr . This fact makes it preferable to use zinc derivatives in the case of $\mathrm{X}=\mathrm{OAc}$, OPh , and ${ }^{+} \mathrm{NEt}_{3}$.

Data on the variation of the nature of the palladium catalyst in the reactions of $\mathrm{PhMgBr}, \mathrm{PhZnCl}$, and PhAlCl_{2} with allyl bromide (THF, $20^{\circ} \mathrm{C}$) are shown in Table 2. On going from $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ (see Table 2, No. 1) to $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ (No. 2) and to $\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{PdCl}\right)_{2}$ (No. 3) in the reaction of PhMgBr with $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{Br}$ the yield of allyldemetallation product was reduced but the yield of Ph_{2} grew. Replacement of $\mathrm{Pd}_{(}\left(\mathrm{PPh}_{3}\right)_{4}$ with bis- $(\pi-$ allylpalladium chloride) in the reaction of PhZnCl with allyl bromide also led to the appearance of significant amounts of "dimerization" products (55% allylbenzene and $40 \% \mathrm{Ph}_{2}$).

The application of $\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{PdCl}\right)_{2}$ as catalyst in place of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ proved to be extremely effective in the case of PhAlCl_{2}. In the reaction of PhAlCl_{2} with allyl bromide catalyzed by $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ only traces of allylbenzene were formed after 20 h and in the presence of $\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{PdCl}\right)_{2}$ the yield of $\mathrm{PhCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$ was quantitative after 8 h .

TABLE 3. Yield of Products $\left(\mathrm{RCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}, \%\right)^{\text {a }}$ in Reactions of Organometallic Compounds RM with Allyl Bromide Catalyzed by $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ or $\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{PdCl}\right)_{2}(5$ mole $\%)\left(\mathrm{THF}, 20^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{RM}}=\mathrm{C}_{\mathrm{CH}_{2}}=\right.$ $\mathrm{CHCH}_{2} \mathrm{Br}=0.21$ mole/liter $)$

Number accord. to time	R	$\underset{\mathrm{MgBr}_{4}}{\mathrm{Md}\left(\mathrm{PPh}_{3}\right)_{4}}$	$\underset{\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}}{\mathrm{ZnCl}}$	$\underset{\left(\eta^{3}-\mathrm{Cancl}_{3} \mathrm{H}_{5} \mathrm{PdCl}\right)_{2}}{ }$	$\underset{\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{PdCl}\right)_{2}}{\mathrm{AlC}_{3} \mathrm{P}_{3}}$
1	R	$96(0), 15 \mathrm{~min}$	$100(0), 3,5 \mathrm{~h}$	$55(40), 3 \mathrm{~h}$	
2	$p-\mathrm{BrC}_{6} \mathrm{H}_{4}$	$92(\mathrm{tr}), 45 \mathrm{~min}$			
3	$p-\mathrm{MeC}_{6} \mathrm{H}_{4}$	$95(0), 15 \mathrm{~min}$			
4	$p-\mathrm{MeOC}_{6} \mathrm{H}_{4}$	64 (32), 15 min	$76(19), 5 \mathrm{t}$		
5	$p-\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}$	53(45), 40 min	$65(32), 6,5 \mathrm{~h}$		
6	PhCH_{2}	$100(\mathrm{tr}), 15 \mathrm{~min}$ $27(0), 1 \mathrm{hc}$	tr (tr) , 20 ${ }^{\text {d }}$	tr (16), 20 h	$\operatorname{tr}(\mathrm{tr}), 20 \mathrm{~h}$
7	${ }^{9}-\mathrm{C}_{19} \mathrm{H}_{9}$	89 (tr), 30 min $19(0), 30 \cdot \mathrm{~min} \mathrm{c}$	51 (tr), 20h	$73(22), 8 \mathrm{~h}$	$12(0), 20 \mathrm{~h}$
8	$2-\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~S}$	$\begin{gathered} 100(0), 30 \mathrm{~min}^{2} \\ 92(0), 30 \mathrm{~min}^{\mathrm{c}} \end{gathered}$	$32(0), 20 \mathrm{~b}$	45(35), 20 h	36 (tr), 20 h
9	$\mathrm{PhCH}=\mathrm{CH}$	0(100), 30 min	$\begin{aligned} & 49(47), 3,5 \mathrm{~h} \\ & 25(69), 3,5 \mathrm{~h} \end{aligned}$		$51(45), 8 \mathrm{~h}$
10	$\mathrm{PhC}=\mathrm{C}$	$\begin{aligned} & 0(40), 20 \mathrm{~h} \\ & 0(94), 20 \mathrm{he} \end{aligned}$	$0(10), 20 \mathrm{~h}$	$0(47), 20 \mathrm{~b}$	
11	$\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}{ }^{\text {f }}$		$\begin{aligned} & 30(0), 3 \mathrm{~h} \\ & \operatorname{tr}(0), 20 \mathrm{~h} \end{aligned}$	$\begin{aligned} & 63(0), 3 \mathrm{~h} \\ & 19(0), 3 \mathrm{~h} \end{aligned}$	

a) Yields of R_{2} are shown in parentheses (tr indicates trace).
b) Reactions were carried out in ether.
c) Yields of products in the absence of catalyst.
d) $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{OAc}$ was used.
e) $\mathrm{T}=50^{\circ} \mathrm{C}$.
f) THF : $\mathrm{HMPA}=1: 1, \mathrm{CRM}_{\mathrm{R}}: \mathrm{C}_{\mathrm{CH}_{2}}=\mathrm{CHCH}_{2} \mathrm{Br}=2: 1$.

$$
\begin{equation*}
\mathrm{PhAlCl}_{2}+\mathscr{/} / \mathrm{Br} \xrightarrow[\mathrm{THF}, 20^{\circ}]{\stackrel{\left(\mathrm{n}^{3} \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{PdCl}\right) 2,5 \text { mole } \% 0}{ } \mathrm{Ph} / / /}+\mathrm{AlCl}_{2} \mathrm{Br} \tag{9}
\end{equation*}
$$

The use of the less active $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ proved to be the most convenient for the more reactive organometallic derivatives of magnesium and zinc since it prevented the "dimerization" of RM. In the case of the less reactive organoaluminum compounds the more active "ligand-free" palladium must be used since under these conditions the cross combination proceeds at a greater rate than "dimerization."

The significantly greater catalytic activity of bis-(π-allylpalladium chloride) in comparison with the phosphine complexes of palladium has even been observed previously in cross combination reactions of organotin compounds with aryl and allyl halides in [9].

To clarify the problem as to how the nature of the radical R in the organometallic compound RM influences the rate of the allyldemetallation reaction and the product ratio of $\mathrm{RCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$ and R_{2}, we studied the reactions of $\mathrm{RMgBr}, \mathrm{RZnCl}$, and RAlCl_{2} with allyl bromide in THF at $\sim 20^{\circ} \mathrm{C}$, which are catalyzed by Pd complexes. Results are shown in Table 3.

$$
\begin{aligned}
& \mathrm{R}=\mathrm{Ar}, \mathrm{PhCH}_{2}, \mathrm{PhCH}=\mathrm{CH}, \mathrm{PhC} \equiv \mathrm{C}, 2-\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~S}, 9-\mathrm{C}_{13} \mathrm{H}_{9}, \quad \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et} ; \\
& \mathrm{M}=\mathrm{MgBr}, \mathrm{ZnCl}, \mathrm{AlCl}_{2} \text {. }
\end{aligned}
$$

As follows from the data of Table 3 the introduction of electron donating groups into the aromatic ring in a series of aryl organomagnesium compounds led to a reduction in the yield of allyldemetallation products and an increase in the yield of the corresponding diaryls. Thus p-tolylmagnesium bromide and p-bromophenylmagnesium bromide like phenylmagnesium bromide reacted with allyl bromide in the presence of $\mathrm{Pd}_{(}\left(\mathrm{PPh}_{3}\right)_{4}$ forming the corresponding p-methylallylbenzene and p-bromoallylbenzene in quantitative yield.

$$
\begin{equation*}
p-\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{MgBr}+/ / / \mathrm{Br} \xrightarrow[15 \mathrm{~min}]{\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}} p-\mathrm{BrC}_{6} \mathrm{H}_{4} / / /+\mathrm{MgBr}_{2} \tag{11}
\end{equation*}
$$

In the absence of palladium catalyst reaction (11) proceeds significantly more slowly and less selectively [10].

In the reaction of p-anisylmagnesium bromide with $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{Br}$ catalyzed by $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ the yield of p allylanisole was 64% and the yield of di-p-anisyl was 32%. On going over to p-dimethylaminophenylmagnesium bromide the yield of allyldemetallation product ($\mathrm{p}-\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$) was reduced to 53% and the yield of diaryl $\left(\mathrm{p}-\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}\right)_{2}$ grew to 45%.

An analogous rule was observed in reactions of zinc aryl derivatives with allyl bromide. In the series $\mathrm{PhZnCl}, \mathrm{p}-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{ZnCl}, \mathrm{p}-\mathrm{MeNC} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{ZnCl}$ a reduction occurred in the yield of combination product and the yield of diaryls grew (see Table 3, No. 1, 4, 5) . In addition on going over from ArMgBr to ArZnCl the selectivity of the reactions increased.

Benzylmagnesium bromide interacted with allyl bromide in the presence of $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ with the formation of 3 -phenyl-1-butene in quantitative yield after 15 min .

$$
\begin{equation*}
\mathrm{PhCH}_{2} \mathrm{MgBr}+\widehat{\wedge} / \mathrm{Br} \xrightarrow[15 \mathrm{~min}]{\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)} \underset{100 \%}{\mathrm{PhCH}_{2}} / / \boxed{\mathrm{MgBr}_{2}} \tag{12}
\end{equation*}
$$

In the absence of catalyst the same reaction proceeded significantly more slowly, after 1 h only $72 \% \mathrm{PhCH}_{2}-$ $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$ was formed.

In the reactions of 9 -fluorenyl- and 2-thienylmagnesium bromide with $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{Br} 9$-allylfluorene and 2-allylthiophen were obtained in yields of 89 and 100% respectively.

Thus, reactions of RMgBr with allyl bromide catalyzed by $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ proceeded significantly more rapidly and selectively then in the absence of palladium catalyst which made it possible to obtain various allyated products under mild conditions and in good yield.

On going over to the corresponding organozinc compounds a sharp reduction was observed in the reactivity of RM. Thus in reactions of $\left(9-\mathrm{C}_{13} \mathrm{H}_{9}\right) \mathrm{ZnCl}$ and $\left(2-\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~S}\right) \mathrm{ZnCl}$ with allyl bromide the yield of the corresponding allyldemetallation products were only 51 and 32% after 20 h . The use of $\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{PdCl}\right)_{2}$ in place of $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ as catalyst in reactions of $\mathrm{RZnCl}(\mathrm{R}=9$-fluorenyl, 2-thienyl) with allyl bromide led to an increase in the allyldemetalation rate, however, in addition to $\mathrm{RCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$ a significant amount of "dimerization" products of RZnCl were formed, viz., bis-(9-fluorenyl) and bis-(2-thienyl) (see Table 3, No. 7, 8). However, $\mathrm{RAlCl}_{2}\left(\mathrm{R}=\mathrm{PhCH}_{2} \text {, 9-fluorenyl, 2-thienyl) in reactions catalyzed by (} \eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{PdCl}\right)_{2}$ was less reactive than the corresponding organozinc compounds but in difference to the latter "dimerization" products were not observed (see Nos. 6-8). The rules obtained in the analysis of the data of Tables 1 and 2 were therefore confirmed.

In the reaction of β-styrylmagnesium bromide with allyl bromide in the presence of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ only the corresponding "dimer" 1,4-diphenylbutadiene was formed in quantitative yield.

$$
\begin{equation*}
\mathrm{PhCH}=\mathrm{CHMgBr}+\underset{\sim}{\boldsymbol{A}} / \mathrm{Br} \xrightarrow[30 \mathrm{~min}]{\left(\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)\right.} \underset{(100 \%)}{(\mathrm{PhCH}=\mathrm{CH})_{2}} \tag{14}
\end{equation*}
$$

On going over the $\mathrm{PhCH}=\mathrm{CHZnCl}$ and $\mathrm{PhCH}=\mathrm{CHAlCl}_{2}$ the yield of $(\mathrm{PhCH}=\mathrm{CH})_{2}$ was reduced to $45-47 \%$ and $\mathrm{PhCH}=\mathrm{CHCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$ was formed in $49-51 \%$ yield.

Replacement of allyl bromide by allyl acetate in reaction (15) led to a reduction in the yield of $\mathrm{PhCH}=\mathrm{CHCH}_{2}-$ $\mathrm{CH}=\mathrm{CH}_{2}$ and an increase in the yield of $(\mathrm{PhCH}=\mathrm{CH})_{2}$ (see Table 3, No. 9). A similar regularity was observed in the reaction PhCdBr with $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{X}(\mathrm{X}=\mathrm{Br}, \mathrm{OAc})$ catalyzed by $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}($ see T able $1, \mathrm{No} .8,9)$.

The relatively low yield of allyldemetallation product in reactions of β-styryl derivatives of Mg, Zn, and Al with $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{X}(\mathrm{X}=\mathrm{Br}, \mathrm{OAc})$ catalyzed by palladium complexes made it preferable to use the corresponding organotin compound in this case. It was previously shown by us in [5] that β-styryltrimethyltin reacted with allyl acetate in the presence of $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ forming $\mathrm{PhCH}=\mathrm{CHCH}_{2}=\mathrm{CH}_{2}$ in 90% yield.

$$
\begin{align*}
& \mathrm{PhCH}=\mathrm{CHSnMe}+\overparen{\wedge}+\mathrm{OAc} \xrightarrow[\mathrm{HMPA}, 20^{\circ}]{\mathrm{Pd}(\mathrm{PPh}))_{4}, 5 \mathrm{~mole} \%_{0}} \mathrm{PhCH}=\mathrm{CHCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}+ \tag{16}\\
& +\mathrm{Me}_{3} \mathrm{SnOAc}^{2}
\end{align*}
$$

Phenylethynylmagnesium bromide proved to be significantly less reactive in comparison with the remaining organomagnesium compounds in the reaction with allyl bromide catalyzed by $\mathrm{Pd}_{\mathrm{g}}\left(\mathrm{PPh}_{3}\right)_{4}$. After 20 h reaction not even traces of cross combination product were formed and bis (phenylethynyl) was formed in 40% yield. An increase of temperature $\left(50^{\circ} \mathrm{C}\right)$ led to an increase in the yield of ($\left.\mathrm{PhC} \equiv \mathrm{C}\right)_{2}$ to 94%.

$$
\begin{equation*}
\mathrm{PhC} \equiv \mathrm{CMgBr}+\not / / \mathrm{Br} \xrightarrow[50^{\circ}]{\mathrm{Pd}\left(\mathrm{PPH}_{3}\right)_{4}} \underset{94 \%}{(\mathrm{PhC} \equiv \mathrm{C})_{2}} \tag{17}
\end{equation*}
$$

The reaction of $\mathrm{PhC} \equiv \mathrm{CZnCl}$ with allyl bromide catalyzed by both $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ and by $\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{PdCl}\right)_{2}$ also did not lead to the preparation of $\mathrm{PhC} \equiv \mathrm{CCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$ (see Table 3, No. 10).

In accordance with the proposed mechanism (reaction 4) for establishing the reasons for the low reactivity of $\mathrm{PhC} \equiv \mathrm{CMgBr}$ a stoichiometric reaction was carried out of the complex $\left[\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+} \mathrm{Cl}{ }^{-}$, obtained in situ from $\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{PdCl}\right)_{2}$ and 2 equiv. PPh_{3} (calculated on Pd), with $\mathrm{PhC} \equiv \mathrm{CMgBr}$ in THF at $\sim 20^{\circ} \mathrm{C}$. It was established that under the indicated conditions $\mathrm{PhC} \equiv \mathrm{CCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$ was not formed even after 30 h . In addition an intense spot ($\mathbb{R}_{\mathrm{f}} 0.7$) luminous in UV light was detected on a chromatogram of the reaction mixture (silufol, chloroform) corresponding seemingly to a new palladium complex the structure of which was not investigated specially. On heating the chromatogram ($150-160^{\circ} \mathrm{C}$) the mentioned spot blackened as a result of the separation of metallic palladium. It is possible that the formation of such a complex not undergoing further conversion is also a reason for the low reactivity of $\mathrm{PhC} \equiv \mathrm{CMgBr}$ in the catalytic reaction with $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{Br}$ 。

Organozinc compounds obtained by the introduction of α-bromo derivatives of esters with zine dust (Reformatsky reagent) react (according to [11, 12]) with aryl and vinyl halides in the presence of palladium complexes forming the corresponding cross combination products (α-aryl and α-vinyl substituted esters) in high yield. With the aim of extending the given reaction to allyl halides we studied the reaction of $\mathrm{BrZnCH} \mathrm{H}_{2} \mathrm{CO}_{2} \mathrm{Et}$ with allyl bromide in the presence of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ and $\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{PdCl}\right)_{2}$.

On using bis-(π-allylpalladium chloride) as catalyst and a 1:1 mixture of THF and HMPA as solvent the ethyl ester of allylacetic acid was obtained in 63% yield after 3 h .

Replacement of $\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{PdCl}\right)_{2}$ by $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ and also increasing the temperature led to a reduction in the yield of product (see Table 3, No. 11), in pure THF only traces of $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}$ were formed after 20 h .

Reaction (18) was a convenient method of introducing an allyl group into the α-position of esters.

EXPERIMENTAL

Organomagnesium compounds (as 1.5 M solutions), palladium complexes, and the necessary standard compounds were synthesized by known procedures. Organozinc, cadmium, and aluminum compounds were obtained in situ by reaction of the corresponding organomagnesium compounds with anhydrous $\mathrm{ZnCl}_{2}, \mathrm{CdBr}_{2}$, and AlCl_{3} in THF.

Chromatographic analysis was carried out on a "Tsvet-110" chromatograph with a flame ionization detector in a flow of helium ($60 \mathrm{ml} / \mathrm{min}$) ; column $2 \mathrm{~m} \times 3 \mathrm{~mm}, 3 \%$ SE-30 on Chromaton N super. TLC was carried out on "Silufol UV-254" plates with visualization in UV light or iodine vapor. UV spectra were described on a Hitachi-124 spectrophotometer in quartz cuvettes.

Reaction of PhMw ith $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{X}$ in the Presence of Palladium Complexes: THF (2 ml), 1.5 M solution ($0.36 \mathrm{ml}: 0.55 \mathrm{mmole}$) of PhMgBr in ether, and allyl bromide ($0.061 \mathrm{~g}: 0.5 \mathrm{mmole}$) were placed, in a stream of argon, in a flask fitted with a magnetic stirrer and $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.029 \mathrm{~g}: 0.025 \mathrm{mmole})$ was added with stirring to the solution. The yield of allylbenzene was determined after 15 min by GLC using an internal standard (n-decane). Yield of $\mathrm{PhCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$ was 96%. The same reaction in the absence of catalyst led to the preparation of allylbenzene in 23% yield after 3 h .

The reactions of $\mathrm{PhMgBr}, \mathrm{PhZnCl}, \mathrm{PhCdBr}, \mathrm{PhAlCl}_{2}$, and $\mathrm{Ph}_{2} \mathrm{AlCl}$ with $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{X}(\mathrm{X}=\mathrm{Br}, \mathrm{OAc}$, OPh, ${ }^{+} \mathrm{NEt}_{3}$) in the presence of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$, and $\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{PdCl}\right)_{2}$ were carried out in a similar manner. The yield of Ph_{2} was determined by TLC and UV spectroscopy. Data are shown in Tables 1 and 2.
"Dimerization" of PhMgBr in the Presence of $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$. In a stream of $\mathrm{Ar}, \mathrm{THF}(2 \mathrm{ml})$ and a 1.5 M solution ($0.36 \mathrm{ml}: 0.55 \mathrm{mmole}$) of PhMgBr in ether were placed in a flask which had been blown through with

Ar , and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\left(0.029 \mathrm{~g}: 0.025\right.$ mmole) was added with stirring to the obtained solution. The yield of Ph_{2} was determined after 5 h by TLC and UV spectroscopy and amounted to 52%.

Reactions of $\mathrm{RMgBr}, \mathrm{RZnCl}$, and RAICl_{2} with Allyl Bromide in the Presence of Palladium Complexes. 1) In a stream of $\mathrm{Ar}, \mathrm{THF}(20 \mathrm{ml}), 1.5 \mathrm{M}$ solution ($3.6 \mathrm{ml}: 5.5 \mathrm{mmole}$) of $\mathrm{p}-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{MgBr}$ in ether, and allyl bromide ($0.61 \mathrm{~g}: 5 \mathrm{mmole}$) were placed in a flask which had been blown through with Ar , and $\mathrm{Pd}_{(}\left(\mathrm{PPh}_{3}\right)_{4}(0.29 \mathrm{~g}$: 0.25 mmole) was added with stirring to the obtained solution. After 15 min the reaction mixture was diluted with hexane and passed through a short column of silica gel to remove palladium complexes. By fractional distillation $p-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$ [13] was isolated having bp $70^{\circ} \mathrm{C}(12 \mathrm{~mm})$.

The following RMgBr were reacted with allyl bromide catalyzed by $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ under analogous conditions. 2) $\mathrm{p}-\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{MgBr}$. p- $\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\left(0.91 \mathrm{~g}: 92 \%\right.$) was isolated after 15 min and had bp $92^{\circ} \mathrm{C}(8 \mathrm{~mm})$ [10]. 3) $\mathrm{p}-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{MgBr}$. p- $\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}(0.47 \mathrm{~g}: 64 \%)$ was isolated after 15 min and had bp $96^{\circ} \mathrm{C}(12 \mathrm{~mm})$ [13]. In addition ($\left.\mathrm{p}-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)_{2}$ (32%) was formed (TLC, UV spectroscopy). 4) $\mathrm{p}-\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{MgBr}$. After 30 min , yield $0.43 \mathrm{~g}(53 \%) \mathrm{p}-\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$ [14], bp $87^{\circ} \mathrm{C}(3 \mathrm{~mm})$. In addition $\left(\mathrm{p}-\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}\right)_{2}(45 \%)$ was formed (TLC, UV spectroscopy). 5) $\mathrm{PhCH}_{2} \mathrm{MgBr}$. $\mathrm{PhCH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}(0.66 \mathrm{~g}: 100 \%$) was isolated after 15 min and had bp $64^{\circ} \mathrm{C}(10 \mathrm{~mm})$ [15]. 6) $\left(2-\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~S}\right) \mathrm{MgBr}$. $\left(2-\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~S}\right) \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}(0.62 \mathrm{~g}: 100 \%)$ was isolated after 30 min and had bp $157-159^{\circ} \mathrm{C}$ [16]. 7) $\left(9-\mathrm{C}_{13} \mathrm{H}_{9}\right) \mathrm{MgBr}$. 9-Allylfluorene ($0.92 \mathrm{~g}: 89 \%$) was isolated after 30 min by TLC on silica gel (hexene:ether $=3: 1$) [17]. 8) $\mathrm{PhCH}=\mathrm{CHMgBr} .(\mathrm{PhCH})_{2}(100 \%)$ was formed after 30 min (TLC, UV spectroscopy). 9) $\mathrm{PhC} \equiv \mathrm{CMgBr}$. ($\mathrm{PhC} \equiv \mathrm{C})_{2}(40 \%)$ was formed after 20 h (TLC, UV spectroscopy). The same reaction at $50^{\circ} \mathrm{C}$ led to the formation of $(\mathrm{PhC} \equiv \mathrm{C})_{2}$ in 94% yield after 20 h .

The reactions of RZnCl and RAlCl_{2} with allyl bromide in the presence of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ and $\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{PdCl}\right)_{2}$ were carried out by a similar procedure. Yields of $\mathrm{RCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$ were determined by GLC using an internal standard (n-decane), yields of R_{2} were determined by TLC and UV spectroscopy. Results are shown in Table 3.

Reaction of $\mathrm{BrZnCH}_{2} \mathrm{CO}_{2} \mathrm{Et}$ with Allyl Bromide Catalyzed by $\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{PdCl}\right)_{2}$. In a stream of Ar , a $1-\mathrm{M}$ solution ($10 \mathrm{ml}: 10 \mathrm{mmole}$) of $\mathrm{BrZnCH} \mathrm{CO}_{2} \mathrm{Et}$ in THF (obtained by the reaction of $\mathrm{BrCH} \mathrm{CO}_{2} \mathrm{Et}$ with zinc dust), HMPA (10 ml), and allyl bromide ($0.61 \mathrm{~g}: 5 \mathrm{mmole}$) were placed in a flask which had been swept out with Ar , and $\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{PdCl}\right)_{2}(0.046 \mathrm{~g}: 0.25 \mathrm{mmole})$ was added with stirring to the obtained solution. The reaction mixture was stored for 3 h at $\sim 20^{\circ} \mathrm{C}, \mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}(0.40 \mathrm{~g}: 63 \%$) was isolated by fractional distillation, and had bp $144-146^{\circ} \mathrm{C}$ [18].

Stoichiometric Reaction of $\left[\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+} \mathrm{Cl}^{-}$with $\mathrm{PhC} \equiv \mathrm{CMgBr}$. In a current of Ar , THF (3 ml), $\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{PdCl}\right)_{2}(0.045 \mathrm{~g}: 0.125 \mathrm{mmole})$, and $\mathrm{PPh}_{3}(0.131 \mathrm{~g}: 0.5 \mathrm{mmole})$ were placed in a flask fitted with a magnetic stirrer which had been swept out with Ar. After stirring for 20 min spots of $\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{PdCl}\right)_{2}$ and PPh_{3} had disappeared from a chromatogram (heptane, visualization with I_{2}). A 1.5 M solution ($0.17 \mathrm{ml}: 0.25 \mathrm{mmole}$) of $\mathrm{PhC} \equiv \mathrm{CMgBr}$ in ether was added to the reaction mixture. The homogencous solution was kept at $\sim 20^{\circ} \mathrm{C}$ for 30 h . Analysis of the reaction mixture showed the absence of $\mathrm{PhC} \equiv \mathrm{CCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$ (GLC) and the presence of a new palladium complex of unknown structure (TLC, $\mathrm{CHCl}_{3}, \mathrm{R}_{\mathrm{f}} 0.7$). The spot with $\mathrm{Rf}_{\mathrm{f}} 0.7$, evidently corresponding to this complex, was intensely colored in UV light and on heating to $150-160^{\circ} \mathrm{C}$ became dark as a result of the separation of metallic palladium. In addition ($\mathrm{PhC} \equiv \mathrm{C})_{2}$ was formed in 15% yield (TLC, UV spectroscopy).

CONCLUSIONS

1. Reactions of organometallic compounds $\mathrm{RM}\left(\mathrm{R}=\mathrm{Ph}, \mathrm{p}-\mathrm{MeC}_{6} \mathrm{H}_{4}, \mathrm{p}-\mathrm{BrC}_{6} \mathrm{H}_{4}, \mathrm{p}-\mathrm{MeOC}_{6} \mathrm{H}_{4}, \mathrm{p}-\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}\right.$, $\mathrm{PhCH}_{2}, \mathrm{PhCH}=\mathrm{CH}, 9-$ fluorenyl, 2-thienyl, $\mathrm{PhC} \equiv \mathrm{C} ; \mathrm{M}=\mathrm{MgBr}, \mathrm{ZnCl}, \mathrm{CdBr}, \mathrm{AlCl}_{2}$) with $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{X}(\mathrm{X}=$ $\left.\mathrm{Br}, \mathrm{OAc}, \mathrm{OPh},{ }^{+} \mathrm{NEt}_{3}\right)$ catalyzed by $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ and $\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{PdCl}\right)_{2}$ in THF have been studied. The influence has been investigated of the nature of metal M, of the organic radical R, and of the leaving group X on the rate of allyldemetallation and on the yield of products $\mathrm{RCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$ and R_{2}.
2. The reactions of $\mathrm{RMgBr}\left(\mathrm{R}=\mathrm{Ph}, \mathrm{p}-\mathrm{MeC}_{6} \mathrm{H}_{4}, \mathrm{p}-\mathrm{BrC}_{6} \mathrm{H}_{4}, \mathrm{PhCH}_{2}\right.$, 9-fluorenyl, 2-thienyl) with $\mathrm{CH}_{2}=$ $\mathrm{CHCH}_{2} \mathrm{Br}$ catalyzed by $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ proceeded significantly more rapidly and selectively than in the absence of palladium catalyst which made it possible to obtain the corresponding products of allyldemetallation under mild conditions and in high yield.
3. The main possibility of allyldemetallation of Reformatsky reagents has been shown for the first time in the example of the reaction of $\mathrm{Br}_{\mathrm{ZnCH}}^{2} 2 \mathrm{CO}_{2} \mathrm{Et}$ with $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{Br}$ catalyzed by $\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{PdCl}\right)_{2}$ and leading to the preparation of $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{CO}_{2} \mathrm{Et}$. The reaction is a convenient method for introducing the allyl group into the α-position of esters.
4. B. M. Trost, Acc. Chem. Res., 13, 385 (1980).
5. T. Hirao, N. Yamada, Y. Ohshiro, and T. Agawa, J. Organomet. Chem., 236, 409 (1982).
6. B. M. Trost and E. Keinan, Tetrahedron Lett., 21, 2591 (1980).
7. B. M. Trost and E. Keinan, Tetrahedron Lett., 21, 2595 (1980).
8. N. A. Bumagin, A. N. Kasatkin, and I. P. Beletskaya, Dokl. Akad. Nauk SSSR, 266, 862 (1982).
9. H. Matsushita and E. Negishi, J. Am. Chem. Soc. , 103, 2882 (1981).
10. Y. Hayasi, M. Riediker, J. S. Temple, and J. Schwartz, Tetrahedron Lett., 22, 2629 (1981).
11. N. A. Bumagin, A. N. Kasatkin, and I. P. Beletskaya, Izv. Akad. Nauk SSSR, Ser. Khim., 912 (1983).
12. I. G. Bumagina, Dissertation, Moscow (1981)。
13. A. L. Liberman, N. I. Tyun'kina, and B. A. Kazanskii, Dokl. Akad. Nauk SSSR, 134, 603 (1960).
14. J. F. Fauvarque and A. Jutand, J. Organometal. Chem., 209, 109 (1981).
15. J. F. Fauvarque and A. Jutand, J. Organomet. Chem., 177, 273 (1979).
16. M. M. Martin and G. J. Gleicher, J. Am. Chem. Soc., 86, 233 (1964).
17. M. M. Martin and G. J. Gleicher, J. Org. Chem., 28, 3266 (1963).
18. W. R. Sorenson and T. W. Campbell, Preparative Methods of Polymer Chemistry, 2nd edn., Wiley (1968).
19. E. Grishkevich-Trokhimovskii, Zh. Russk. Fiz. Khim. O-va, 43, 201 (1911).
20. W. Wislicenus and W. Mocker, Chem. Ber., 46, 2772 (1913).
21. I. A. D'yakonov and N. B. Vinogradova, Zh. Obshch. Khim. , 21, 851 (1951) .

[^0]: M. V. Lomonosov Moscow State University. L. Ya. Karpov Physical Chemistry Institute, Moscow. Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 8, pp. 1858-1865, August, 1984. Original article submitted June 21, 1983.

[^1]: * It should be noted that in the absence of palladium catalyst 23% allylbenzene was formed after 3 h in the reaction of PhMgBr with $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{Br}\left(\mathrm{THF}, 20^{\circ} \mathrm{C}\right)$.

