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Xanthate-Mediated Synthesis of (E)-Alkenes by Semi-
Hydrogenation of Alkynes Using Water as the Hydrogen Donor
Xianglin Luo, Xiuwen Chen, Lu Chen, Kun Zhang, Yibiao Li*

Semi-hydrogenation of alkynes is one of the most widely used 
methods for obtaining alkene in laboratory preparation and in 
industry. Transition metal catalysts have been extensively studied 
for this transformation, but the tolerance of functional groups, 
such as pyridine, -OH, -NH2, -Bpin, and halides, and the toxicity of 
the trace amount of transition metal catalysts are still highly 
challenging. In this study, we report a general and robust strategy 
to achieve the semi-hydrogenation of alkynes using inexpensive 
and commercially available xanthate as the mediator. Mechanism 
studies support a non-radical process and H2O act as the hydrogen 
donor.

The development of efficient, sustainable, and environmentally 
friendly procedures for the synthesis of organic molecules is an 
important task in modern organic chemistry. Xanthates are 
attractive starting materials in transition-metal-catalysed or 
transition-metal-free transformations due to their high reactivity 
and availability and are readily prepared from inexpensive alcohols 
and carbon disulphide on a large scale.[1-2] Xanthates are used in 
organic synthesis in several interesting and important ways. The 
Chugaev elimination reaction proceeds through the thermal 
decomposition of a xanthate to prepare alkenes without the 
rearrangement of the carbon skeleton that is frequently 
encountered in the dehydration of certain alcohols by other 
methods (Scheme 1a).[3] The Zard radical reaction provides a 
radical coupling strategy with DLP or Et3B promoted cleavage of 
the weak C–S bonds of xanthates without tin or another heavy 
metal (Scheme 1b).[4] Xanthates can also be used as a sulphur 
source for the introduction of sulphur atoms in organic molecules 
and formation of sulphur-containing heterocycles, such as 
benzothiophene and thiazole.[5] 
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Scheme 1. Typical conversion of xanthates
The selective semi-hydrogenation of alkynes to the 

corresponding alkenes is an extensively used tool in organic 
synthesis for the preparation of alkenes. Alkenes are versatile 
building blocks for fine chemical synthesis, and the synthesis of 
pharmaceuticals and natural products. It is important to mention 
that alkenes are some of the most popular starting materials in 
the polymerization industry.[6] Thus, the semi-hydrogenation of 
alkynes is of significant importance. Heterogeneous[7] and 
homogeneous metal catalysts[8] have been explored for these 
chemoselective reduction reactions. In addition to the classical 
molecular hydrogen, a range of other hydrogen donors, such as 
tertiary amines[9], alcohols[10], HCOOH[11], H3N-BH3

[12], DMF[13], 
HSiEt3

[14], and the Hantzsch ester 1,4-dihydropyridine[15] have also 
been shown to be efficient hydrogen donors. Unfortunately, these 
compounds often must be used in conjunction with transition 
metal catalysts. By contrast, transition metal-free semi-
hydrogenation[16] of unactivated alkynes into trans-alkenes is still 
rare. Recently, Stephan and co-workers demonstrated an elegant 
alkyne semi-hydrogenation using hydrogen (H2) as the reductant 
in the presence of a frustrated Lewis pair [p-(Mes2P)C6F4(B(C6F5)2] 
as a catalyst.[17] In another recent work, Garcia and co-workers 
found that graphene could catalyse the hydrogenation of C–C 
multiple bonds.[18]

Inspired by our previous work on the construction of sulphur-
containing heterocycles using EtOCS2K as a thiol surrogate [19] and 
the construction of various conjugated structures,[20] herein, we 
developed a transition-metal-free semi-hydrogenation system in 
which vinyl carbonodithioate is produced in situ from EtOCS2K and 
acts as an active intermediate. Comparing to the high price and 
sensitivity of the frustrated Lewis pair,[21] xanthates-mediated 
alkyne hydrogenation provides a general, robust and broad 
functional-group tolerated approach for obtaining trans-alkenes. 
To the best of our knowledge, the only report of an attempted 
sulphur reagent use for the hydrogenation of 1,2-diphenyl alkynes 
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was by Liu and co-workers, who reported an approach for trans-
selective alkene with Na2S·9H2O.[22]

Initially, 1,2-diphenylethynes 1 were selected as model 
substrates for the optimization of the reaction conditions (Table 1). 
Without a sulphur source, no product was obtained and starting 
material recovered. Only a trace of the semi-hydrogenation 
product was obtained when thiourea was used as sulphur source 
(Table 1, entry 2). The continue screening of sulphur source 
indicated that the EtOCS2K was the superior sulphur source with a 
product yield of 98% (Table 1, entries 2-7). The screening of 
various solvents revealed that the solvent played a very important 
role in this semi-hydrogenation process. Compared to other 
solvents, DMF proves to be the best reaction solvent (Table 1, 
entries 8-11). The reaction was most efficient when it was 
conducted at 130 °C, and lower temperatures resulted in lower 
yields (Table 1, entry 12). By decreasing the amount of EtOCS2K 
(1.5 equiv), the yield was reduced to 90%, respectively (Table 1, 
entry 13). (See SI for more details)
Table 1. Optimization of reaction conditionsa,b

"Sulphur" source
Solvent, H2O

1 2

 a Reaction conditions: alkyne 1 (1.0 mmol), "sulphur" source (2.0 mmol) 
and H2O (2 mmol) in solvent (2.0 mL) at 130 oC for 12 h; b Isolated Yield; 
c Reaction was carried out at 120 oC; d 1.5 equiv EtOCS2K was used.

With the optimized reaction conditions in hand, we turned our 
attention to the semi-hydrogenation reaction by varying alkyne 
components (Scheme 2). Various substituted alkyl alkynes were 
found to be compatible under the optimized conditions. First, aryl 
alkyl alkynes underwent efficient semi-hydrogenation to afford 
the corresponding (E)-alkenes 3–7 in moderate to good yields. The 
reactions of pyridyl-substituted alkyl alkynes also proceeded 
smoothly, furnishing the E-alkenes 8–12 in moderate yields. The 
semi-hydrogenation was also applicable to quinolyl alkynes, as 
exemplified by the synthesis of (E)-3-(2-cyclohexylvinyl)quinoline 
13 in 62% yield. Heterocyclic substituted internal alkynes, such as 
pyrazole, can complete the reaction to obtain the desired product 
in acceptable yields. The terminal alkyne p-chlorophenylacetylene 
also successfully completed the reaction, indicating that the semi-
hydrogenation reaction is characterized by good functional group 
tolerance. Unfortunately, the reaction of terminal alkyl alkynes, 
such as 5-methylhex-1-yne, produced a mixture of products.
Scheme 2. EtOCS2K-promoted semi-hydrogenation of alkyl 
alkynea
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a Standard conditions: alkyne (1.0 mmol), EtOCS2K (2.0 mmol), H2O 
(2.0 mmol), DMF (2.0 mL), 150 °C, 24 h. b Isolated yields.

Next, various diarylacetylenes were successfully semi-
hydrogenated under standard conditions, demonstrating the 
generality of the approach and providing exceptional trans-
stereoselectivity. Both electron-donating and -withdrawing 
substituents on the aromatic rings were compatible under the 
standard conditions. Electron-donating groups, such as -Me, -tBu, -
TMS, -OH, -OMe, and -NH2, were also successfully hydrogenated 
(Scheme 3, 18–25, 86%–98% yield). In particular, the alkaline-
sensitive TMS group was easily hydrolysed and yielded (E)-
trimethyl(4-styrylphenyl)silane 20 in 87% yield. The borate group 
remained intact and is very useful in transition-metal-catalysed 
Suzuki coupling reactions (Scheme 3, 25). An important feature of 
this reaction is the tolerance for halides, including F, Cl, Br, and CF3, 
with no dehalogenated material observed. Interestingly, no 
reduction of the keto group occurred during the hydrogenation of 
1-(4-(phenylethynyl)phenyl)ethan-1-one, and the keto group 
remained intact (Scheme 3, 30). It is important to note that the 
carbonyl group was easily reduced to alcohol in the presence of 
Pd/C-H2 or NaBH4. Moreover, the semi-hydrogenation of 1,3-
dimethoxy-5-((4-methoxyphenyl)ethynyl)benzene resulted in the 
formation of the precursor of trans-resveratrol 41 that was 
isolated in 43% yield. The synthesis of trans-resveratrol analogues 
is important in modern organic chemistry because of their wide 
range of biological activities and pharmaceutical applications.[23] 
Substrates bearing heterocycles, such as 5-pyrazolyl or 3-thienyl 
groups, also produced the corresponding semi-hydrogenation 
products 42–44 in good yields.
Scheme 3. EtOCS2K promoted semi-hydrogenation of diaryl 
alkynesa
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Entry "Sulphur" source Solvent Yieldb (%)

1 - DMF n.r.
2 Thiourea DMF trace
3 Thioacetamide DMF 16

4 Dimethylammonium 
dimethyldithiocarbamate DMF 7

5 Sodium dimethyldithiocarbamate DMF 32
6 EtOCS2K DMF 98
7 Potassium isopropyl xanthate DMF 95
8 EtOCS2K DMSO 92
9 EtOCS2K DMAc 90

10 EtOCS2K xylene n.r.
11 EtOCS2K H2O < 5
12c EtOCS2K DMF 31
13d EtOCS2K DMF 90
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a Standard conditions: alkyne (1.0 mmol), EtOCS2K (2.0 mmol), H2O (2.0 
mmol), DMF (2.0 mL), 130 °C, 12 h. b Isolated yields.

To continue our investigation of the reaction scope, we 
explored various pyridine-based substrates for this process under 
the optimized reaction conditions (Scheme 4). Overall, it was 
found that most of the substrates could be converted to the 
corresponding (E)-alkenes in good to excellent yields. 
Furthermore, when the pyridine ring was substituted at the 
ortho-, meta-, and para-positions, the yields were not affected 
(Scheme 4, 45–47). These results show the semi-hydrogenation is 
not affected by electron-withdrawing or -donating substituents on 
the benzene ring or the pyridine ring, and the desired product can 
be successfully obtained. Next, when 3-(naphthalen-2-
ylethynyl)pyridine was employed as the substrate, the expected 
semi-hydrogenation product 55 was obtained in 88% yield. Finally, 
6-(phenylethynyl)quinoline showed excellent selectivity towards 
the corresponding (E)-alkenes in our semi-hydrogenation protocol.
Scheme 4. EtOCS2K-promoted semi-hydrogenation of 
alkynylpyridinea
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a Standard conditions: alkyne (1.0 mmol), EtOCS2K (2.0 mmol), H2O 
(2.0 mmol), DMF (2.0 mL), 130 °C, 12 h. b Isolated yields.

To gain mechanistic insights, deuteration experiments were 
conducted to verify the hydrogen donors to the alkene. When 
anhydrous DMF was used as the solvent under N2, the reaction did 
not proceed (Scheme 5a). However, when DMF and D2O were 
used, the deuterium product 2-D was obtained in 91% yield 
(Scheme 5b). These results indicate that water acts as a proton 
donor in this transformation. When 1,2-dichloro-1,2-
diphenylethane 60 used as the substrate reacted with EtOCS2K 
under the standard semi-hydrogenation reaction conditions, the 
reaction may be a nucleophilic substitution reaction that obtains 
biscarbonodithioate intermediate[24], after which the 1,2-
diphenylethenes  are obtained (Scheme 5c). Unfortunately, we 
were unable to isolate the biscarbonodithioate intermediate. 
When we use 2,3-diphenyloxirane 61 and EtOCS2K under the 
standard semi-hydrogenation reaction conditions, the reaction 
may pass through 2,3-diphenylthiirane intermediate[25], and finally, 
desulphurization yields the 1,2-diphenylethenes (Scheme 5d).[26] In 
this semi-hydrogenation reaction, we found that 1,2-
diphenylethyne and potassium ethyl xanthate gave (E)-1,2-
diphenylethene in good yield under the standard conditions. 
Importantly, we also detected the COS 62, EtOH 63 and CS2 64 by 

GC-MS (Scheme 5e). In the standard condition, the cis-stilbenes 
isomerised into trans-stilbenes in good yield (Scheme 5f). This 
discovery may help us understand the reaction mechanism.
Scheme 5. Control experiments.
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The postulated reaction mechanism based on the literature and 
our experimental results is depicted in Scheme 6. In this reaction, 
the semi-hydrogenation reaction is initiated by the double 
nucleophilic addition of EtOCS2K to alkynes, yielding 1,2-
diphenylethane-1,2-diyl) O,O'-diethyl bis(carbonodithioate) B, and 
is followed by the formation of episulphide C with the aid of 
OH-.[27] In this process, the ZS- represents any sulphur anion in the 
medium (xanthate and sulphide, etc.). Then, episulphide C under a 
desulphurization reaction generates cis-alkenes D [26] and the cis-
alkenes isomerised into trans-stilbenes under thermodynamic 
conditions (Scheme 5f).
Scheme 6. Proposed reaction mechanism.
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In summary, we established a novel and practical method for 
highly selective semi-hydrogenation of alkynes to the 
corresponding (E)-alkenes using EtOCS2K as the accelerant and 
H2O as the hydrogen donor in a transition-metal-free system. 
Mechanism verification revealed that H2O acts as the hydrogen 
donor, and the reduction process is facilitated by intermediate 
vinyl xanthates. This method is safe, simple, and chemoselective. 
In view of the method’s generality and excellent functional group 
compatibility, this semi-hydrogenation transformation will find 
more applications in organic synthesis.
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An environmentally sustainable alternative for the chemoselective reduction of the 
Csp-Csp triple bond through double hydrosulfuration and desulphurization 
procedure by Xanthate was reported. This old reagent xanthate, first isolated in 
1822, promoted the trans-selective semihydrogenation of the alkynes using H2O as 
the hydrogen donors under transition-metal-free condition.
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