Journal Pre-proofs

 (CADA) Compounds Thomas W. BellPII:
DOI:
Reference:

To appear in: Bioorganic \& Medicinal Chemistry

Received Date: 31 August 2020
Revised Date: 6 October 2020
Accepted Date: 8 October 2020 https://doi.org/10.1016/j.bmc.2020.115816
BMC 115816

Syntheses and Anti-HIV and Human Cluster of Differentiation 4 (CD4) Down-Modulating Potencies of Pyridine-Fused Cyclotriazadisulfonamide

Liezel A. Lumangtad, Elisa Claeys, Sunil Hamal, Amarawan Intasiri, Courtney Basrai, Expedite Yen-Pon, Davison Beenfeldt, Kurt Vermeire,

Please cite this article as: L.A. Lumangtad, E. Claeys, S. Hamal, A. Intasiri, C. Basrai, E. Yen-Pon, D. Beenfeldt, K. Vermeire, T.W. Bell, Syntheses and Anti-HIV and Human Cluster of Differentiation 4 (CD4) DownModulating Potencies of Pyridine-Fused Cyclotriazadisulfonamide (CADA) Compounds, Bioorganic \& Medicinal Chemistry (2020), doi: https://doi.org/10.1016/j.bmc.2020.115816

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
© 2020 Published by Elsevier Ltd.

Syntheses and Anti-HIV and Human Cluster of Differentiation 4 (CD4) Down-Modulating Potencies of Pyridine-Fused Cyclotriazadisulfonamide (CADA) Compounds

Liezel A. Lumangtad, ${ }^{\text {a,b }}$ Elisa Claeys, ${ }^{\text {c }}$ Sunil Hamal, ${ }^{\text {a }}$ Amarawan Intasiri, ${ }^{\text {a,d }}$ Courtney Basrai, ${ }^{a}$ Expedite Yen-Pon, ${ }^{a}$ Davison Beenfeldt, ${ }^{a}$ Kurt Vermeire, ${ }^{\text {c }}$ and Thomas W. Bell*,a
${ }^{\text {and }}$ Department of Chemistry, University of Nevada, Reno, Nevada, 89557-0216, USA
${ }^{\text {c }}$ KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, 3000 Leuven, Belgium
${ }^{\text {d Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, } 10330}$ Thailand

Abstract

CADA compounds selectively down-modulate human cell-surface CD4 protein and are of interest as HIV entry inhibitors and as drugs for asthma, rheumatoid arthritis, diabetes and some cancers. Postulating that fusing a pyridine ring bearing hydrophobic substituents into the macrocyclic scaffold of CADA compounds may lead to potent compounds with improved properties, 17 macrocycles were synthesized, 14 with 12-membered rings having an isobutylene head group, two arenesulfonyl side arms, and fused pyridine rings bearing a para substituent. The analogs display a wide range of CD4 down-modulating and anti-HIV potencies, including some with greater potency than CADA, proving that a highly basic nitrogen atom in the 12 -membered ring is not required for potency and that hydrophobic substituents enhance potency of pyridine-fused CADA compounds. Cytotoxicities of the new compounds compared favorably with those of CADA, showing that incorporation of a pyridine ring into the macrocyclic scaffold can produce selective compounds for potently down-modulating proteins of medicinal interest.

ARTICLE INFO
*Corresponding author. E-mail address: twb@unr.edu
${ }^{\text {b }}$ Present address: Nanosyn, 3100 Central Expressway, Santa Clara, California 95051, USA

Keywords: cell-surface protein, CD4, fused pyridines, HIV, signal peptide, translocation inhibitors

1. Introduction

Cyclotriazadisulfonamide (CADA) compounds selectively down-modulate expression of the cell-surface cluster of differentiation 4 (CD4) protein on primate cells and inhibit replication of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV). ${ }^{1-6} \mathrm{CD} 4$ is expressed on T cells and other immune cells; it is required for entry of HIV into host cells. ${ }^{7,8}$ Hence, CADA compounds act as HIV entry inhibitors, a class of compounds that are of continuing interest for treatment of HIV infection. ${ }^{5,9-16}$ They are unique in that they do not simply inhibit direct binding of the virus to the cell; they reduce CD4 levels below the concentration required for entry of HIV. ${ }^{2}$ Monoclonal antibodies that target CD4, such as iMabm36, ${ }^{17}$ and small-molecule inhibitors ${ }^{18-21}$ of the binding of viral gp120 to CD4 are of current interest as candidates for prophylactic and therapeutic drugs for HIV and acquired immunodeficiency syndrome (AIDS). The small-molecule drug fostemsavir (BMS663068), ${ }^{19-21}$ which inhibits attachment by blocking the GP120-CD4 interaction, is in a phase III clinical trial for treatment of HIV-1 infected patients. ${ }^{22}$ GSK3732394, a tri-specific entry inhibitor targeting CD4, viral gp41, and α-helical peptide fusion, has also entered clinical trials. ${ }^{23,24}$

Because antiretroviral therapy does not fully eradicate the virus, current research is aimed at a "kick and kill" strategy; the virus is first activated by an anti-latency drug, then eliminated by immune activation and/or antiviral or cytotoxic drugs. ${ }^{15}$ Recent clinical trials of this approach have failed. ${ }^{25}$ Combinations of anti-HIV drugs operating by different mechanisms may be required, as in current therapeutic regimens, ${ }^{26}$ so there is a continuing demand for new HIV entry inhibitors. ${ }^{15}$ CADA compounds are radically different from conventional anti-HIV agents that target viral proteins and are susceptible to resistance by mutation and selection mechanisms. ${ }^{27}$ Instead, CADA
compounds target a host biochemical pathway for cellular expression of CD4, so it is difficult to generate a CADA-resistant virus with high infectivity. ${ }^{28}$

The availability of many conventional anti-HIV drugs suggests that CADA compounds may be less significant as anti-HIV agents and may be more significant as drugs for other diseases. Anti-CD4 antibodies have long been of interest for chemotherapy of various immune-based diseases involving CD4+ T cells, ${ }^{29-31}$ including asthma, rheumatoid arthritis, ${ }^{32-35}$ and diabetes. They are also being investigated as therapeutic agents for various cancers, such as neuroblastoma ${ }^{36}$ and T cell lymphomas. ${ }^{37,38}$ Thus, as CD4 receptor down-modulating drugs, CADA compounds are of potential interest as therapeutic agents for numerous autoimmune diseases and cancers. While CD4 down-modulation may at first appear to be a therapeutic strategy that could compromise the immune system, the African green monkey avoids progression to AIDS when infected by SIV $_{\text {agm }}$ through decreased expression of CD 4 on its T cells, and the resulting $\mathrm{CD} 4^{-}$cells are immunocompetent. ${ }^{39}$

It has been found that the lead compound (CADA, 1, Figure 1) down-modulates cellsurface CD4 by binding the signal peptide (SP) of the CD4 preprotein. ${ }^{40}$ In mammals, more than one third of all proteins are bound to the cell membrane. ${ }^{41,42}$ These proteins are translated by ribosomes that are docked onto the endoplasmic reticulum (ER) membrane. Cell-surface and secreted proteins consisting of more than 100 amino acids enter the interior (lumen) of the ER by crossing its membrane during translation, a process known as co-translational translocation. ${ }^{43-50}$ Most type-1 transmembrane proteins, such as CD4, are targeted to the ER membrane by the SP, consisting of the first 15-40 amino acids at the N-terminus of the nascent protein (preprotein). For some membrane-bound proteins, such as G-protein coupled receptors (GPCRs), the first transmembrane domain serves as the signal sequence and is targeted in a similar manner. CADA
recognizes and binds to the SP of the human CD4 preprotein, preventing co-translational translocation of CD4 into the ER lumen, thus inhibiting cell-surface expression of this protein. ${ }^{40}$ The significance of CADA compounds may go far beyond CD4 down-modulation in that the results of structure-activity and mechanistic studies could eventually enable the design of SPtargeting drugs for inhibiting expression of many cell-surface proteins of medicinal interest. ${ }^{51}$

Figure 1. Structures of CADA (1), CK147 (2), pyridine-fused analog SH28 (3) and its retrosynthesis to key intermediate, $\operatorname{diol} 7(\mathrm{R}=\mathrm{H})$.

CADA specifically down-modulates CD4 among the numerous antigens expressed on T cells, but another human protein, sortilin, has been discovered as a secondary target for inhibition of ER translocation by CADA. ${ }^{52}$ Sortilin has recently been identified as a potential drug target for many disorders, ${ }^{53}$ including frontotemporal lobar degeneration, ${ }^{54}$ autism, ${ }^{55}$ Alzheimer's disease, ${ }^{56}$ atherosclerosis, ${ }^{57,58}$ and breast cancer. ${ }^{59}$ The structure-activity relationships (SARs) described here focus on CD4 down-modulation potencies of pyridine-fused CADA compounds, but these compounds also contribute to the library of analogs that will be available for future SAR studies on sortilin down-modulation.

Previous SAR studies of CADA compounds focused on modifications of CADA's benzyl tail group, ${ }^{2,6,60}$ its isobutylene head group, ${ }^{2}$ and the two arenesulfonamide side arms. ${ }^{2,6,60-62}$ Increasing the hydrophobicity of the tail ${ }^{60}$ and the size of the dipole moment of one of the side
arms 62 were found to improve activity, leading to potent analog CK147 (2, Figure 1). ${ }^{62}$ Hydrophobic tail groups decrease water solubility of CADA compounds, limiting biological studies. Introducing a pyridine ring into the structure was attractive for a number of reasons. Pyridine is second in abundance only to benzene as a 6 -membered ring in drugs. ${ }^{63}$ There are numerous examples of pyridine-containing drugs, ${ }^{64,65}$ partly because its moderate $\mathrm{pK}_{\mathrm{a}}(5.23)$ enables facile protonation/deprotonation during cell permeation and its metabolic reaction are readily adjustable via substitution. ${ }^{66,67}$ It also has a large dipole moment (2.23 Debye) ${ }^{68}$ and its nitrogen atom is a good hydrogen bond acceptor, enhancing attractive charge-dipole, dipole-dipole and hydrogen bonding interactions with drug targets. Of potential concern to this study was that pyridine is very polar and miscible with water in all proportions. Yet, the first pyridine-fused analog (SH28, 3) had measurable CD4 down-modulation potency. We hypothesized that adding nonpolar groups to the para position of the pyridine ring would increase potency, without sacrificing water solubility. The retrosynthesis of $\mathbf{3}$ shown in Figure 1 was applied to each new analog, reducing the synthetic challenge for each target to obtaining diol 7 as the key intermediate.

2. Results and discussion

2.1 Synthesis

The routes used for synthesis of the para substituted diols (7) are shown in Scheme 1. The shortest approach is reduction of diesters of pyridine-2,6-dicarboxylic acids, but only the unsubstituted dimethyl ester $\mathbf{8 a}$ is commercially available at a price that is attractive for multistep synthesis. Reduction of $\mathbf{8 a}$ and some para-substituted esters, including $\mathbf{8 e}-\mathbf{h}$, with sodium borohydride in methanol or ethanol generally proceeds in high yields. ${ }^{69-78}$ Dimethyl 4-ethylpyridine-2,6-dicarboxylate (8b) and diethyl 4-t-butylpyridine-2,6-dicarboxylate (8c) were prepared by free radical substitution reactions using $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{FeSO}_{4}$ and propionaldehyde or
pivaldehyde, respectively. ${ }^{79,80}$ The 4-alkoxypyridinedicarboxylates $\mathbf{8 e}-\mathbf{h}$ were prepared by deprotonation and alkylation of $\mathbf{8 d}$ (dimethyl 4-hydroxypyridine-2,6-dicarboxylate ${ }^{70,72,78}$ or diethyl 4-hydroxypyridine-2,6-dicarboxylate). ${ }^{71,75}$ Sodium borohydride reduction of all diesters $\mathbf{8 a - c}$ and $\mathbf{8 e - h}$ gave the corresponding diols $\mathbf{7 a - c}$ and $\mathbf{7 e}-\mathbf{h}$ in very high yields, as shown in Scheme 1.

Scheme 1

Five additional para substituted diols with methyl, propyl, butyl, isobutyl, and phenyl substituents ($7 \mathbf{i}-\mathbf{m}$, Scheme 1) were prepared by the Hantzsch pyridine synthesis ${ }^{81-86}$ with the direct method, condensing the corresponding aldehydes with t-butyl acetoacetate and ammonium hydroxide. ${ }^{81,83,84,86,87}$ Because of their ease of hydrolysis under acidic conditions, t-butyl esters were chosen for the general synthetic approach, modifying reactions reported for the 4-phenyl series. ${ }^{88,89}$ Mild oxidizing conditions reported by Bai et al. ${ }^{90}$ were chosen for standard conversion of $\mathbf{1 0}$ to $\mathbf{1 1}$, rather than employing the traditional oxidant, nitric acid. ${ }^{87}$ 4-Phenyl-1,4dihydropyridine diester 101, obtained in 52% yield from benzaldehyde, was oxidized quantitatively under these conditions to $\mathbf{1 1 1}$. The HCl salt produced by acidic hydrolysis of this t-butyl diester was insoluble in the convenient pyrolysis solvent Dowtherm ${ }^{\mathrm{TM}} \mathrm{A},{ }^{91}$ and t-butyl esters of this type
are resistant to alkaline saponification. Fortunately, 11188,89 underwent quantitative dealkylcarboxylation to $\mathbf{1 2 1}$ in boiling Dowtherm ${ }^{\mathrm{TM}}$ A. In contrast, saponification of the corresponding diethyl ester and neat pyrolysis of the intermediate diacid has been reported to give 121 in 66% yield, overall. ${ }^{92}$ This sequence of reactions was applied also to butyraldehyde, isobutyraldehyde, valeraldehyde, isovaleraldehyde and cyclohexanecarboxaldehyde, giving yields ranging from $34-72 \%$ for the condensation step ($\mathbf{9}$ to 10). Excellent yields were obtained for the oxidation step ($\mathbf{1 0}$ to $\mathbf{1 1}$), except that dealkylation of secondary substituents (isopropyl and cyclohexyl) was observed, apparently as a consequence of the single-electron transfer mechanism of this reaction. ${ }^{90}$ Diesters $11 \mathbf{i}-\mathbf{k}$ underwent pyrolytic dealkylcarboxylation to 4 -alkyl-2,6dimethylpyridines $\mathbf{1 2 i} \mathbf{-} \mathbf{k}$ in useful yields (51-100\%).

Methyl groups in the 2 and 6 positions of pyridines can be selectively converted to aldehyde substituents by condensation with benzaldehyde, followed by ozonolysis. ${ }^{93,94}$ As described in the literature, ${ }^{94}$ this sequence of reactions was used to convert collidine (2,4,6-trimethylpyridine, $\mathbf{1 2 m}$) to 4-methyl-2,6-pyridinedicarboxaldehyde (14m) in 40% overall yield. As shown in Scheme 1, this route was also used to convert $\mathbf{1 2 i} \mathbf{-} \mathbf{l}$ to dialdehydes $\mathbf{1 4 i} \mathbf{- l}$. The intermediate 4-phenyl-2,6distyrylpyridine (13I) ${ }^{95}$ was obtained in 83% yield, while the yields of 4 -alkyl analogs $\mathbf{1 3 i}-\mathbf{k}$ were lower due to side-products from condensation in the 4-position. All distyrylpyridines $\mathbf{1 3 i} \mathbf{- m}$ underwent ozonolysis in high yields and the resulting dialdehydes, including $141,{ }^{96}$ were reduced in very high yields to $\mathbf{1 4 i} \mathbf{- m}$, including known diols $\mathbf{1 4 1}{ }^{69,73}$ and $\mathbf{1 4 m} .^{74}$

As shown in Scheme 2, twelve diols (7a-c, $\mathbf{e}-\mathbf{m}$) were converted to the corresponding open-chain ditosylamides to prepare for macrocyclization to the target fused pyridine CADA analogs. Preparation of 2,6-bis(bromomethyl)pyridine (6a) from diol 7a has been reported frequently, generally with HBr in water ${ }^{97-99}$ or acetic acid, ${ }^{77,100}$ but PBr_{3} in $\mathrm{CHCl}_{3}{ }^{75,78}$ was chosen
for the standard approach to the entire series, considering the potential lability of 4alkoxypyridines under protic conditions. Conversions of $\mathbf{7 e}-\mathbf{g}^{75,76,78,101}$ and $\mathbf{7 1}^{69}$ to $\mathbf{6 e - g}, \mathbf{l}$ have also been reported. The dibromides (6) were converted to dinitriles (5) via $\mathrm{S}_{\mathrm{N}} 2$ displacement by cyanide, as described for $\mathbf{6 a}$ to $\mathbf{5 a} .{ }^{73,97}$ Dinitrile 5a was reduced to diamine $\mathbf{1 5 a}$ with $\mathrm{BH}_{3} \bullet \mathbf{T H F},{ }^{73,97}$ but higher yields were obtained in the remaining cases with NaBH_{4} and $\mathrm{NiCl}_{2} .{ }^{102}$ Finally, the diamines were tosylated in high yield with p-toluenesulfonyl chloride and triethylamine in dichloromethane, as described for $\mathbf{1 5 a}$ to 4a. ${ }^{73}$

Scheme 2

As shown in Scheme 3, the 12 open-chain disulfonamides 4a-c,e-m underwent palladiumcatalyzed cyclization with 3-methylene-1,3-propanediyl bis(t-butylcarbonate), as previously reported for $\mathbf{4 a}$ to $\mathbf{3 a} .{ }^{103}$ To examine biological effects of a 4-hydroxypyridine (or the 4-pyridone tautomer), para benzyloxy analog $\mathbf{3 g}$ was dealkylated to give compound 3d. Also, Atkins-Richman cyclization ${ }^{104,105}$ of para t-butyl open-chain disulfonamide $4 \mathbf{c}$ with 1,2 -dibromoethane gave 11membered macrocycle 16 for further structural diversity. While an isobutylene head group has been essential for maximal potency in CADA compounds tested so far, $\mathbf{1 6}$ tests the combination of an ethylene head group with a fused pyridine ring. In an attempt to prepare a 10 -membered macrocycle, Pd-catalyzed cyclization of disulfonamide 17 was attempted, but 20-membered $2+2$ product 18 was isolated, as previously reported. ${ }^{103}$ Considering that the electron donating dimethylamino side-arm substituent in compound 2 imparts high potency for CD4 downmodulation, ${ }^{62}$ 2,6-bis(2-aminoethyl)-4-ethylpyridine $\mathbf{1 5 b}$ was converted to the bis(4-
dimethylaminobenzenesulfonamide) $\mathbf{1 9}$, which was then cyclized to analog 20 (Scheme 3, inset).
Finally, replacement of the pyridine ring with acridine was considered desirable because acridine is a common scaffold in drugs. ${ }^{106}$ For this purpose, readily available 1,8 -bis(bromomethyl)acridine (21) ${ }^{107}$ was converted to disulfonamide 22 by reaction with Boc-protected p toluenesulfonamide, ${ }^{108}$ then $\mathbf{2 2}$ was cyclized to acridine analog 23.

Scheme 3

2.2 Potency

A total of 17 macrocycles were synthesized, 14 with 12 -membered rings having an isobutylene head group, two arenesulfonyl side arms, and fused pyridine rings bearing an alkyl, aryl, hydroxy or alkoxy substituent in the para position. Each of these 17 compounds, including
previously reported ${ }^{103}$ compounds $\mathbf{3 a}$ (SH28) and 18, was tested for CD4 down-modulation, either as its hydrochloride salt, hydrobromide salt, or free base form, as indicated in Table 1. As described in the Experimental Section, compositions and purities ($>95 \%$) were determined by combustion microanalysis. As for previous CADA compounds, ${ }^{60-62}$ most of the samples tested were stoichiometric hydrates of the monohydrochloride salts. The CD4 down-modulation potencies are given in Table 1 as $I C_{50}$ values, which are the concentrations producing a 50% decrease in CD4 expression, measured in Chinese hamster ovary (CHO) cells stably transfected with CD4 fused to yellow fluorescent protein (CD4-YFP), after 24 h of drug treatment. The structures, compound numbers/code names, anti-HIV potencies, and cytotoxicities of the 14 analogs are also given in Table 1, along with those of the previously reported reference compound $\mathbf{1}$ (CADA). Three of the new macrocycles, 16 (LAL039), 18 (LAL012), and $\mathbf{2 3}$ (LAL032), as well as all the open-chain disulfonamides, showed no observable CD4 down-modulation or anti-HIV activity and were not examined further.

The CD4 down-modulation and anti-HIV potencies given in Table 1 correlate well, as observed in previous studies of CADA compounds. ${ }^{60-62}$ As anticipated from previous SAR studies, ${ }^{60}$ increasing hydrophobicity in the tail region enhances CD4 down-modulation potency. The least potent fused pyridine CADA analog is $\mathbf{3 d}$, bearing a para-hydroxy group. $I C_{50}$ values for CD4 down-modulation drop from 9.3 to $0.5 \mu \mathrm{M}$ as the para substituent is modified as follows: OH $\Rightarrow \mathrm{H} \Rightarrow \mathrm{Me} \Rightarrow \mathrm{Et} \Rightarrow \mathrm{Pr}=>\mathrm{Bu}$ in the $\mathbf{3 d}, \mathbf{3 a}, \mathbf{3 m}, \mathbf{3 b}, \mathbf{3 i}, \mathbf{3 j}$ series. Branched or cyclic para substituents $i \mathrm{Bu}, t-\mathrm{Bu}$ or Ph in $\mathbf{3 c}, \mathbf{3 k}$, and $\mathbf{3 1}$ give slightly higher $I C_{50}$ values in the range of $0.7-$ $1.0 \mu \mathrm{M}$. Methoxy and ethoxy substituents in $\mathbf{3 e}$ and $\mathbf{3 f}$ reduce potency relative to methyl ($\mathbf{3 m}$) and ethyl (3b), increasing $I C_{50}$ values by 0.2 and $0.6 \mu \mathrm{M}$, respectively, perhaps due to increased dipole moments of pyridine rings with para electron donating substituents. The more hydrophobic
benzyloxy group in $\mathbf{3 g}$ give potency comparable to that of CADA, while cyclohexylmethoxy analog 3h has the greatest potency in the entire series. Analog $\mathbf{2 0}$ with a para-ethylpyridine ring and para-dimethylamino groups on the benzenesulfonyl side arms is also more potent than CADA (by 50%), with an $I C_{50}$ value that is smaller by $0.11 \mu \mathrm{M}$. Finally, 12 of the fused pyridine CADA compounds have undetectable cytotoxicities, and the remaining two, $\mathbf{3 j}$ and $\mathbf{3 k}$, have therapeutic indices $\left(C C_{50} / I C_{50}\right.$ for CD4) exceeding 100.

Table 1. CD4 Down-Modulating and anti-HIV Potencies and Cytotoxicities of PyridineFused CADA Compounds

Compound	R	R'	$I C_{50} \mathrm{CD} 4(\mu \mathrm{M})^{a}$	$I C_{50} \operatorname{HIV}(\mu \mathrm{M})^{b}$	$C C_{50}(\mu \mathrm{M})^{c}$
			mean \pm SD	mean \pm SD	
$1(\mathrm{CADA} \cdot \mathrm{HCl})$			0.33 ± 0.06	1.68 ± 1.00	>100
3a (SH28)	H	Me	2.81 ± 0.21	>50	>100
3b (LAL028•HCl)	Et	Me	0.86 ± 0.10	3.40 ± 1.84	>100
3c (LAL005•HCl)	t-Bu	Me	0.95 ± 0.14	2.70 ± 0.05	> 100
3d (LAL030•HBr)	OH	Me	9.30 ± 0.60	>50	> 100
3e (LAL020•HCl)	OMe	Me	1.88 ± 0.10	12.59 ± 0.54	>100
$\mathbf{3 f}(\mathrm{LAL016} \cdot \mathrm{HCl})$	OEt	Me	1.50 ± 0.17	10.40 ± 4.02	>100
3g (LAL018•HCl)	OBn	Me	0.42 ± 0.11	2.18 ± 0.32	> 100
3h (LAL036•HCl)	$\mathrm{OCH}_{2} \mathrm{Cy}$	Me	0.13 ± 0.02	0.93 ± 0.75	>100
3i (LAL026•HCl)	Pr	Me	0.83 ± 0.12	2.81 ± 0.28	> 100
3j (LAL022•HCl)	Bu	Me	0.54 ± 0.17	2.41 ± 0.62	65.8 ± 7.2
3k (LAL024•HCl)	iBu	Me	0.66 ± 0.03	2.30 ± 0.27	87.9 ± 17.1
31 (LAL014•HCl)	Ph	Me	0.74 ± 0.15	2.47 ± 0.94	>100
3m (LAL001•HCl)	Me	Me	1.67 ± 0.24	>50	>100
20 (LAL042•HCl)	Et	NMe_{2}	0.22 ± 0.01	1.10 ± 0.15	>100

${ }^{a} I C_{50}$: inhibitory concentration 50%; concentration at which 50% down-modulation of CD4 expression measured in CD4-YFP transfected CHO cells after 24 h of drug treatment. Values are the mean \pm standard deviation with $\mathrm{n}=3$.
${ }^{b} I C_{50}$: inhibitory concentration 50%; concentration at which 50% reduction of HIV-1 NL4.3 (X4) replication in MT-4 cells was measured. Values are mean \pm standard deviation with $\mathrm{n}=2$ or 3 .
${ }^{c} C_{50}$: cytotoxic concentration 50%; concentration required to reduce viability of MT-4 cells by 50%.

2.3 Solubility

A key rationale for investigating pyridine-fused CADA analogs was to determine whether the polar pyridine ring can enhance water solubilities in potent compounds. Drug solubility is perhaps one of the most important pharmacokinetic properties of an orally administered drug. A number of assays to determine solubility of drug candidates have been developed, ${ }^{109}$ two of which have emerged as common and convenient. Kinetic solubility is measured by adding a concentrated solution of the drug in an organic solvent (e.g. DMSO) to an aqueous buffer (e.g. PBS) at various concentrations. ${ }^{110}$ The drug is soluble at very low concentrations but becomes increasingly insoluble at higher aqueous concentrations. Nephelometry is commonly used to determine the kinetic solubility of a drug by measuring turbidity of mixtures of drug stock solutions diluted with buffer in wells of microtiter plates. ${ }^{111}$ The concentration at which the nephelometer detects significant light scattering is the kinetic solubility of the drug. Alternatively, thermodynamic solubility is typically determined by agitating an excess of the drug and an aqueous buffer to achieve equilibrium between the crystalline and dissolved states. The concentration of the dissolved drug at equilibrium solubility can be determined conveniently by UV-Visible spectroscopy. Considering that many relatively hydrophobic drugs have such low aqueous concentrations that their molar absorptivities (extinction coefficients) are difficult to determine in water by Beer-Lambert ${ }^{112}$ plots, the ε value is often determined in methanol and applied to the absorbance of the drug in water.

Listed in Table 2 are the molar absorptivities (ε) and the thermodynamic and kinetic solubilities of several selected pyridine-fused CADA compounds, as well as the lead compound, CADA. Only the thermodynamic or kinetic solubility was determined for some of the new compounds due to limitations of supply, but all of the results show that each of the fused-
pyridine analogs tested has greater aqueous solubility than CADA. This is not surprising for the compounds with small alkyl or alkoxy substituents in the para-pyridine position, but even LAL036 with the most hydrophobic substituent and greatest potency has greater kinetic solubility than CADA.

Table 2. Molar Absorptivities, Thermodynamic and Kinetic Solubilities of Pyridine-Fused CADA Compounds

Compound	R	R	ε^{a}	$\lambda_{\max }(\mathrm{nm})$	Therm. sol. $(\mu \mathrm{M})^{b}$	Kinetic Sol. $(\mu \mathrm{M})^{c}$
$\mathbf{1}(\mathrm{CADA} \cdot \mathrm{HCl})$			23,141	230	11 ± 1	43 ± 1
3c $(\mathrm{LAL} 005 \cdot \mathrm{HCl})$	$t-\mathrm{Bu}$	Me	35,200	230	20 ± 1	ND
3d $(\mathrm{LAL} 030 \cdot \mathrm{HBr})$	OH	Me	27,150	230	27 ± 1	ND
3e $(\mathrm{LAL020} \cdot \mathrm{HCl})$	OMe	Me	32,950	230	28 ± 1	64 ± 2
3f $(\mathrm{LAL} 016 \cdot \mathrm{HCl})$	OEt	Me	ND	230	ND	54 ± 2
3h $(\mathrm{LAL} 036 \cdot \mathrm{HCl})$	$\mathrm{OCH}_{2} \mathrm{Cy}$	Me	ND	230	ND	65 ± 3
3i $(\mathrm{LAL} 026 \cdot \mathrm{HCl})$	Pr	Me	34,000	230	18 ± 1	ND
3k $(\mathrm{LAL} 024 \cdot \mathrm{HCl})$	iBu	Me	29,650	230	29 ± 1	ND
3l $(\mathrm{LAL} 014 \cdot \mathrm{HCl})$	Ph	Me	37,099	230	ND	61 ± 1

${ }^{a}$ Molar absorptivity determined from Beer-Lambert Law plots of absorbances measured at the $\lambda_{\max }$ value listed for the major absorption.
${ }^{b}$ Thermodynamic solubility measured by UV-Visible absorption spectroscopy in aqueous PBS buffer (pH 7.4).
${ }^{c}$ Kinetic solubility measured by nephelometry in aqueous PBS buffer (pH 7.4) $/ 2.5 \%$ DMSO.

3. Conclusions

A total of 17 pyridine-fused macrocycles were synthesized with a wide range of structural variation. Many useful synthetic intermediates are reported, including intermediates in Hantzsch syntheses of para-propyl, butyl, isobutyl, and phenyl analogs. The new CADA analogs display a wide range of CD4 down-modulating and anti-HIV potencies, including some with greater potency than CADA. These results prove that a highly basic nitrogen atom in the 12 -membered ring is not required for high potency and that hydrophobic substituents enhance the potency of pyridine-fused

CADA compounds. Moreover, thermodynamic and kinetic water solubilities were measured for many of the new compounds and they all compare favorably with those of CADA, validating the hypothesis that incorporation of a pyridine ring can enhance some drug-like properties of CADA compounds. In addition, the pyridine-fused analogs were determined to have low cytotoxicities and high therapeutic indices. These results may lead to improved candidates for studying the effects of CD4 down-modulation in vivo and may be useful for the design of novel SP-targeting drugs for down-modulating other proteins of medicinal interest.

4. Experimental section

4.1 Biological Evaluation

4.1.1 CD4 down-modulation

To study the effect of the CADA analogs on CD4 expression, CHO cells, stably expressing CD4-YFP (human CD4 fused at its COOH -terminus to the yellow fluorescent protein), were treated for 24 h with serial dilutions (1:5) of the compounds at $37^{\circ} \mathrm{C}$. Cells were then washed, fixed in 1% formaldehyde and analyzed immediately. Data were acquired with a FACSCanto flow cytometer (BD Biosciences) using the 488 nm laser line and the BD FACSDiva software application (BD Biosciences). Data were analyzed with FLOWJO software (Tree Star, San Carlos, CA). Down-modulation of CD4 was evaluated by the decrease in fluorescence intensity on CADAtreated cells relative to matched, untreated cells. To calculate the efficiency of CD4 downmodulation, the mean fluorescence intensity (MFI) for YFP for each sample was expressed as a percentage of the MFI of control cells (after subtracting the background MFI of the non-transfected control cells).

4.1.2 Viral replication

MT-4 cells (obtained from the American Type Culture Collection) were seeded in 96-well plates at 3.75×10^{5} cells $/ \mathrm{mL}$ ($150 \mu \mathrm{~L} /$ well) filled with culture medium (Roswell Park Memorial Institute $1640,10 \%(\mathrm{v} / \mathrm{v})$ fetal bovine serum, 2 mM L-glutamine) and test compounds. Cells were pre-incubated with the compounds for 15 min before addition of the laboratory HIV-1 strain NL4.3 (obtained from the AIDS Research and Reference Reagent Program, Division of AIDS, NIAID, NIH) at $50 \mu \mathrm{~L}(30 \mathrm{pg} / \mathrm{well})$ and incubation at $37^{\circ} \mathrm{C}$. Four days after infection, cell viability was quantified by the MTS/phenazine ethosulfate (PES) method. Absorbance was measured at 490 and 700 nm and used to calculate the 50% inhibitory concentration $\left(I C_{50}\right)$ of each compound for viral replication.

4.1.3 Cytotoxicity

MT-4 cells were seeded in transparent 96-well plates at 10^{4} cells per well in Dulbecco's Modified Eagle Medium (Life Technologies, Waltham, MA, USA) with 10% (v / v) fetal bovine serum and 10 mM HEPES. Subsequently, compounds were added and the cell/compound mixture was incubated at $37{ }^{\circ} \mathrm{C}$ for 48 h . The 50% cytotoxic concentration $\left(C C_{50}\right)$ of each compound was determined from the reduction of viability of cells exposed to the compound, as measured by the MTS/phenazine ethosulfate (PES) method.

4.2 Solubility

4.2.1 Thermodynamic solubility

Solutions of five different concentrations of each compound in methanol were prepared and analyzed by UV-Visible spectroscopy. The absorbance values obtained were plotted as a function of concentration and the ε value of each compound was determined by linear least squares curve fitting of the data to obtain the slope (ε). Thermodynamic solubility was analyzed using the traditional shake flask method. ${ }^{109,110}$ For each compound tested in this assay, a small
amount ($3-5 \mathrm{mg}$) of the compound was added to a glass vial containing 5 mL of PBS buffer $(\mathrm{pH}$ $=7.4)$ and agitated on a mechanical shaker for 72 h . In order to ensure the solutions remained saturated, the solutions were visually inspected at 24 and 48 h to ensure that some of the compound remained insoluble. After 72 h , the solutions were filtered using a PTFE syringe filter $(0.45 \mu \mathrm{~L})$ and the filtrate was analyzed by the standard addition method using UV-Visible spectroscopy in conjunction with the Beer-Lambert law to calculate the concentration of each compound.

4.2.2 Kinetic solubility

The following procedure ${ }^{109,110}$ was used to determine the kinetic solubility of each compound tested. Solutions of each compound with various starting concentrations in 2.5% DMSO with a final volume of $100 \mu \mathrm{~L}$ were prepared in quadruplicate by serial dilution on sterile, 96 -well microtiter plates, with wells arranged in 12 columns (1-12) and 8 rows (A-H). Using a micropipette, the appropriate amount of a 20 mM DMSO stock solution for each compound was added into a vial contained $858 \mu \mathrm{~L}$ of PBS buffer $(p H=7.4)$ and the appropriate amount of DMSO in order to keep the DMSO concentration constant. A second starting solution with lower concentration of the CADA compound was prepared in the same manner. Then, 100 $\mu \mathrm{L}$ of a solution of $2.5 \% \mathrm{DMSO}$ in PBS buffer $(p H=7.4)$ was added into wells $(\mathrm{A}-\mathrm{H}) 2-8$ and (A-H)11,12. Into wells (A-D) $1,200 \mu \mathrm{~L}$ of the first starting solution for each CADA compound tested was added. Also $200 \mu \mathrm{~L}$ of the second starting solution for each CADA compound tested was added to wells (E-H)1. Each solution in column 1 was mixed by pipetting $100 \mu \mathrm{~L}$ up and down five times, then $100 \mu \mathrm{~L}$ was transferred to the adjacent well in column $(\mathrm{A}-\mathrm{H}) 2$. Each solution in column 2 was mixed by pipetting $100 \mu \mathrm{~L}$ up and down 5 times then $100 \mu \mathrm{~L}$ was transferred to well (A-H)3, and so on through column (A-H)8, after which $100 \mu \mathrm{~L}$ was removed
from each well in column 8 and placed in the waste container. Columns $(\mathrm{A}-\mathrm{H}) 11,12$ served as blanks, containing only $100 \mu \mathrm{~L}$ of a solution of 2.5% DMSO in PBS buffer $(p H=7.4)$. Therefore, serial dilutions were performed from the starting solution with each well containing a final volume of $100 \mu \mathrm{~L}$. Furthermore, four more solutions having CADA compound concentrations between the concentration of the first starting solution and half of the concentration of the first starting solution were prepared in the same manner. Aliquots ($100 \mu \mathrm{~L}$) of these solutions were placed in quadruplicate into wells $(\mathrm{A}-\mathrm{H}) 9,10$. Plates were shaken for 2 min, incubated for 1 h at $37^{\circ} \mathrm{C}$, and shaken again for 3 min before being analyzed using a nephelometer. Prior to use, a Nepheloskan Ascent nephelometer was allowed to warm up for at least 0.5 h . Each plate was placed in the nephelometer with the lid off, shaken for 2 min , incubated for 1 h at $37^{\circ} \mathrm{C}$, and shaken again for 3 min before measuring each well. The raw data was adjusted by subtracting the average blank value and analyzed using Microsoft Excel.

4.3 Chemistry

4.3.1 General Methods

All reactions were performed under an atmosphere of dry nitrogen. Reagents and solvents purchased from Aldrich Chemical Company, Acros Organics, or Fisher Scientific were of ACS reagent grade or better and were used without purification, unless indicated otherwise. Anhydrous acetonitrile (AN) and THF were distilled from CaH_{2} and from $\mathrm{Na} /$ benzophenone, respectively. Solutions of 2 N HCl in methanol/water was prepared from 42 mL of concentrated aq. $\mathrm{HCl}(12.1$ N) and 210 mL of methanol. Trituration of HCl salts was done by sonication in anhydrous diethyl ether ($5-15 \mathrm{~mL}$, unless indicated otherwise) for 5 min and filtration, repeating the process two more times. "Overnight" periods are ca. 16 h . Organic solutions were dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and sample drying in vacuo was performed at 0.1 mm at room temperature. Column
chromatography was performed with Sorbent Technologies neutral alumina ($50-200 \mu \mathrm{~m}$) or standard grade silica (32-63 $\mu \mathrm{m}$), unless noted otherwise. Melting points were measured on a Thomas-Hoover or Mel-Temp apparatus and are uncorrected. ${ }^{1} \mathrm{H}$ NMR (400 MHz or 500 MHz) and ${ }^{13} \mathrm{C}$ NMR (100 MHz or 125 MHz) spectra were acquired on a Varian 400 or a Varian Unity+ 500 spectrometer. All chemical shifts (δ) are reported in ppm units relative to solvent resonances, as follows: ${ }^{1} \mathrm{H}, \mathrm{CDCl}_{3} / \mathrm{TMS}=0.00, \mathrm{DMSO}-\mathrm{d}_{6}=2.50, \mathrm{CD}_{3} \mathrm{OD}=3.31 ;{ }^{13} \mathrm{C}, \mathrm{CDCl}_{3}=77.16$, DMSO$\mathrm{d}_{6}=39.7, \mathrm{CD}_{3} \mathrm{OD}=49.15 \mathrm{ppm}$. Infrared spectra (IR) were recorded neat on a Nicolet 6700 FTIR spectrometer. Low-resolution mass spectra (MS) were acquired on a Waters Micromass ZQ electrospray ionization quadrupole mass spectrometer with positive ion detection (capillary voltage $=3.5 \mathrm{kV})$. High-resolution mass spectra (HRMS) were determined on an Agilent 6230 TOF mass spectrometer. Samples for combustion analysis were dried at $78{ }^{\circ} \mathrm{C}(0.1 \mathrm{~mm})$ for 2 d , unless stated otherwise, and microanalysis was performed by NuMega Resonance Labs, Inc. Samples for biological testing were at least 95% pure, as shown by combustion microanalysis.

4.3.2 Synthesis

4-Ethyl-2,6-bis(hydroxymethyl)pyridine (7b). A solution of $1.6 \mathrm{~g}(7.2 \mathrm{mmol})$ of dimethyl 4-ethylpyridine-2,6-dicarboxylate ${ }^{79}$ in 100 mL of absolute ethanol was stirred at $0^{\circ} \mathrm{C}$ as $4.0 \mathrm{~g}(0.1 \mathrm{~mol})$ of NaBH_{4} was added in portions, then the mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h , at room temperature for 1 h , then boiled under reflux for 24 h . Acetone $(150 \mathrm{~mL})$ was added and the mixture was boiled for 1 h , then concentrated by rotary evaporation. A mixture of the residue and 60 mL of saturated aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution $(60 \mathrm{~mL})$ was boiled under reflux for 1 h , then cooled to room temperature and extracted with $\mathrm{DCM}(5 \times 80 \mathrm{~mL})$. The combined extracts were dried, filtered and concentrated to dryness by rotary evaporation. The residue was dried in vacuo overnight, yielding $1.2 \mathrm{~g}(100 \%)$ of $\mathbf{7 b}$ as a viscous oil, which was used in the next step without further
purification. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.03(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Py}), 4.70\left(\mathrm{~d}, 8.1 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 4.09$ (br, $2 \mathrm{H}, \mathrm{OH}$), $2.64\left(\mathrm{q}, 7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Me}\right), 1.24\left(\mathrm{t}, 7.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) 159.1,154.8,118.8,64.0,28.0,13.9$.

Diethyl 4-tert-butylpyridine-2,6-dicarboxylate (8c). $\mathbf{.}^{79,80} \mathrm{~A}$ solution of $20.8 \mathrm{~g}(90 \mathrm{mmol})$ of diethyl pyridine-2,6-dicarboxylate ${ }^{100}$ in 185 mL of $30 \%(\mathrm{v} / \mathrm{v})$ aq. $\mathrm{H}_{2} \mathrm{SO}_{4}$ was stirred at $0{ }^{\circ} \mathrm{C}$ as $25 \mathrm{~g}(0.29 \mathrm{~mol})$ of pivaldehyde was added dropwise over 45 min . The reaction mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$, initially forming a white solid that re-dissolved. A solution of $10.4 \mathrm{~g}(70 \mathrm{mmol})$ of $\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ in 75 mL of water was added dropwise over 45 min and the reaction mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$. A solution of 30% aq. hydrogen peroxide $(23.3 \mathrm{~mL}, 25.7 \mathrm{~g}, 0.19 \mathrm{~mol})$ was added dropwise over 45 min , the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 h , then allowed to warm to room temperature and was stirred for 48 h . The reaction mixture was adjusted to pH 3 by dropwise addition of a saturated aq. solution of $\mathrm{K}_{2} \mathrm{CO}_{3}$. The mixture (5 L) was divided into 10 parts, which were separately extracted with ethyl acetate ($5 \times 100 \mathrm{~mL}$). The combined extracts were dried, filtered and concentrated by rotary evaporation with a water bath temperature of 60 ${ }^{\circ} \mathrm{C}$. The resulting brownish residue was dried in vacuo overnight giving a brownish solid, which was purified by column chromatography on silica, eluting with $4: 6(\mathrm{v} / \mathrm{v})$ ethyl acetate/cyclohexane, yielding $6.8 \mathrm{~g}(26 \%)$ of $\mathbf{8 c}$ as a white solid, $\mathrm{mp} 66-68^{\circ} \mathrm{C}$; lit. $.^{80} 68^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.27(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Py}), 4.50\left(\mathrm{q}, 7.6 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 1.47\left(\mathrm{t}, 7.1 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.39(\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.0,26.9,30.3,35.2,62.2,124.8,148.5,162.9,165.0$. IR (cm^{-1}) 2972 (m), 2060 (w), 1719 (s), 1371 (m), 1248 (s), 1023 (s). MS m/z 280.54 (MH) ${ }^{+}$. Anal. calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{4}$: C, 63.47; H, 7.64; N, 4.93; Found: C, 63.44; H, 7.95; N, 5.32.

4-tert-Butyl-2,6-bis(hydroxymethyl)pyridine (7c). A solution of ($0.20 \mathrm{~g}, 0.72 \mathrm{mmol}$) of
diethyl 4-tert-butylpyridine-2,6-dicarboxylate (8c) in 10 mL of absolute ethanol was stirred at 0 ${ }^{\circ} \mathrm{C}$ as a suspension of $0.15 \mathrm{~g}(4.0 \mathrm{mmol})$ of NaBH_{4} in 10 mL of absolute ethanol was added in portions. The reaction mixture was stirred for 3 h at room temperature, boiled under reflux for 5 h, cooled to room temperature and concentrated by rotary evaporation. A mixture of the residue and 100 mL of saturated aq. $\mathrm{K}_{2} \mathrm{CO}_{3}$ solution was stirred at $60{ }^{\circ} \mathrm{C}$ for 2 h , cooled to room temperature, and extracted with chloroform ($8 \times 25 \mathrm{~mL}$). The combined extracts were dried, filtered, and concentrated to dryness by rotary evaporation. The residue was dried in vacuo overnight to give $0.13 \mathrm{~g}(93 \%)$ of 7 c as a brown solid, $\mathrm{mp} 105-107^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO$\left.\mathrm{d}_{6}\right) \delta 7.32(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Py}), 5.33(\mathrm{t}, 6.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OH}), 4.50\left(\mathrm{~d}, 5.9 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.28\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right)$. ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d $_{6}$) $\delta 26.2,30.5,64.5,115.1,160.4,160.9$. IR $\left(\mathrm{cm}^{-1}\right) 3349$ (br), 2965 (w), 2911 (w), 2748 (w), 2060 (w), 1607 (s). MS $m / z 218.24(\mathrm{M}+\mathrm{Na})^{+}$. Anal. calcd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{NO}_{2}$: C, 67.66; H, 8.78; N, 7.17; Found: C, 67.29; H, 9.00; N, 7.17.

2,6-Bis(hydroxymethyl)-4-methoxypyridine (7e). ${ }^{72,73,101,113,114}$ By the method described for $\mathbf{7 b}, 4.0 \mathrm{~g}(18 \mathrm{mmol})$ of dimethyl 4-methoxypyridine-2,6-dicarboxylate ${ }^{72,73,101,113}$ gave 3.0 g (100%) of 7 e as a white solid, $\mathrm{mp} 121^{\circ} \mathrm{C}$; lit. ${ }^{114} 121-122{ }^{\circ} \mathrm{C}$; lit. $.^{113} 125-127^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{DMSO}_{6}\right) \delta 6.86(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Py}), 5.35(\mathrm{t}, 5.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OH}), 4.46\left(\mathrm{~d}, 5.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 3.82$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$). ${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO-d $_{6}$) δ 166.6, 162.9, 103.9, 64.0, 55.1.

4-Ethoxy-2,6-bis(hydroxymethyl)pyridine (7f). ${ }^{75}$ By the method described for $7 \mathrm{bb}, 5.3 \mathrm{~g}$ (19 mmol) of diethyl 4-ethoxypyridine-2,6-dicarboxylate ${ }^{75}$ gave $3.30 \mathrm{~g}(97 \%)$ of $7 \mathbf{f}$ as a white solid, mp 117-118 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d ${ }_{6}$) $\delta 6.83$ (s, $2 \mathrm{H}, \mathrm{Py}$), 5.32 (t, $5.9 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{OH}), 4.44\left(\mathrm{~d}, 6.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right), 4.10\left(\mathrm{q}, 6.7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.34(\mathrm{t}, 7.1 \mathrm{~Hz}, 3 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$).

4-Benzyloxy-2,6-bis(hydroxymethyl)pyridine (7g). ${ }^{70-72,76,78,115}$ A mixture of $0.18 \mathrm{~g}(4.8$
$\mathrm{mmol})$ of $\mathrm{NaBH}_{4}, 0.28 \mathrm{~g}(0.92 \mathrm{mmol})$ of dimethyl 4-benzyloxypyridine-2,6-dicarboxylate, ${ }^{70-72,76,78}$ and 11 mL of anhydrous THF was stirred and heated to boiling, then 2.5 mL of MeOH was added over 10 min . The reaction mixture was boiled under reflux for 3 h then cooled to room temperature and 5 mL of water was added dropwise. Most of the MeOH was removed by rotary evaporation, resulting in a cloudy solution, which was diluted with 100 mL of water and extracted with ethyl acetate ($3 \times 50 \mathrm{~mL}$). The combined organic extracts were dried, filtered, and concentrated by rotary evaporation. The residue was dried in vacuo overnight, yielding $0.23 \mathrm{~g}(100 \%)$ of 7 g as a white solid, mp 295-298 ${ }^{\circ} \mathrm{C}$ (dec); lit. ${ }^{76} 298^{\circ} \mathrm{C}$ (dec); lit. ${ }^{115} 268^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.43-$ 7.38 (m, 5 H, Ph), 7.06 (s, 2 H, Py), 5.20 (s, $2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}$), 4.63 (s, $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}$).

Dimethyl 4-cyclohexylmethoxy-2,6-dicarboxylate (8h). A mixture of $0.30 \mathrm{~g}(1.42 \mathrm{mmol})$ of dimethyl chelidamate, ${ }^{70} 0.80 \mathrm{~g}(5.8 \mathrm{mmol})$ of $\mathrm{K}_{2} \mathrm{CO}_{3}$, and 15 mL of anhydrous DMF was stirred at $90{ }^{\circ} \mathrm{C}$ for 30 min . After cooling to room temperature, $1.0 \mathrm{~g}(5.7 \mathrm{mmol})$ of cyclohexylmethyl bromide was added in one portion. The tube was sealed and the reaction mixture was stirred at 90 ${ }^{\circ} \mathrm{C}$ for 48 h . Water (200 mL) was added, then the mixture was extracted with DCM ($5 \times 50 \mathrm{~mL}$). The combined extracts were dried, filtered, and concentrated by rotary evaporation. A solution of the resulting oil in 200 mL of diethyl ether was washed with water ($3 \times 100 \mathrm{~mL}$). The organic layer was dried, filtered, and concentrated by rotary evaporation, then the resulting yellow oil was dried in vacuo overnight. Recrystallization from diethyl ether gave 0.10 g (23%) of pure product as a white solid. Concentration of the mother liquor by rotary evaporation gave a white residue, which was dried in vacuo for 3 h , then purified by column chromatography on silica gel, eluting with DCM, followed by 9:1 (v/v) DCM/EtOAc, giving an additional 0.22 g of the product as a white solid. Total yield: $0.32 \mathrm{~g}(73 \%), \mathrm{mp} 105^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.80(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Py}), 4.01$ (s, $6 \mathrm{H}, \mathrm{CH}_{3}$), $3.93\left(\mathrm{~d}, 6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Cy}\right), 1.88-1.04(\mathrm{~m}, 11 \mathrm{H}, \mathrm{Cy}) .{ }^{13} \mathrm{C}$ NMR (100 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \delta 167.4,165.4,149.8,114.7,74.5,53.4,37.5,29.8,26.4,25.8 . \mathrm{IR}\left(\mathrm{cm}^{-1}\right) 2930(\mathrm{~s}), 2853$ (s), 1744 (s), 1718 (s), 1592 (s), 1436 (s). MS $m / z 308.3(M H)^{+}$. Anal. calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{5} \cdot 2 \mathrm{H}_{2} \mathrm{O}$: C, 55.97; H, 7.34; N, 4.08; Found: C, 56.27; H, 7.20; N, 4.00.

4-Cyclohexylmethoxy-2,6-bis(hydroxymethyl)pyridine (7h). By the method described for $\mathbf{7 b}, 1.8 \mathrm{~g}(5.86 \mathrm{mmol})$ of dimethyl 4-cyclohexylmethoxy-2,6-dicarboxylate ($\mathbf{8 h}$) gave 1.4 g (92%) of 7 h as a white solid, $\mathrm{mp} 114-115^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.67$ (s, $2 \mathrm{H}, \mathrm{Py}$), $4.67\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 3.79\left(\mathrm{~d}, 6.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Cy}\right), 3.31(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OH}), 1.84-0.94(\mathrm{~m}, 11 \mathrm{H}, \mathrm{Cy})$. ${ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.9,160.2,105.7,73.7,64.6,37.6,29.9,26.5,25.8 . \mathrm{IR}\left(\mathrm{cm}^{-1}\right)$ $3340(\mathrm{~m}), 3070$ (br), 2927 (m), 2850 (m), 1600 (s), 1566 (m). HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{3}(\mathrm{MH})^{+}$: m / z 252.1600; Found: 252.1593. Anal. calcd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{3} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 65.73 ; \mathrm{H}, 8.47$; N, 5.48 ; Found: C, 65.32; H, 7.86; N, 5.38.

3,5-Di(tert-butoxycarbonyl)-2,6-dimethyl-4-propyl-1,4-dihydropyridine (10i). A solution of $18 \mathrm{~g}(0.11 \mathrm{~mol})$ of t-butyl acetoacetate, $3.6 \mathrm{~g}(50 \mathrm{mmol})$ of butyraldehyde and 15 mL of ethanol (15 mL) was stirred at room temperature as $3.8 \mathrm{~mL}(56 \mathrm{mmol})$ of concentrated aq. ammonium hydroxide solution was added slowly. The mixture was boiled under reflux for 6 h , cooled to room temperature and concentrated by rotary evaporation. Aq. 2 N HCl solution (100 mL) and 200 mL of DCM were added to the residue and the layers were separated. The aqueous phase was extracted with DCM ($3 \times 75 \mathrm{~mL}$). The combined organic solutions were washed with saturated aq. NaHCO_{3} solution ($2 \times 100 \mathrm{~mL}$), saturated aq. NaCl solution $(100 \mathrm{~mL})$, then dried, filtered, and concentrated by rotary evaporation. The residue was dried in vacuo overnight then recrystallized from aq. isopropanol to give $6.04 \mathrm{~g}(34 \%)$ of $\mathbf{1 0 i}$ as a pale yellow, crystalline solid, mp 133-134 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.40(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 3.85(\mathrm{t}, 5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 2.23$
(s, $6 \mathrm{H}, \mathrm{C}=\mathrm{CCH}_{3}$), $1.49(\mathrm{~s}, 18 \mathrm{H}, t \mathrm{Bu}), 1.24\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 0.85\left(\mathrm{t}, 7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$. ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 167.8,143.5,105.1,79.4,39.5,33.4,28.5,19.5,18.5,14.6$. IR $\left(\mathrm{cm}^{-1}\right) 3322$ (s$), 2968$ (s), 2931 (m), 1691 (s$), 1645$ (s). MS m/z $374.69(\mathrm{M}+\mathrm{Na})^{+}$. Anal. calcd for $\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{NO}_{4} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}:$ C, $67.48 ; \mathrm{H}, 9.49$; N, 3.93; Found: C, 67.18; H, 9.16; N, 4.07.

3,5-Di(tert-butoxycarbonyl)-2,6-dimethyl-4-propylpyridine (11i). A mixture of 5.1 g (15 mmol) of 3,5-di(tert-butoxycarbonyl)-2,6-dimethyl-4-propyl-1,4-dihydropyridine (10i), 5.3 g (30 mmol) of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$ and 380 mL of EtOAc was stirred at room temperature as $8.7 \mathrm{~mL}(8.2 \mathrm{~g}$, 60 mmol) of $70 \% t$-butyl hydroperoxide was added in one portion. The reaction mixture was stirred at room temperature for 4 d , then 150 mL of saturated aq. NaHCO_{3} solution and 60 mL of $\mathrm{H}_{2} \mathrm{O}$ were added, and the mixture was stirred for 30 min at room temperature. The layers were separated and the aqueous layer was extracted with EtOAc ($3 \times 75 \mathrm{~mL}$). The combined organic solutions were washed with saturated aq. NaHCO_{3} solution ($2 \times 100 \mathrm{~mL}$) and saturated aq. NaCl solution $(100 \mathrm{~mL})$, then dried, filtered, and concentrated by rotary evaporation. The residue was dried in vacuo for 2 d , yielding $5.1 \mathrm{~g}(100 \%)$ of $\mathbf{1 1 i}$ as a pale orange oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $2.57\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Py}\right), 2.51\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Py}\right), 1.60(\mathrm{~s}, 18 \mathrm{H}, t-\mathrm{Bu}), 1.25\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.98$ (t, $\left.7.53 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.8,154.0,145.1,128.4,82.6$, 33.3, 28.1, 24.3, 22.6, 14.6. IR (cm ${ }^{-1}$) 2970 (m), 2933 (w), 2875 (w), 1719 (s), 1567 (s). HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{NO}_{4}(\mathrm{MH})^{+}: m / z 350.2331$; Found: 350.2349.

4-Propyl-2,6-distyrylpyridine (13i). ${ }^{116,117}$ A mixture of $10.3 \mathrm{~g}(30 \mathrm{mmol})$ of 3,5 -di-t-butoxycarbonyl-2,6-dimethyl-4-propylpyridine (11i) and 150 mL of Dowtherm A was stirred and boiled under reflux for 30 min (in an open apparatus to allow emission of white fumes) and then boiled at reflux under nitrogen for 24 h . After cooling to room temperature, 200 mL of 6 N aq. HCl solution and 100 mL of DCM were added and the mixture was stirred for 18 h at room
temperature. The mixture was filtered, washing the residue with water $(2 \times 100 \mathrm{~mL})$. The layers of the filtrate were separated and the aqueous layer was washed with DCM ($5 \times 100 \mathrm{~mL}$). The aqueous layer was basified (pH 14) with NaOH pellets added in portions with shaking, then saturated with NaCl . The resulting solution was stirred with 300 mL of DCM at room temperature for 18 h . The layers were separated and the aqueous layer was extracted with DCM ($3 \times 75 \mathrm{~mL}$). The combined organic solutions were dried, filtered, and concentrated by rotary evaporation. The residue was dried in vacuo overnight, yielding 2.88 g (65\%) of 2,6-dimethyl-4-propylpyridine $(\mathbf{1 2 i})^{116}$ as a brown oil, which was not purified further. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.78(\mathrm{~s}, 2 \mathrm{H}$, Py), 2.48 (m, $7.3 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Py}, \mathrm{CH}_{2} \mathrm{Py}$), 1.62 (sext, $7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 0.93 (t, 7.4 Hz , $\left.3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 157.4,152.0,120.5,37.2,24.4,23.5,13.8 . \mathrm{A}$ solution of $2.9 \mathrm{~g}(20 \mathrm{mmol})$ of 2,6-dimethyl-4-propylpyridine ($\mathbf{1 2 i}$), $11 \mathrm{~g}(0.10 \mathrm{~mol})$ of benzaldehyde, and 40 mL of acetic anhydride was stirred and boiled under reflux for 87 h . After cooling to room temperature, 100 mL of $5 \%(\mathrm{w} / \mathrm{v})$ aq. sodium hydroxide solution was added and the mixture was stirred at room temperature for 3 h . The layers were separated and the aqueous layer was extracted with DCM ($5 \times 50 \mathrm{~mL}$). The combined organic solutions were dried, filtered, and concentrated by rotary evaporation. A mixture of the residue, $11 \mathrm{~g}(0.11 \mathrm{~mol})$ of $\mathrm{NaHSO}_{3}, 80$ mL of ethyl acetate, 50 mL of EtOH , and 17 mL of water (17 mL) was stirred at $40^{\circ} \mathrm{C}$ for 24 h , then filtered, washing with DCM ($3 \times 50 \mathrm{~mL}$). The filtrate was concentrated by rotary evaporation and extracted with DCM ($3 \times 100 \mathrm{~mL}$). The combined extracts were washed with 100 mL of saturated aq. NaCl solution, dried, filtered, and concentrated by rotary evaporation. A mixture of the residue and 300 mL of 2 N HCl in aq. MeOH was stirred at room temperature for 6 h then stored in a refrigerator overnight. The precipitate was collected by filtration, washed with cold $\mathrm{MeOH}(2 \times 30 \mathrm{~mL})$ and dried in vacuo overnight, yielding 2.0 g (27\%) of 4-propyl-2,6-
distyrylpyridine HCl salt $(\mathbf{1 3 i} \cdot \mathrm{HCl})$ as a greenish yellow solid, mp 222-223 ${ }^{\circ} \mathrm{C}$; lit. ${ }^{117} 225{ }^{\circ} \mathrm{C}$ $\left(\mathrm{CHCl}_{3}\right)$. The HCl salt was converted to the free base by stirring with 200 mL of $\mathrm{DCM}, 200 \mathrm{~mL}$ of saturated aq. NaCl solution, and 200 mL of 2 N aq. NaOH solution for 5 h . The layers were separated and the aqueous layer was extracted with DCM (3x50 mL). The combined organic solutions were dried, filtered, and concentrated by rotary evaporation. The residue was dried in vacuo overnight giving 1.80 of a yellow solid. The filtrate from collection of the HCl salt was concentrated by rotary evaporation to give a black oil, which was dried in vacuo for 3 d , then mixed with diethyl ether and acetone, but no precipitate formed. The solution was again concentrated by rotary evaporation. The residue was dried in vacuo overnight then stirred with 200 mL of $\mathrm{DCM}, 200 \mathrm{~mL}$ of 2 N aq. NaOH solution, and 200 mL of saturated aq. NaCl solution for 7 h. The layers were separated and the aqueous layer was extracted with DCM ($3 \times 100 \mathrm{~mL}$). The combined organic solutions were dried, filtered, and concentrated by rotary evaporation. The residue was dried in vacuo overnight then subjected to column chromatography on silica, eluting with $\mathrm{DCM} /$ hexane $(1: 1,7: 3$, then $9: 1 \mathrm{v} / \mathrm{v}$), yielding 0.76 g of 4-propyl-2,6-distyrylpyridine ($\mathbf{1 3 i}$) as a glassy yellow solid. Total yield: $2.6 \mathrm{~g}(41 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71(\mathrm{~d}, 16.1 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{C}=\mathrm{CHPy}), 7.56(\mathrm{~d}, 8.4 \mathrm{~Hz}, 4 \mathrm{H}, o-\mathrm{Ph}), 7.31(\mathrm{~m}, 7.4 \mathrm{~Hz}, 6 \mathrm{H}, m, p-\mathrm{Ph}), 7.14(\mathrm{~d}, 16.1 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{C}=\mathrm{CHPh}), 6.96(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Py}), 2.46\left(\mathrm{t}, 7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}\right.$ 2 Py), 1.59 (sext, $8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $0.90\left(\mathrm{t}, 7.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.1,152.0,136.8$, 132.4, 128.6, 128.4, 128.0, 127.0, 120.8, 37.1, 23.3, 13.7. IR (neat, cm^{-1}) 2962 (w), 2871 (w), 2234 (s), 1952 (s), 1616 (s), 1494 (m), 1451 (s).

2,6-Bis(hydroxymethyl)-4-propylpyridine (7i). A solution of $1.77 \mathrm{~g}(5.44 \mathrm{mmol})$ of 4-propyl-2,6-distyrylpyridine (13i), 40 mL of DCM , and 10 mL of MeOH was cooled to $-78{ }^{\circ} \mathrm{C}$ by means of a dry ice/acetone bath, and a stream of $\mathrm{O}_{3} / \mathrm{O}_{2}$ was bubbled through the solution until it
turned a pale greenish color. Nitrogen was bubbled through the solution for 15 min , and then 4.2 $\mathrm{g}(70 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{~S}$ was added in one portion. The solution was stirred at room temperature overnight then concentrated by rotary evaporation. The resulting oil was dried in vacuo overnight and subjected to column chromatography on silica, eluting with 95:5 then $9: 1(\mathrm{v} / \mathrm{v})$ hexane/ethyl acetate, yielding $0.79 \mathrm{~g}(82 \%)$ of 4-propylpyridine-2,6-dicarboxaldehyde (14i) as a pale yellow oil, which was used in the next step without further purification. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 10.16 (s, $2 \mathrm{H}, \mathrm{CHO}$), 8.01 (s, $2 \mathrm{H}, \mathrm{Py}$), 2.80 (t, $7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}$ Py), 1.76 (sext, $8.1 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $1.00\left(\mathrm{t}, 7.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 192.7, 154.8, 153.1, 125.5, 37.2, 23.3, 13.6. IR (cm^{-1}) 2962 (m), 2933 (m), 2872 (m), 1708 (s), 1600 (s$), 1452$ (m). A solution of 0.63 g (3.6 mmol) of 4-propylpyridine-2,6-dicarboxaldehyde (14i) in 40 mL of absolute ethanol was stirred at $0^{\circ} \mathrm{C}$ as 1.2 g of $\mathrm{NaBH}_{4}(30 \mathrm{mmol})$ was added in one portion. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h , at room temperature for 1 h , then boiled and stirred under reflux for 22 h . After cooling, 40 mL of acetone was added and the mixture was boiled for 1 h , then concentrated by rotary evaporation. A mixture of the residue and 25 mL of saturated aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution (25 mL) was boiled under reflux for 1 h . After cooling to room temperature, the mixture was diluted with 10 mL of water and extracted with chloroform ($8 \times 30 \mathrm{~mL}$). The combined extracts were dried, filtered, and concentrated by rotary evaporation. The residual oil was dried in vacuo overnight, yielding 0.60 g (94\%) of 2,6-bis(hydroxymethyl)-4-propylpyridine (7i) as a pale yellow oil, which was used in the next step without further purification. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.01(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Py}), 4.70\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 4.16(\mathrm{br}, 2 \mathrm{H}, \mathrm{OH}), 2.58(\mathrm{t}, 7.5 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.64 (sext, $7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $0.93\left(\mathrm{t}, 7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 158.7,153.6,119.8,64.5,37.4,23.5,13.8 . \mathrm{IR}\left(\mathrm{cm}^{-1}\right) 3246$ (br), 2959 (m), 2930 (m), 2869 (m), 1610 (s), 1564 (s), 1427 (s). HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{NO}_{2}(\mathrm{MH})^{+}: m / z$
182.1181; Found: 182.1204.

3,5-Di(tert-butoxycarbonyl)-4-butyl-2,6-dimethyl-1,4-dihydropyridine (10j). By the method described for $\mathbf{1 0 i}, 18 \mathrm{~g}(0.11 \mathrm{~mol})$ of tert-butyl acetoacetate and $4.3 \mathrm{~g}(50 \mathrm{mmol})$ of valeraldehyde gave $12.5 \mathrm{~g}(68 \%)$ of $\mathbf{1 0 j}$ as a yellow solid, $\mathrm{mp} 143-144{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 5.39(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 3.85(\mathrm{t}, 5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 2.24\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{C}=\mathrm{CCH}_{3}\right), 1.49(\mathrm{~s}, 18 \mathrm{H}, t \mathrm{Bu})$, $1.24\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$), $0.86\left(\mathrm{t}, 7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$). ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 167.6,143.4,104.9,79.2,36.7,33.5,28.4,27.6,23.0,19.4,14.2$. IR (neat, $\left.\mathrm{cm}^{-1}\right) 3323$ (s), 3237 (m), 2968 (s), 2925 (s), 1692 (s), 1644 (s), 1486 (s). Anal. calcd for $\mathrm{C}_{21} \mathrm{H}_{35} \mathrm{NO}_{4}: \mathrm{C}, 69.01$; H, 9.65; N, 3.83; Found: C, 68.98; H, 10.00; N, 4.03.

3,5-Di(tert-butoxycarbonyl)-4-butyl-2,6-dimethylpyridine (11j). By the method described for 11i, 12 g (30 mmol) of 3,5-di(tert-butoxycarbonyl)-4-butyl-2,6-dimethyl-1,4dihydropyridine $(\mathbf{1 0 j})$ gave $12 \mathrm{~g}(100 \%)$ of $\mathbf{1 1 j}$ as an orange oil, which was used in the next step without further purification. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.59\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Py}\right), 2.51(\mathrm{~s}, 6 \mathrm{H}$, PyCH_{3}), $1.60(\mathrm{~s}, 18 \mathrm{H}, t \mathrm{Bu}), 1.36\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.93(\mathrm{t}, 7.5 \mathrm{~Hz}, 3 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.9,154.0,145.2,128.4,82.6,33.0,31.1$, 28.1, 23.4, 22.7, 13.8. IR (neat, cm^{-1}) 2962 (s), 2931 (m), 2874 (m), 1720 (s), 1565 (s), 1457 (s). HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{NO}_{4}(\mathrm{MH})^{+}: m / z ~ 364.2489$; Found: 364.2469.

4-Butyl-2,6-bis(hydroxymethyl)pyridine (7j). By the method described for conversion of $\mathbf{1 1 i}$ to $\mathbf{1 2 i}, 12 \mathrm{~g}(0.03 \mathrm{~mol})$ of $3,5-\mathrm{di}($ tert-butoxycarbonyl)-4-butyl-2,6-dimethylpyridine ($\mathbf{1 1 j}$) gave $2.65 \mathrm{~g}(51 \%)$ of 4-butyl-2,5-dimethylpyridine ($\mathbf{(2 \mathbf { 2 }})^{118}$ as a brown oil, which was used in the next step without further purification. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.78$ (s, $2 \mathrm{H}, \mathrm{Py}$), $2.51(\mathrm{~m}$, $7.8 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Py}, \mathrm{CH}_{3} \mathrm{Py}$), $1.57\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$), $1.34\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $0.93\left(\mathrm{t}, 7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.4,152.2,120.4,34.9$,
$32.5,24.4,22.4,13.9$. The method described for conversion of $\mathbf{1 2 i}$ to $\mathbf{1 3 i}$ was applied to $2.64 \mathrm{~g}(20$ $\mathbf{m m o l}$) of $\mathbf{1 2} \mathbf{j}$, except that after aq. workup and treatment with NaHSO_{3}, the residue from the combined DCM extracts were subjected to column chromatography on alumina, eluting with DCM/hexane (1:4, 1:1, then 4:1, v/v), yielding $3.37 \mathrm{~g}(61 \%)$ of 4-butyl-2,6-distyrylpyridine (13j), a yellow solid, $\mathrm{mp} 65-67{ }^{\circ} \mathrm{C}$, which was used in the next step without further purification. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.70$ (dd, $\left.2.3 \mathrm{~Hz}, 16.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}=\mathrm{CHPy}\right), 7.60(\mathrm{~d}, 7.6 \mathrm{~Hz}, 4 \mathrm{H}, o-\mathrm{Ph}$), 7.38 (td, 2.4 Hz, 7.5 Hz, 4 H, m-Ph), 7.29 (m, 2 H, p-Ph), 7.20 (dd, $2.3 \mathrm{~Hz}, 16.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}=\mathrm{CHPh}$), 7.10 (s, $2 \mathrm{H}, \mathrm{Py}$), 2.62 (t, $7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Py}$), $1.66\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.39(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 0.96 (t, $7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$). ${ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.5$, $152.4,137.1,132.7,128.8,128.7,128.3,127.2,121.0,35.2,32.7,22.5,14.1$. By the method described for conversion of $\mathbf{1 3 i}$ to $\mathbf{1 4 i}, 3.2 \mathrm{~g}(9.5 \mathrm{mmol})$ of 4-butyl-2,6-distyrylpyridine ($\mathbf{1 3 j}$) gave $1.4 \mathrm{~g}(77 \%)$ of 4-butylpyridine-2,6-dicarboxaldehyde $(\mathbf{1 4 j})$ as a pale yellow oil, which was used without further purification. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.16(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CHO}), 8.00(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Py})$, 2.81 (t, $7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Py}$), $1.69\left(\mathrm{~m}, 7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$), 1.38 (m, $7.4 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $0.96\left(\mathrm{t}, 7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$). By the method described for $7 \mathbf{i}, 0.95 \mathrm{~g}$ ($5.0 \mathbf{~ m m o l}$) of $\mathbf{1 4} \mathbf{j}$ gave $0.98 \mathrm{~g}(100 \%)$ of 4-butyl-2,6-bis(hydroxymethyl)pyridine ($\mathbf{7 j}$) as a colorless oil, which was used in the next step without further purification. ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.06(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Py}), 5.32(\mathrm{br}, 2 \mathrm{H}, \mathrm{OH}), 4.63\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 2.55\left(\mathrm{t}, 7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Py}\right)$, $1.77\left(\mathrm{~m}, 7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.30\left(\mathrm{~m}, 7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.89(\mathrm{t}, 7.4 \mathrm{~Hz}$, $\left.3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$. HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{NO}_{2}(\mathrm{MH})^{+}: m / z$ 196.1337; Found: 196.1335.

3,5-Di-(tert-butoxycarbonyl)-4-isobutyl-2,6-dimethyl-1,4-dihydropyridine (10k). By the method described for $\mathbf{1 0 i}, 18 \mathrm{~g}(0.11 \mathrm{~mol})$ of tert-butyl acetoacetate, $4.3 \mathrm{~g}(50 \mathrm{mmol})$ of isovaleraldehyde gave $13.2 \mathrm{~g}(72 \%)$ of a ($\mathbf{1 0 k}$) as a yellow solid, $\mathrm{mp} 157-158^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(400$
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.53(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 3.90(\mathrm{t}, 7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CCH}), 2.25\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{C}=\mathrm{CCH}_{3}\right), 1.49$ (m, $\left.20 \mathrm{H}, t \mathrm{Bu}, \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.08\left(\mathrm{t}, 7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}(\mathrm{CH})_{3}\right), 0.90(\mathrm{~d}, 6.5 \mathrm{~Hz}, 6 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.8,143.5,105.7,79.4,46.9,31.5,28.5,23.7$, 23.5, 19.5. IR (neat, cm^{-1}) 3318 (s), 2969 (s), 1690 (s), 1643 (s), 1491 (s). Anal. calcd for $\mathrm{C}_{21} \mathrm{H}_{35} \mathrm{NO}_{4}$: C, 69.01 ; H, 9.65 ; N, 3.83; Found: C, 68.90 ; H, 10.05; N, 4.08 .

3,5-Di-(tert-butoxycarbonyl)-4-isobutyl-2,6-dimethylpyridine (11k). By the method described for 11i, 20 g (55 mmol) of 3,5-di-(tert-butoxycarbonyl)-4-isobutyl-2,6-dimethyl-1,4dihydropyridine ($\mathbf{1 0 k}$) gave $19.5 \mathrm{~g}(98 \%)$ of $\mathbf{1 1 k}$ as pale orange oil, which was used in the next step without further purification. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.62\left(\mathrm{~d}, 7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Py}\right)$, 2.52(s, $\left.6 \mathrm{H}, \mathrm{PyCH}_{3}\right), 1.93\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.60(\mathrm{~s}, 18 \mathrm{H}, t \mathrm{Bu}), 0.89(\mathrm{~d}, 7.2 \mathrm{~Hz}, 6 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) δ 168.0, 154.1, 144.6, 128.9, 82.7, 39.1, 29.5, 28.1, 22.9, 22.7. IR (neat, cm^{-1}) 2968 (s), 1718 (s), 1565 (s), 1457 (s). HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{NO}_{4}$ $(\mathrm{MH})^{+}: m / z 364.2488$; Found: 364.2458.

4-Isobutyl-2,6-distyrylpyridine (13k). By the method described for conversion of $\mathbf{1 1 i}$ to $\mathbf{1 2 i}, 11 \mathrm{~g}(30 \mathrm{mmol})$ of 3,5-di-(tert-butoxycarbonyl)-4-isobutyl-2,6-dimethylpyridine ($\mathbf{1 1 \mathbf { k }}$) gave $2.5 \mathrm{~g}(51 \%)$ of 4-isobutyl-2,6-dimethylpyridine (12k), ${ }^{119}$ which was used in the next step without further purification. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.75(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Py}), 2.49\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Py}\right), 2.38$ (d, $7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Py}$), $1.88\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.90\left(\mathrm{~d}, 7.0 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl3) $\delta 157.3,151.2,121.2,44.7,29.6,24.4,22.5$. By the method described for conversion of $\mathbf{1 2} \mathbf{j}$ to $\mathbf{1 3} \mathbf{j}, 2.5 \mathrm{~g}(20 \mathrm{mmol})$ of 4-isobutyl-2,6-dimethylpyridine $(\mathbf{1 2 k})$ gave 2.3 g (43\%) of 4-isobutyl-2,6-distyrylpyridine (13k) as a yellow solid, mp 79-80 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 7.71$ (dd, $\left.2.3 \mathrm{~Hz}, 16.1 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{C}=\mathrm{CHPy}\right), 7.61(\mathrm{~d}, 7.6 \mathrm{~Hz}, 4 \mathrm{H}, o-\mathrm{Ph}), 7.38(\mathrm{t}, 7.1 \mathrm{~Hz}$, $4 \mathrm{H}, m-\mathrm{Ph}), 7.29(\mathrm{~m}, 2 \mathrm{H}, p-\mathrm{Ph}), 7.18(\mathrm{dd}, 2.3 \mathrm{~Hz}, 16.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}=\mathrm{CHPh}), 7.07(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Py}), 2.50$
(d, $\left.7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.96\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.95\left(\mathrm{t}, 7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$. ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDC3) $\delta 155.0,151.2,136.7,132.4,128.5,128.3,128.0,126.9,121.3,44.6$, 29.4, 22.2. IR (neat, cm ${ }^{-1}$) 3021 (m), 2955 (s), 2926 (m), 2868 (m), 2360 (m), 2341 (m), 1635 (s), 1589 (s). HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~N}(\mathrm{MH})^{+}: m / z 340.2065$; Found: 340.2047.

2,6-Bis(hydroxymethyl-4-isobutylpyridine (7k). By the method described for conversion of $\mathbf{1 3 i}$ to $\mathbf{1 4 i}, 1.1 \mathrm{~g}(3.2 \mathrm{mmol})$ of 4-isobutyl-2,6-distyrylpyridine $(\mathbf{1 3 k})$ gave $0.54 \mathrm{~g}(89 \%)$ of 4 -isobutylpyridine-2,6-dicarboxaldehyde ($\mathbf{1 4 k}$) as a pale orange oil, which was used in the next step without further purification. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.16(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CHO}), 7.96(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Py})$, 2.67 (d, $7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Py}$), $2.00\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.96\left(\mathrm{t}, 7.4 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 192.9,154.0,153.1,126.1,44.7,29.7,22.3$. By the method described for $\mathbf{7 i}, 0.72 \mathrm{~g}(3.8 \mathrm{mmol})$ of 4-isobutylpyridine-2,6-dicarboxaldehyde ($\mathbf{1 4 k}$) gave 0.73 g (99\%) of 2,6-bis(hydroxymethyl)-4-isobutylpyridine (7k) as a pale yellow solid, $\mathrm{mp} 75-76^{\circ} \mathrm{C} \cdot{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 6.99$ (s, $2 \mathrm{H}, \mathrm{Py}$), 4.72 (s, $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$), 4.22 (br, $2 \mathrm{H}, \mathrm{OH}$), 2.47 (d, 7.2 $\mathrm{Hz}, 2 \mathrm{H} \mathrm{CH}_{2} \mathrm{Py}$,) , $1.90\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.90\left(\mathrm{~d}, 7.6 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.6,152.7,120.3,64.5,44.8,29.6,22.4$. IR (neat, cm^{-1}) 3249 (br), 2968 (s), 2873 (s), 1610 (s), 1564 (s). HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{NO}_{2}(\mathrm{MH})^{+}: m / z$ 196.1338; Found: 196.1360.

3,5-Di-(tert-butoxycarbonyl)-2,6-dimethyl-4-phenyl-1,4-dihydropyridine (101). ${ }^{88}$ By the method described for $\mathbf{1 0 i}, 18 \mathrm{~g}(0.11 \mathrm{~mol})$ of tert-butyl acetoacetate and $5.3 \mathrm{~g}(50 \mathrm{mmol})$ of benzaldehyde gave 10.1 g (52\%) of 3,5-di-(tert-butoxycarbonyl)-2,6-dimethyl-4-phenyl-1,4dihydropyridine (101) as an orange solid, mp 185-186 ${ }^{\circ} \mathrm{C}\left(\right.$ lit. $\left..^{88} 168-171.5^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 7.26-7.31 (m, $\left.2 \mathrm{H}, o-\mathrm{Ph}\right), 7.18-7.21(\mathrm{~m}, 2 \mathrm{H}, m-\mathrm{Ph}), 7.10(\mathrm{~m}, 1 \mathrm{H}, p-\mathrm{Ph}), 5.50(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{NH}), 4.91(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 2.27\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{C}=\mathrm{CCH}_{3}\right), 1.39(\mathrm{~s}, 18 \mathrm{H}, t \mathrm{Bu})$.

3,5-Di-(tert-butoxycarbonyl)-2,6-dimethyl-4-phenylpyridine (111)..$^{88-90}$ By the method described for 11i, 8.1 g (21 mmol) of 3,5-di-(tert-butoxycarbonyl)-2,6-dimethyl-4-phenyl-1,4dihydropyridine (101) gave $8.1 \mathrm{~g}(100 \%)$ of 3,5-di-(tert-butoxycarbonyl)-2,6-dimethyl-4phenylpyridine (111) as a light yellow solid, mp 89-90 ${ }^{\circ} \mathrm{C}$ (lit. $.^{89} 88-92{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.36-7.37(\mathrm{~m}, 3 \mathrm{H}, o, p-\mathrm{Ph}), 7.20(\mathrm{~m}, 2 \mathrm{H}, m-\mathrm{Ph}), 7.27(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Py}), 2.58\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Py}\right)$, $1.18(\mathrm{~s}, 18 \mathrm{H}, t \mathrm{Bu})$.

2,6-Dimethyl-4-phenylpyridine (121). ${ }^{91,120}$ By the method described for 12i, $0.30 \mathrm{~g}(0.78$ mmol) of 3,5-di(tert-butoxycarbonyl)-2,6-dimethyl-4-phenylpyridine (111) gave $0.14 \mathrm{~g}(100 \%)$ of 2,6-dimethyl-4-phenylpyridine (12I) as a white solid, mp 58-60 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{121} 49-50^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.60(\mathrm{~m}, 2 \mathrm{H}, o-\mathrm{Ph}), 7.44(\mathrm{~m}, 3 \mathrm{H}, m, p-\mathrm{Ph}), 7.18(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Py}), 2.59\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right)$. ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 158.3,149.2,138.8,129.1,128.9,127.1,118.5,24.7$.

4-Phenyl-2,6-distyrylpyridine (131). A solution of $2.7 \mathrm{~g}(15 \mathrm{mmol})$ of 2,6-dimethyl-4phenylpyridine (121), $7.5 \mathrm{~mL}(7.8 \mathrm{~g}, 70 \mathrm{mmol})$ of benzaldehyde, and $14 \mathrm{~mL}(15 \mathrm{~g}, 0.15 \mathrm{~mol})$ of acetic anhydride was stirred and boiled under reflux for 73 h . After cooling to room temperature, 15 mL of $5 \%(\mathrm{w} / \mathrm{v})$ aq. NaOH solution was added. The mixture was stirred at room temperature for 3 h and extracted with $\mathrm{DCM}(3 \times 50 \mathrm{~mL})$, and the combined organic solutions were dried, filtered, and concentrated by rotary evaporation. The residue was dried in vacuo overnight then stirred with 100 mL of 6 N aq. HCl solution and 50 mL of DCM at room temperature for 5 h . The layers were separated and the aq. phase was extracted with $\operatorname{DCM}(3 \times 75 \mathrm{~mL})$. The combined extracts were dried, filtered, and concentrated by rotary evaporation. The residue was dried in vacuo and triturated with anhydrous diethyl ether ($5 \times 50 \mathrm{~mL}$). The resulting yellow solid was dried in vacuo overnight yielding the HCl salt as a yellow solid, which was converted to the free base by stirring with 300 mL of $\mathrm{DCM}, 300 \mathrm{~mL}$ of 2 N aq. NaOH solution, and 300 mL of saturated aq. NaCl
solution for 5 h . The layers were separated and the aq. layer was extracted with $\mathrm{DCM}(3 \times 75 \mathrm{~mL})$. The combined extracts were dried, filtered, and concentrated by rotary evaporation. Recrystallization of the residue with DCM/hexane gave $2.7 \mathrm{~g}(75 \%)$ of a yellow-green powder. The mother liquor was subjected to column chromatography on neutral alumina, eluting with 3:7, then 1:1 (v/v) DCM/hexane to give $1.7 \mathrm{~g}(47 \%)$ of a pale yellow powder. Total yield of $13 \mathrm{I}: 4.36 \mathrm{~g}$ (83%). Spectroscopic data are consistent with those reported in the literature. ${ }^{94,95}$

4-Phenylpyridine-2,6-dicarboxaldehyde (141). ${ }^{94,96}$ By the method described for conversion of $\mathbf{1 3 i}$ to $\mathbf{1 4 i}, 2.1 \mathrm{~g}(5.8 \mathrm{mmol})$ of 4-phenyl-2,6-distyrylpyridine (131) gave the crude product as a yellow solid, which was recrystallized from diethyl ether yielding $1.1 \mathrm{~g}(90 \%)$ of $\mathbf{1 4 l}$ as a pale yellow solid, $\mathrm{mp} 104-105^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.23(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CHO}), 8.41$ (s, $2 \mathrm{H}, \mathrm{Py}$), 7.76 (d, $7.8 \mathrm{~Hz}, 2 \mathrm{H}, o-\mathrm{Ph}), 7.58-7.52(\mathrm{~m}, 3 \mathrm{H}, m, p-\mathrm{Ph}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.6,153.6,152.2,136.0,130.4,129.6,127.2,122.9$.

2,6-Bis(hydroxymethyl)-4-phenylpyridine (71). ${ }^{72,88}$ By the method described for 7i, 2.3 g (10 mmol) of 4-phenylpyridine-2,6-dicarboxaldehyde (141) gave $2.17 \mathrm{~g}(94 \%)$ of $\mathbf{7 l}$ as a brown solid, $\mathrm{mp} 94-95^{\circ} \mathrm{C}\left(\mathrm{lit} .{ }^{69} 105-10 \mathrm{~B}^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.62(\mathrm{~m}, 2 \mathrm{H}, o-\mathrm{Ph}), 7.47$ (m, $3 \mathrm{H}, m, p-\mathrm{Ph}$), 7.41 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{Py}$), $4.82\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 3.70(\mathrm{br}, 2 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C} \mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 159.3,150.3,138.1,129.4,129.2,127.2,117.5,64.7$.

4-Methyl-2,6-distyrylpyridine (13m). ${ }^{94}$ A solution of $4 \mathrm{~mL}(30 \mathrm{mmol})$ of collidine, 15 mL $(0.15 \mathrm{~mol})$ of benzaldehyde, and $28 \mathrm{~mL}(0.3 \mathrm{~mol})$ of acetic anhydride was stirred at $170{ }^{\circ} \mathrm{C}$ for 45 h. Most of the acetic anhydride (ca. 15 mL) was distilled off under reduced pressure, then 30 mL of $5 \%(\mathrm{w} / \mathrm{v})$ aq. NaOH solution was added. The mixture was stirred at room temperature for 3 h then extracted with DCM ($3 \times 50 \mathrm{~mL}$). The combined extracts were dried, filtered, and concentrated by rotary evaporation. The residue was purified by column chromatography on silica, eluting with

9:1 (v / v) pentane/EtOAc to give 0.56 g of yellow solid. Flash column chromatography on slilica gel, eluting with 9:1 (v/v) pentane/EtOAc gave 1.77 g of $\mathbf{1 3 m}$ as a yellow solid. Total yield: 2.33 $\mathrm{g}(26 \%), \mathrm{mp} 119-122^{\circ} \mathrm{C}\left(\mathrm{lit} .{ }^{94} 130-131^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.70(\mathrm{~d}, 16.1 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{C}=\mathrm{CHPy}), 7.61$ (dd, 7.1, 1.4 Hz, $4 \mathrm{H}, o-\mathrm{Ph}$), $7.42-7.30(\mathrm{~m}, 6 \mathrm{H}, m, p-\mathrm{Ph}), 7.19(\mathrm{~d}, 16.1 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{C}=\mathrm{CHPh}), 7.13$ (s, $2 \mathrm{H}, \mathrm{Py}$), 2.37 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 155.3, 147.7, $136.9,132.6,128.7,128.4,128.1,127.1,121.5,21.0$.

4-Methylpyridine-2,6-dicarboxaldehyde (14m). By the method described for conversion of $\mathbf{1 3 i}$ to $\mathbf{1 4 i}, 1.8 \mathrm{~g}(5.9 \mathbf{~ m m o l})$ of 2,6-dibenzylidene-4-methylpyridine gave $0.86 \mathrm{~g}(98 \%)$ of $\mathbf{1 4 m}$ as a brownish solid, mp $164-165{ }^{\circ} \mathrm{C}\left(\mathrm{lit} .{ }^{94} 162{ }^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.15(\mathrm{~s}, 2 \mathrm{H}$, CHO), 7.99 (s, $2 \mathrm{H}, \mathrm{Py}$), 2.55 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 192.6, 153.0, 150.3, 126.1, 21.1.

2,6-Bis(hydroxymethyl)-4-methylpyridine (7m) By the method described for 7i, 0.95 g ($6.4 \mathbf{m m o l}$) of 4-methylpyridine-2,6-dicarboxaldehyde ($\mathbf{1 4 m}$) gave $0.86 \mathrm{~g}(89 \%)$ of $\mathbf{7 m}$ as an off white solid, mp $95-97{ }^{\circ} \mathrm{C}$ (lit. ${ }^{72} 85-86{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d): $\delta 7.12$ (s, $2 \mathrm{H}, \mathrm{Py}$), $5.30(\mathrm{t}, 6.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OH}), 4.46\left(\mathrm{~d}, 6.1 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 2.30(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d ${ }_{6}$: $\delta 160.9,147.7,119.1,64.3 .21 .1$.

General procedure for conversion of diols (7) to dibromides (6) with $\mathbf{P B r}_{3}$. A suspension or solution of 20 mmol of the diol (7) in 200 mL of CHCl_{3} was stirred at room temperature as a solution of 0.13 mol of PBr_{3} was added dropwise over 30 min . The reaction mixture was stirred and boiled under reflux overnight, then cooled to room temperature and stirred with 350 mL of $5 \%(\mathrm{w} / \mathrm{v})$ aq. NaHCO_{3} solution for 1 hr . The layers were separated and the clear organic layer was washed with water $(2 \times 150 \mathrm{~mL})$, dried, filtered and concentrated by rotary evaporation. The residue was dried in vacuo overnight.

2,6-Bis(bromomethyl)-4-ethylpyridine (6b). ${ }^{122}$ Following the general procedure, 0.70 g (4.2 mmol) of 4-ethyl-2,6-bis(hydroxymethyl)pyridine (7b) gave $1.05 \mathrm{~g}(85 \%)$ of $\mathbf{6 b}$ as a pale pinkish orange oil. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.26(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Py}), 4.52\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Br}\right), 2.67(\mathrm{q}$, $7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), $1.27\left(\mathrm{t}, 7.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.

2,6-Bis(bromomethyl)-4-tert-butylpyridine (6c). Following the general procedure, 1.5 g , (7.4 mmol) of 4-tert-butyl-2,6-bis(hydroxymethyl)pyridine (7c) gave $2.1 \mathrm{~g}(90 \%)$ of $\mathbf{6 c}$ as a white solid, mp 108-110 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.35(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Py}), 4.54\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.33$ (s, $9 \mathrm{H}, t \mathrm{Bu}) .{ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 30.7,34.1,35.2,120.2,156.8$, 162.8. IR $\left(\mathrm{cm}^{-1}\right) 2962$ (s), 2864 (s), 2060 (w), 1628 (s), 1599 (s), 1554 (s). MS m/z 322.47 (MH) ${ }^{+}, 324.43$ (M+2) ${ }^{+}$. Anal. calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{Br}_{2} \mathrm{~N}$: C, 41.15; H, 4.71; N, 4.36; Found: C, 41.22; H, 5.08; N, 4.49.

2,6-Bis(bromomethyl)-4-methoxypyridine (6e). ${ }^{75,101}$ Following the general procedure, 2.8 $\mathrm{g}(20 \mathrm{mmol})$ of 2,6-bis(hydroxymethyl)-4-methoxypyridine (7e) gave $4.38 \mathrm{~g}(90 \%)$ of $\mathbf{6 e}$ as a white solid, mp 98-99 ${ }^{\circ} \mathrm{C}\left(\right.$ lit..$\left.^{101} 99^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.89$ (s, $2 \mathrm{H}, \mathrm{Py}$), 4.46 (s, 4 H , CH_{2}), $3.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.4,158.3,109.0,55.6,33.7$.

2,6-Bis(bromomethyl)-4-ethoxypyridine ($\mathbf{(6 f)} .^{75}$ Following the general procedure, 1.3 g (6.8 mmol) of 4-ethoxy-2,6-bis(hydroxymethyl)pyridine (7f) gave $1.85 \mathrm{~g}(87 \%)$ of $\mathbf{6 f}$ as a white solid, mp 71-72 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.88\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Py}\right.$), $4.48\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Br}\right), 4.12$ (s, $7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}$), $1.44\left(\mathrm{t}, 7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}^{\mathrm{N}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 166.8,158.2$, 109.5, 64.2, 33.6, 14.6.

4-Benzyloxy-2,6-bis(bromomethyl)pyridine ($\mathbf{6 g}$). ${ }^{76}$ Following the general procedure, 0.24 $\mathrm{g}(1.0 \mathrm{mmol})$ of 4-benzyloxy-2,6-bis(hydromethyl)pyridine $(\mathbf{7 g})$ gave $0.30 \mathrm{~g}(83 \%)$ of $\mathbf{6 g}$ as a white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.43-7.39(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 6.99(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Py}), 5.14\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right)$, 4.51 ($\mathrm{s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Br}$).

2,6-Bis(bromomethyl)-4-cyclohexylmethoxypyridine (6h). Following the general procedure, $0.13 \mathrm{~g}(0.52 \mathrm{mmol})$ of 4-cyclohexylmethoxy-2,6-bis(hydroxymethyl)pyridine (7 h) gave $0.19 \mathrm{~g}(97 \%)$ of $\mathbf{6 h}$ as a pale yellow solid, $\mathrm{mp} 94-95{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.88(\mathrm{~s}, 2$ H, Py), 4.49 ($\mathrm{s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Br}$), 3.81 (d, $6.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}$), 1.86-1.01 (m, $\left.11 \mathrm{H}, \mathrm{Cy}\right) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.1,158.1,109.5,73.8,37.5,33.6,29.8,26.5,25.8 . \mathrm{IR}\left(\mathrm{cm}^{-1}\right) 2921(\mathrm{~s})$, 2849 (s), 1622 (s), 1595 (s). HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{Br}_{2} \mathrm{NO}(\mathrm{M}+2)^{+}: m / z$ 377.9846; Found: 377.9843. Anal. calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{Br}_{2} \mathrm{NO}: \mathrm{C}, 44.59$; H, 5.08 ; N, 3.71; Found: C, 44.24; H, 5.68; N, 3.63.

2,6-Bis(bromomethyl)-4-propylpyridine (6i). Following the general procedure, 0.53 g (2.9 mmol) of 2,6-bis(hydroxymethyl)-4-propylpyridine (7i) gave $0.75 \mathrm{~g}(84 \%)$ of $\mathbf{6 i}$ as a pale orange oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.19(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Py}), 4.51\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Br}\right), 2.58(\mathrm{t}, 7.5 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Py}$), $1.65\left(\mathrm{sext}, 7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.93\left(\mathrm{t}, 7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.3,153.9,122.9,36.9,33.6,23.1,13.6 . \mathrm{IR}\left(\mathrm{cm}^{-1}\right) 2959(\mathrm{~m}), 2870(\mathrm{~m}), 2511$ (br), 1627 (s), $1560(\mathrm{~m})$. HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{Br}_{2} \mathrm{~N}(\mathrm{MH})^{+}: m / z$ 305.9447; Found: 305.9479.

2,6-Bis(bromomethyl)-4-butylpyridine (6j). Following the general procedure, 0.98 g (5.0 mmmol) of 4-butyl-2,6-bis(hydroxymethyl)pyridine ($7 \mathbf{j}$) gave $1.58 \mathrm{~g}(98 \%)$ of $\mathbf{6 j}$ as a light pink oil. ${ }^{1} \mathrm{H}_{\mathrm{NMR}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.20(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Py}), 4.50\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Br}\right), 2.60(\mathrm{t}, 7.6 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Py}$), $1.61\left(\mathrm{~m}, 7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.35\left(\mathrm{~m}, 7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.92(\mathrm{t}, 7.4 \mathrm{~Hz}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.2,154.0,122.8,34.6,33.5,32.0,22.1,13.7$. IR (cm^{-1}) 2959 (s), 2869 (s), 2508 (br), 1626 (s), 1560 (s), 1437 (s). HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{Br}_{2} \mathrm{~N}$ $(\mathrm{M}+2)^{+}: m / z ~ 321.9629$; Found: 321.9656. Anal. calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{Br}_{2} \mathrm{~N}: \mathrm{C}, 41.15 ; \mathrm{H}, 4.71$; N, 4.36; Found: C, 40.87; H, 5.10; N, 4.57.

2,6-Bis(bromomethyl)-4-isobutylpyridine (6k). Following the general procedure, 0.72 g (3.7 mmol) of 2,6 -bis(hydroxymethyl)-4-isobutylpyridine ($7 \mathbf{k}$) gave $1.05 \mathrm{~g}(89 \%)$ of $\mathbf{6 k}$ as a pale pinkish oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.16$ (s, $2 \mathrm{H}, \mathrm{Py}$), 4.51 (s, $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Br}$), 2.49 (d, 7.4 Hz, $\left.2 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{Py}\right), 1.91\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\right), 0.90\left(\mathrm{~d}, 7.3 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 156.6,153.2,123.8,44.7,33.8,29.6,22.4 . \mathrm{IR}\left(\mathrm{cm}^{-1}\right) 2955(\mathrm{~s}), 2928(\mathrm{~s}), 2860(\mathrm{~s}), 2509$ (br), 2361 (s), 2342 (s), 1627 (s), 1606 (s), 1560 (s). HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{Br}_{2} \mathrm{~N}(\mathrm{M}+2)^{+}: m / z$ 321.9629; Found: 321.9634.

2,6-Bis(bromomethyl)-4-phenylpyridine (61). ${ }^{69,75}$ Following the general procedure, 2.16 $\mathrm{g}(10 \mathrm{mmol})$ of 2,6-bis(hydroxymethyl)-4-phenylpyridine (71) gave $3.0 \mathrm{~g}(88 \%)$ of 61 as a a brown solid, mp 159-160 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{69} 167-169{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta 7.64(\mathrm{~m}, 2 \mathrm{H}, o-\mathrm{Ph}), 7.58$ (s, $2 \mathrm{H}, \mathrm{Py}$), $7.49(\mathrm{~m}, 3 \mathrm{H}, m, p-\mathrm{Ph}), 4.60\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 157.4$, $151.0,137.5,129.6,129.4,127.2,121.1,33.7$.

2,6-Bis(bromomethyl)-4-methylpyridine (6m). Following the general procedure, 0.10 g (0.66 mmol) of 2,6-bis(hydroxymethyl)-4-methylpyridine ($\mathbf{7 m}$) gave $0.16 \mathrm{~g}(87 \%)$ of $\mathbf{6 m}$ as white crystals, mp $84-85^{\circ} \mathrm{C}$ (lit. ${ }^{123} 85-85.5^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta 7.19$ (s, $2 \mathrm{H}, \mathrm{Py}$), 4.49 (s, $\left.4 \mathrm{H}, \mathrm{CH}_{2}\right), 2.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.

General procedure for conversion of dibromides (6) to dinitriles (5) with $\mathbf{N a C N}$. A mixture of 10 mmol of the dibromide (6), 60 mmol of NaCN and 100 mL of MeOH was stirred and boiled under reflux for $5-6.5 \mathrm{~h}$, cooled to room temperature, then the reaction mixture or the residue after rotary evaporation was partitioned between 100 mL of water and 100 mL of chloroform or DCM. The layers were separated and the aq. layer was extracted with chloroform or DCM ($3 \times 50 \mathrm{~mL}$). The combined organic solutions were washed with 100 mL of water, 100 mL of saturated aq. NaCl solution, dried, filtered and concentrated to dryness by rotary
evaporation. The residue was purified by column chromatography on silica, eluting with $\mathrm{EtOAc} / \mathrm{CHCl}_{3}$ or $\mathrm{EtOAc} / \mathrm{DCM}$.

2,6-Bis(cyanomethyl)-4-ethylpyridine (5b). Following the general procedure, except that the reaction mixture was partitioned between DCM and saturated aq. NaCl solution (instead of water), 1.65 g (5.63 mmol) of 2,6-bis(bromomethyl)-4-ethylpyridine ($\mathbf{6 b}$) gave $0.66 \mathrm{~g}(63 \%)$ of $\mathbf{5 b}$ as a reddish brown solid, $\mathrm{mp} 75-76{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}, \mathrm{CDCl} 3) \delta 7.24(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Py}), 3.89(\mathrm{~s}$, $\left.4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CN}\right), 2.71\left(\mathrm{q}, 7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.28\left(\mathrm{t}, 7.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 156.8,150.9,121.3,117.0,28.4,26.5,14.4 . \mathrm{IR}\left(\mathrm{cm}^{-1}\right) 2968(\mathrm{~s}), 2924(\mathrm{~m}), 2245(\mathrm{~s}), 1609$ (s), 1562 (s), 1441 (s). HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}_{3}(\mathrm{MH})^{+}: m / z$ 186.1031; Found: 186.1024.

4-tert-Butyl-2,6-bis(cyanomethyl)pyridine (5c). Following the general procedure, 5.9 g (0.02 mol) of 2,6-bis(bromomethyl)-4-tert-butylpyridine ($\mathbf{6 c}$) was converted to $3.3 \mathrm{~g}(84 \%)$ of $\mathbf{5 c}$ as a reddish brown solid, $\mathrm{mp} 79-80^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.37(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Py}), 3.91$ (s, $4 \mathrm{H}, \mathrm{CH}_{2}$), $1.34\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 26.7,30.6,35.3,117.1,118.9$, 150.9, 163.9. IR (cm^{-1}) 2968 (s), 2252 (m), 1605 (s$), 1555$ (s$)$. HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{3}(\mathrm{M}+\mathrm{Na})^{+}$; m / z 236.1164; Found: 236.1145. Anal. calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{3}$: C, 73.21; H, 7.09; N, 19.70; Found: C, 72.56; H, 7.43; N, 19.50.

2,6-Bis(cyanomethyl)-4-methoxypyridine (5e). Following the general procedure, 0.51 g , (1.7 mmol) of 2,6-bis(bromomethyl)-4-methoxypyridine ($\mathbf{6 e}$) gave $0.16 \mathrm{~g}(49 \%)$ of $\mathbf{5 e}$ as a brown solid, mp 58-60 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.91(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Py}), 3.91\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 3.88(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{OMe}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 168.0,152.4,116.8,107.8,55.9,26.6$. IR $\left(\mathrm{cm}^{-1}\right) 2949$ (w), 2921 (m), 2259 (m), 1738 (m), 1600 (s), 1572 (s), 1464 (s). MS m/z $210.40(\mathrm{M}+\mathrm{Na})^{+}$. Anal. calcd for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}: ~ \mathrm{C}, 64.16 ; \mathrm{H}, 4.85$; N, 22.45; Found: C, 63.85; H, 4.94; N, 22.13.

2,6-Bis(cyanomethyl)-4-ethoxypyridine (5f). Following the general procedure, 2.4 g (7.7 mmol) of 2,6-bis(bromomethyl)-4-ethoxypyridine ($\mathbf{6 f}$) gave $0.57 \mathrm{~g}(37 \%)$ of $\mathbf{5 f}$ as a brown solid, mp 91-92 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.89(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Py}), 4.13\left(\mathrm{q}, 7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.85$ (s, $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CN}$), $1.46\left(\mathrm{t}, 6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.1,152.1,116.6$, 107.9, 64.2, 26.3, 14.2. IR (cm^{-1}) 2983 (w), 2949 (w), 2905 (m), 2258 (m), 1608 (s$), 1567$ (s). HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}(\mathrm{M}+\mathrm{Na})^{+}: m / z$ 224.0800; Found: 224.0786. Anal. calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 57.88 ; \mathrm{H}, 6.18 ; \mathrm{N}, 18.41$; Found: C, $57.97 ; \mathrm{H}, 5.64 ; \mathrm{N}, 18.47$.

4-Benzyloxy-2,6-bis(cyanomethyl)pyridine (5g). Following the general procedure, 4.2 g $(0.01 \mathrm{~mol})$ of 4-benzyloxy-2,6-bis(bromomethyl)pyridine $(\mathbf{6 g})$ gave $1.19 \mathrm{~g}(40 \%)$ of $\mathbf{5 g}$ as a brown solid, mp $87-89^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.47-7.47(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 6.99(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Py}), 5.17$ (s, $2 \mathrm{H}, \mathrm{OCH}_{2}$), $3.86\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CN}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 167.1,152.5,134.9,131.1$, 129.0, 127.8, 116.8, 108.6, 70.6, 26.7. IR ($\left.\mathrm{cm}^{-1}\right) 2256(\mathrm{~m}), 1739(\mathrm{~m}), 1603(\mathrm{~s}), 1573(\mathrm{~s}), 1453(\mathrm{~s})$. MS m/z $286.28(\mathrm{M}+\mathrm{Na})^{+}, 100 \% ; 287.54(\mathrm{M}+\mathrm{Na}+\mathrm{H})^{+}, 20 \%$. Anal. calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 72.99$; H, 4.98; N, 15.96; Found: C, 72.71; H, 5.33; N, 16.00.

2,6-Bis(cyanomethyl)-4-cyclohexylmethoxypyridine (5h). Following the general procedure, $1.8 \mathrm{~g}(4.7 \mathrm{mmol})$ of 2,6-bis(bromomethyl)-4-cyclohexylmethoxypyridine ($\mathbf{6 h}$) gave $0.64 \mathrm{~g}(51 \%)$ of $\mathbf{5 h}$ as a reddish brown solid, $\mathrm{mp} 85-86{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.90$ (s, $2 \mathrm{H}, \mathrm{Py}$), 3.85-3.84 (m, $6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Br}, \mathrm{OCH}_{2} \mathrm{Cy}$), 1.86-1.03 (m, $\left.11 \mathrm{H}, \mathrm{Cy}\right) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 167.7,152.3,116.8,108.2,74.1,37.5,29.8,26.6,25.8 . \operatorname{IR}\left(\mathrm{cm}^{-1}\right) 2921(\mathrm{~s}), 2851(\mathrm{~s}), 2258$ (m), 1598 (s), 1568 (s), 1450 (s). HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}(\mathrm{M}+\mathrm{Na})^{+}: m / z 292.1426$; Found: 292.1455. Anal. calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 71.35$; H, 7.11; N, 15.60; Found: C, 70.96; H, 7.59; N, 15.56 .

2,6-Bis(cyanomethyl)-4-propylpyridine (5i). Following the general procedure, 0.72 g (2.4 mmol) of 2,6-bis(bromomethyl)-4-propylpyridine (6i) gave $0.18 \mathrm{~g}(\mathbf{3 9 \%}$) of $\mathbf{5 i}$ as an orange brown oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.22$ (s, $2 \mathrm{H}, \mathrm{Py}$), 3.91 (s, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Br}$), 2.64 (t, $7.7 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{Py}$), 1.68 (sext, $7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $0.94\left(\mathrm{t}, 7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 155.0,150.6,121.7,116.9,37.1,26.3,23.4,13.6 . \mathrm{IR}\left(\mathrm{cm}^{-1}\right) 2962(\mathrm{~s}), 2933(\mathrm{~m}), 2873$ (m), 2254 (s), 1608 (s), 1564 (s), 1432 (m), 1408 (s). HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{3}(\mathrm{M}+\mathrm{Na})^{+}: m / z$ 222.1007; Found: 222.1025 .

4-Butyl-2,6-bis(cyanomethyl)pyridine (5j). Following the general procedure, $1.5 \mathrm{~g}(4.6$ mmol) of 2,6-bis(bromomethyl)-4-butylpyridine ($\mathbf{6 j}$) gave $0.50 \mathrm{~g}(51 \%)$ of $\mathbf{5 j}$ as a brown solid, mp $72-73{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 7.22(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Py}), 3.90\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CN}\right), 2.66(\mathrm{t}, 7.5 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Py}$), $1.62\left(\mathrm{~m}, 7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.37\left(\mathrm{~m}, 7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $0.95\left(\mathrm{t}, 7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 155.4,150.7,121.7,116.9,35.0,32.4$, 26.4, 22.3, 13.8. IR (cm^{-1}) 2962 (s), 2933 (s$), 2873$ (s$), 2254$ (s$), 1608$ (s$), 1564$ (s$), 1432$ (s), 1408 (s). HRMS calcd. for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{3}(\mathrm{M}+\mathrm{Na})^{+}$: m / z 236.1164; Found: 236.1194.

2,6-Bis(cyanomethyl)-4-isobutylpyridine (5k). Following the general procedure, 1.0 g ($3.1 \mathbf{~ m m o l}$) of 2,6-bis(bromomethyl)-4-isobutylpyridine ($\mathbf{6 k}$) gave $0.34 \mathrm{~g}(52 \%)$ of $\mathbf{5 k}$ as a reddish brown solid, mp 67-69 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.19$ (s, $2 \mathrm{H}, \mathrm{Py}$), $3.90\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CN}\right.$), 2.53 (d, $7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Py}$), $1.93(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 0.90\left(\mathrm{~d}, 7.1 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 154.4,150.7,122.3,116.9,44.6,29.7,26.5,22.4 . \mathrm{IR}\left(\mathrm{cm}^{-1}\right) 2962(\mathrm{~s}), 2933(\mathrm{~m}), 2873(\mathrm{~m})$, 2253 (s), 1608 (s), 1564 (s), 1432 (m), 1408 (s). HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{3}(\mathrm{MH})^{+}: m / z 214.1344$; Found: 214.1325.

2,6-Bis(cyanomethyl)-4-phenylpyridine (5I). Following the general procedure, 1.2 g (3.4 $\mathbf{m m o l}$) of 2,6-bis(bromomethyl)-4-phenylpyridine (61) gave $0.30 \mathrm{~g}(38 \%)$ of $\mathbf{5 1}$ as a beige solid,
mp 127-128 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.64(\mathrm{~m}, 2 \mathrm{H}, o-\mathrm{Ph}), 7.61(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Py}), 7.51(\mathrm{~m}, 3$ $\mathrm{H}, m, p-\mathrm{Ph}), 3.98\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 151.9,151.5,136.8,130.1$, 129.5, 127.2, 119.6, 116.8, 26.7. IR (cm ${ }^{-1}$) 2913 (w), 2253 (w), 1732 (m), 1604 (s), 1553 (s). MS $m / z 256.39(\mathrm{M}+\mathrm{Na})^{+}$. Anal. calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~N}_{3}: \mathrm{C}, 77.23 ; \mathrm{H}, 4.75$; $\mathrm{N}, 18.01$; Found: C, 76.85; H, 5.15; N, 17.80 .

2,6-Bis(cyanomethyl)-4-methylpyridine (5m). Following the general procedure, 1.5 g (5.5 mmol) of 2,6-bis(bromomethyl)-4-methylpyridine ($\mathbf{6 m}$) gave $0.57 \mathrm{~g}(57 \%)$ of $\mathbf{5 m}$ as a beige solid, mp 93-95 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.23$ (s, $2 \mathrm{H}, \mathrm{Py}$), $3.88\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2}\right.$), $2.40(\mathrm{~s}, 3$ $\mathrm{H}, \mathrm{Me}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 21.2,26.5,117.0,122.6,131.6,150.8$. IR ($\left.\mathrm{cm}^{-1}\right) 2971(\mathrm{~m})$, 2946 (w), 2252 (s), 1607 (s), 1561 (s), 1448 (s), 1405 (s). HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{3}(\mathrm{M}+\mathrm{Na})^{+}$: m / z 194.0694; Found: 194.0680. Anal. calcd for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{3}$: C, 70.16; H, 5.30; N, 24.54; Found: C, 69.50; H, 5.66; N, 24.86.

General procedure for conversion of dinitriles (5) to diamines (15) with $\mathbf{N a B H}_{4}$. A mixture of 2 mmol of $\mathbf{5 , 8} \mathbf{~ m m o l}$ of di- t-butyl dicarbonate, 0.5 mmol of $\mathrm{NiCl}_{2} \bullet 6 \mathrm{H}_{2} \mathrm{O}$ and 40 mL of dry MeOH was stirred at $0{ }^{\circ} \mathrm{C}$ as 40 mmol of NaBH_{4} was added in small portions over 30 min . The reaction mixture was allowed to warm to room temperature and stirred for $18-48 \mathrm{~h}$, then 5 mmol of diethylenetriamine was added. The mixture was stirred for 30 min then concentrated by rotary evaporation. The black residue was partitioned between 100 mL of EtOAc and 100 mL of saturated aq. NaHCO_{3} solution. The organic layer was separated, dried, filtered, and concentrated by rotary evaporation. The residue was dried in vacuo overnight to give the crude Boc-protected amine, which was stirred with 50 mL of 2 N HCl in methanol/water for 6 h at room temperature then concentrated to dryness by rotary evaporation. The residue was dried in vacuo, triturated with diethyl ether and dried in vacuo. The crude HCl salt was converted to the free base by stirring with

50 mL of 2 N aq. NaOH solution, 50 mL of saturated aq. NaCl solution, and 50 mL of DCM for 5 h at room temperature. The layers were separated and the aq. layer was saturated with $\mathrm{K}_{2} \mathrm{CO}_{3}$ and NaCl , then extracted with $\mathrm{DCM}(5 \times 50 \mathrm{~mL})$. The combined organic solutions were dried, filtered, and concentrated by rotary evaporation to give diamine $\mathbf{1 5}$, which was dried in vacuo.

2,6-Bis(2-aminoethyl)-4-ethylpyridine (15b). Following the general procedure, 0.24 g (1.3 $\mathbf{m m o l}$) of 2,6-bis(cyanomethyl)-4-ethylpyridine (5b) gave $0.22 \mathrm{~g}(88 \%)$ of $\mathbf{1 5 b}$ as an orange brown oil, which was used in the next step without further purification. $\mathbf{1 5 b} \mathbf{\bullet} \mathbf{H C l}:{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.86(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Py}), 3.51\left(\mathrm{~s}, 8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Py}\right), 2.97\left(\mathrm{q}, 7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.38$ ($\mathrm{t}, 7.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 168.3,153.1,127.4,39.6,31.9,30.3$, 14.0. IR (cm ${ }^{-1}$) 3129 (br), 2809 (br), 2576 (br), 2049 (m), 1629 (s), 1451 (m), 1402 (s). HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{~N}_{3}(\mathrm{MH})^{+}: m / z 194.1657$; Found: 194.1687. 15b: ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.84(\mathrm{~s}$, $2 \mathrm{H}, m$-Py), $3.08\left(\mathrm{t}, 7.0 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Py}\right.$), $2.86\left(\mathrm{t}, 7.0 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.59(\mathrm{q}, 8.2 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), $1.41(\mathrm{br}, 4 \mathrm{H}, \mathrm{NH}), 1.23\left(\mathrm{t}, 8.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $159.5,153.6,120.5,42.2,42.1,28.1,14.4$.

2,6-Bis(2-aminoethyl)4-tert-butylpyridine (15c). A solution of $2.3 \mathrm{~g}(0.01 \mathrm{~mol})$ of 4 -tert-butyl-2,6-bis(cyanomethyl)pyridine (5c) in 60 mL of anhydrous THF was stirred at room temperature as 95 mL of $1 \mathrm{M} \mathrm{BH}_{3} / \mathrm{THF}$ was added over 90 min by syringe. The reaction mixture was stirred at room temperature for 24 h then 40 mL of water was added over 30 min by syringe, followed by 40 mL of 6 N aq. HCl solution, added over 30 min by syringe. THF was removed by distillation at atmospheric pressure under nitrogen at $85-90^{\circ} \mathrm{C}(3 \mathrm{~h})$ then the solution was cooled to room temperature. The resulting white crystals were collected by filtration, washing the filter paper with 6 N aq. HCl followed by water. The filtrate was washed with $\mathrm{DCM}(5 \times 75 \mathrm{~mL})$ then basified with 6 N aq. $\mathrm{NaOH}(\mathrm{pH} 14)$, saturated with $\mathrm{K}_{2} \mathrm{CO}_{3}$ and NaCl , then extracted with DCM (6×100
$\mathrm{mL})$. The combined extracts were dried, filtered, and concentrated by rotary evaporation. The residue was dried in vacuo overnight giving $1.64 \mathrm{~g}(70 \%$ yield $)$ of $\mathbf{1 5 c}$ as an orange oil, which was used in the next step without further purification. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.98(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Py})$, 3.07 (t, $\left.6.1 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Py}\right), 2.87\left(\mathrm{t}, 6.1 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 1.29\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right), 1.57\left(\mathrm{br}, 4 \mathrm{H}, \mathrm{NH}_{2}\right)$. ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 26.7,30.6,34.5,42.3,117.9,159.4,160.7$. MS m/z 224.19 $(\mathrm{M}+3 \mathrm{H})^{+}$.

2,6-Bis(2-aminoethyl)-4-methoxypyridine (15e). Following the general procedure, 0.40 g ($2.1 \mathbf{~ m m o l}$) of 2,6-bis(cyanomethyl)-4-methoxypyridine (5e) gave $0.34 \mathrm{~g}(81 \%)$ of $\mathbf{1 5 e}$ as a yellow orange oil, which was used in the next step without further purification. $\mathbf{1 5 e} \mathbf{e} \mathbf{H C l}:{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 7.46$ (s, $2 \mathrm{H}, \mathrm{Py}$), 4.17 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 3.51-3.40 (m, $12 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Py}, \mathrm{NH}_{2}$). ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right): \delta 172.9,153.4,111.9,57.3,37.9,30.4$. IR $\left(\mathrm{cm}^{-1}\right) 2831(\mathrm{br}, \mathrm{s}), 2255$ (m), 1623 (s), 1486 (s). MS m/z $196.25(\mathrm{MH})^{+}$. Anal. calcd for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O} \cdot 3 \mathrm{HCl} \cdot 1.25 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}$, 36.71; H, 6.93 ; N, 12.84; Found: C, 36.72; H, 7.28; N, 12.70. 15e: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 6.55 (s, 2 H, Py), 3.81 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$), 3.07 (t, $7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Py}$), $2.84\left(\mathrm{t}, 7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right.$), 1.93 (br, $2 \mathrm{H}, \mathrm{NH}_{2}$). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.2,161.0,106.6,54.7,42.1,41.9$.

2,6-Bis(2-aminoethyl)-4-ethoxypyridine (15f). Following the general procedure, 0.40 g (2 $\mathbf{m m o l}$) of 2,6-bis(cyanomethyl)-4-ethoxypyridine (5f) gave 0.24 g (91%) of $\mathbf{1 5 f}$ as an orange oil. 15f•HCl: ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right): \delta 7.41(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Py}), 4.45\left(\mathrm{q}, 7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 3.48$3.41\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 1.50\left(\mathrm{t}, 7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.8,154.9$, $113.8,68.7,39.6,32.0,14.6$. IR (cm^{-1}) 2867 (br, s), 2258 (m), 1624 (s), 1486 (s). MS m/z 210.26 $(\mathrm{MH})^{+}$. Anal. calcd for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O} \cdot 3 \mathrm{HCl} \cdot 1.75 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 37.73 ; \mathrm{H}, 7.34 ; \mathrm{N}, 12.00$; Found: C, 37.54; H, 6.95; N, 12.42. 15f: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 6.68$ (s, $2 \mathrm{H}, \mathrm{Py}$), 4.10 (q, 7.2 Hz, 2 H,
$\mathrm{CH}_{2} \mathrm{CH}_{3}$), $2.96\left(\mathrm{t}, 7.1 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Py}\right), 2.83\left(\mathrm{t}, 7.1 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 1.39\left(\mathrm{t}, 7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$. ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right): \delta 168.0,162.4,109.0,64.9,42.9,42.1,15.1$.

2,6-bis(2-aminoethyl)-4-benzyloxypyridine (15g). Following the general procedure, 0.84 $\mathrm{g}(3.19 \mathbf{m m o l})$ of 4-benzyloxy-2,6-bis(cyanomethyl)pyridine $\mathbf{(5 g})$ gave $0.32 \mathrm{~g}(86 \%)$ of $\mathbf{1 5 g}$ as an orange oil. 15g•HCl: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 7.55$ (s, $2 \mathrm{H}, \mathrm{Py}$), 7.53-7.36 (m, $5 \mathrm{H}, \mathrm{Ph}$), $5.48\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.52-3.41\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Py}, \mathrm{CH}_{2} \mathrm{~N}\right) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta 173.5$, $155.1,135.7,130.2,130.0,129.7,114.1,74.1,39.5,32.0$. IR ($\left.\mathrm{cm}^{-1}\right) 2831(\mathrm{~s}, \mathrm{br}), 1624$ (s), 1484 (s). Anal. calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O} \cdot 3 \mathrm{HCl} \cdot 2.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 45.14 ; \mathrm{H}, 6.87$; N, 9.87; Found: C, 45.10; H, 6.68; N, 10.03. MS $m / z 272.42(\mathrm{MH})^{+}, 100 \% ; 297.41(\mathrm{M}+\mathrm{Na}+3 \mathrm{H})^{+}, 39 \% .15 \mathrm{~g}:{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right): \delta 7.43-7.25(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 6.77(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Py}), 5.14\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 2.94(\mathrm{t}, 7.2 \mathrm{~Hz}, 4 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{Py}$), $2.83\left(\mathrm{t}, 7.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 167.7,162.5,137.8$, $129.8,129.4,128.9,109.4,71.0,42.9,42.1$.

2,6-Bis(2-aminoethyl)-4-cyclohexylmethoxypyridine (15h). Following the general procedure, $0.50 \mathrm{~g}(1.9 \mathrm{mmol})$ of 2,6-bis(cyanomethyl)-4-cyclohexylmethoxypyridine ($\mathbf{5 h}$) gave $0.52 \mathrm{~g}(100 \%)$ of $\mathbf{1 5 h}$ as a yellow-orange oil, which was used in the next step without further purification. $\mathbf{1 5 h} \bullet \mathbf{H C l}:{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 7.46(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Py}), 4.20(\mathrm{~d}, 6.1 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{Cy}$), 3.49 (t, $7.0 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Py}$), $3.43\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 1.91-1.12(\mathrm{~m}, 11 \mathrm{H}, \mathrm{Cy}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 174.0,154.9,113.7,77.6,39.5,38.7,32.0,30.6,27.5,26.9 . \operatorname{IR}\left(\mathrm{cm}^{-1}\right)$ 2849 (br), 1626 (s). HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}(\mathrm{MH})^{+}: m / z ~ 278.2232$; Found: 278.2260. Anal. calcd for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O} \cdot \mathrm{H}_{2} \mathrm{O} \cdot 3 \mathrm{HCl}$: C, 47.36; H, 7.26; N, 10.44; Found: C, 47.47; H, 7.97; N, 10.38. 15h: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.53$ (s, $2 \mathrm{H}, \mathrm{Py}$), 3.76 (d, $6.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cy}$), 3.04 (t, 7.6 $\mathrm{Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Py}$), $2.82\left(\mathrm{t}, 7.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 1.85-1.02$ (m, $\left.11 \mathrm{H}, \mathrm{Cy}\right) .{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 166.1,161.1,107.3,73.1,42.3,42.0,37.5,29.8,26.4,25.7$.

2,6-Bis(2-aminoethyl)-4-propylpyridine (15i). Following the general procedure, 0.18 g (0.90 mmol) of 2,6-bis(cyanomethyl)-4-propylpyridine (5i) gave $0.16 \mathrm{~g}(86 \%)$ of $\mathbf{1 5 i}$ as an orange oil, which was used in the next step without further purification. 15i•HCl: ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\mathrm{CD}_{3} \mathrm{OD}$): $\delta 7.84$ (br, $2 \mathrm{H}, \mathrm{Py}$), 3.44 (br, $8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), 2.87 (br, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.80 (br, 2 H , $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $1.01\left(\mathrm{br}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 166.9,153.0,128.0,39.7,39.0$, 31.8, 24.1, 14.2. HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{~N}_{3}(\mathrm{MH})^{+}: m / z$ 208.1813; Found: 208.1842. 15i: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.82$ (s, $2 \mathrm{H}, \mathrm{Py}$), 3.08 (t, $7.7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Py}$), 2.86 (t, $7.7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$), $2.52\left(\mathrm{t}, 7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.63$ (sext, $7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 0.95 (t, $7.7 \mathrm{~Hz}, 3 \mathrm{H}$, CH_{3}). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.5,152.2,121.2,42.3,42.2,37.3,23.6,13.9$.

4-Butyl-2,6-bis(2-aminomethyl)pyridine (15j). Following the general procedure, 0.47 g ($2.2 \mathbf{~ m m o l}$) of 4-butyl-2,6-bis(cyanomethyl)pyridine $(\mathbf{5 j})$ gave $0.41 \mathrm{~g}(85 \%)$ of $\mathbf{1 5 j}$ as a greenish brown oil, which was used in the next step without further purification. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 6.82(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Py}), 3.08\left(\mathrm{t}, 6.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}, 2.88(\mathrm{t}, 6.5 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $2.55\left(\mathrm{t}, 7.7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 1.57\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.36(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), $1.26(\mathrm{~s}, 4 \mathrm{H}, \mathrm{NH}), 0.91\left(\mathrm{t}, 7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 159.4$, $152.4,121.1,42.3,42.2,34.9,32.4,22.4,13.9 . \mathrm{MS} m / z 223.49(\mathrm{M}+2)^{+}$.

2,6-Bis(2-aminoethyl)-4-isobutylpyridine (15k). Following the general procedure, 0.30 g ($1.4 \mathbf{~ m m o l}$) of 2,6 -bis(cyanomethyl)-4-isobutylpyridine ($\mathbf{5 k}$) gave $0.27 \mathrm{~g}(87 \%)$ of the free base $\mathbf{1 5 k}$ as a yellow orange oil, which was used in the next step without further purification. ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 6.66$ (s, $2 \mathrm{H}, \mathrm{Py}$), 2.93 (t, $7.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$), 2.73 (t, $7.2 \mathrm{~Hz}, 4 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{~N}\right), 2.27(\mathrm{~d}, 7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH} 2 \mathrm{CH}), 1.74\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.77\left(\mathrm{~d}, 7.0 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right)$. ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 159.2,150.9,121.5,44.5,42.0,41.9,29.4,22.2$. MS m/z 224.04 $(\mathrm{M}+3 \mathrm{H})^{+}$.

2,6-Bis(2-aminomethyl)-4-phenylpyridine (151). Following the general procedure 0.20 g ($0.86 \mathbf{~ m m o l}$) of 2,6-bis(cyanomethyl)-4-phenylpyridine (5I) gave $0.21 \mathrm{~g}(100 \%)$ of $\mathbf{1 5 I}$ as a yellow orange oil, which was used in the next step without further purification. $\mathbf{1 5 1} \cdot \mathbf{H C l}:{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta 8.31(\mathrm{~m}, 1 \mathrm{H}, p-\mathrm{Ph}), 8.06(\mathrm{~m}, 2 \mathrm{H}, m-\mathrm{Ph}), 7.62(\mathrm{~m}, 2 \mathrm{H}, o-\mathrm{Ph}), 7.57(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Py})$ $3.59\left(\mathrm{~s}, 8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right) .{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 160.0,153.8,136.0,133.4,131.0,129.6$, 125.1, 39.7, 32.2. IR (cm^{-1}) 2800 (br), 2060 (w), 1626 (s), 1466 (m). MS m/z 242.53 (MH) ${ }^{+}$. Anal. calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{3} \cdot 2.25 \mathrm{HCl} \cdot 2.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 48.90$; H, 7.18; N, 11.41; Found: C, 48.94; H, 7.38; N, 11.33. 15I: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 7.62(\mathrm{~d}, 8.6 \mathrm{~Hz}, 2 \mathrm{H}, o-\mathrm{Ph}), 7.45(\mathrm{~m}, 3 \mathrm{H}, m-\mathrm{Ph}), 7.22$ (s, $2 \mathrm{H}, \mathrm{Py}$), $3.14\left(\mathrm{t}, 6.9 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Py}\right), 2.97\left(\mathrm{t}, 6.7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ $\delta 160.3,149.2,138.7,129.1,128.9,127.1,119.1,42.5,42.4$.

2,6-Bis(2-aminoethyl)-4-methylpyridine (15m). Following the general procedure, 0.47 g ($2.8 \mathbf{~ m m o l}$) of 2,6-bis(cyanomethyl)-4-methylpyridine (5m) gave $0.40 \mathrm{~g}(81 \%)$ of $\mathbf{1 5 m}$ as an orange oil, which was used in the next step without further purification. $\mathbf{1 5 m} \cdot \mathbf{H C l}:{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 7.82(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Py}), 3.49\left(\mathrm{~s}\right.$, overlap, $\left.8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.66(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 163.2,152.8,128.5,39.6,31.8,22.5 . \mathrm{IR}\left(\mathrm{cm}^{-1}\right) 2826-2584$ (br), 2060 (w), 1628 (s). MS m/z $180.01(\mathrm{MH})^{+}$. Anal. calcd for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{~N}_{3} \cdot 3 \mathrm{HCl} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 39.17 ; \mathrm{H}, 7.23 ; \mathrm{N}, 13.70$; Found: C, 39.02; H, 7.35; N, 13.50. 15m: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.83(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Py}), 3.08$ (t, $6.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Py}$), $2.85\left(\mathrm{t}, 6.6 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.29(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 1.69\left(\mathrm{br}, 4 \mathrm{H}, \mathrm{NH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.4,147.5,121.8,42.2,26.2,20.9$.

General procedure for conversion of diamines (15) to disulfonamides (4) with \boldsymbol{p} toluenesulfonyl chloride. A filtered solution of 7 mmol of p-toluenesulfonyl chloride in 40 mL of DCM was added dropwise over 30 min to a vigorously stirred solution of 2 mmol of $\mathbf{1 5}$ and 7 mmol of triethylamine in 50 mL of DCM. The solution was stirred at room temperature for $18-24 \mathrm{~h}$,
washed with saturated aq. NaHCO_{3} solution $(2 \times 100 \mathrm{~mL})$ then with 100 mL of saturated aq. NaCl solution. The organic layer was separated, dried, filtered, and concentrated to dryness by rotary evaporation. The residue was dried in vacuo overnight then subjected to column chromatography on alumina, eluting with $\mathrm{DCM} / \mathrm{EtOAc}$. In some cases, a portion of the free base was converted to the HCl salt for elemental analysis and biological testing by stirring with 50 mL of 2 N HCl in methanol/water for 5 h , followed by rotary evaporation, trituration with anhydrous diethyl ether, and drying in vacuo.

4-Ethyl-2,6-bis(2-p-toluenesulfonamidoethyl)pyridine (4b). Following the general procedure, $0.31 \mathrm{~g}(1.6 \mathrm{mmol})$ of 2,6-bis(2-aminoethyl)-4-ethylpyridine (15b) gave $0.70 \mathrm{~g}(88 \%)$ of $\mathbf{4 b}$ as a glassy brown solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.72(\mathrm{~d}, 8.5 \mathrm{~Hz}, 4 \mathrm{H}, o-\mathrm{Ts}), 7.27(\mathrm{~d}$, $8.5 \mathrm{~Hz}, 4 \mathrm{H}, m-\mathrm{Ts}$), $6.76(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Py}), 5.64(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}), 3.32\left(\mathrm{t}, 6.0 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.86$ (t, 6.5 $\left.\mathrm{Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 2.54\left(\mathrm{q}, 7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.40\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{ArCH}_{3}\right), 1.19(\mathrm{t}, 7.4 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 157.8,154.4,143.1,137.0,129.6,126.9,121.3,42.1$, 36.3, 28.0, 21.4, 14.1. 4b•HCl: mp $140-145{ }^{\circ} \mathrm{C}(\mathrm{dec}) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.68(\mathrm{~d}, 7.8$ $\mathrm{Hz}, 4 \mathrm{H}, o-\mathrm{Ts}$), 7.38 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{Py}$), 7.25 (d, $7.6 \mathrm{~Hz}, 4 \mathrm{H}, m-\mathrm{Ts}$), 6.54 (s, $2 \mathrm{H}, \mathrm{NH}$), 3.51 (br, 4 H , $\mathrm{CH}_{2} \mathrm{~N}$), $3.39\left(\mathrm{t}, 5.7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Py}\right), 2.86\left(\mathrm{br}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.40\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{ArCH}_{3}\right), 1.34(\mathrm{br}, 3 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$). ${ }^{13} \mathrm{C}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.5,153.7,143.4,137.2,129.8,127.0,125.7,42.4$, 33.5, 29.3, 21.7, 13.7. IR (cm^{-1}) 3090 (s), 2679 (s), 1633 (s), 1598 (m), 1439 (s). MS m/z 502.59 $(\mathrm{MH})^{+}$. Anal. calcd for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}_{2} \cdot \mathrm{HCl}$: C, $55.80 ; \mathrm{H}, 5.99$; N, 7.81; Found: C, 55.56; H, 6.39; N, 7.78.

4-tert-Butyl-2,6-bis(2-p-toluenesulfonamidoethyl)pyridine (4c). Following the general procedure, $1.51 \mathrm{~g}(6.82 \mathrm{mmol})$ of 4-tert-butyl-2,6-bis(2-aminoethyl)pyridine ($\mathbf{1 5 c}$) gave 2.38 g (66%) of $\mathbf{4 c}$ as a glassy brown solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.71(\mathrm{~d}, 8.8 \mathrm{~Hz}, 4 \mathrm{H}, o-\mathrm{Ts})$,
7.27 (d, 8.5 Hz, 4 H, m-Ts), 6.90 (s, $2 \mathrm{H}, \mathrm{Py}$), 5.82 (br, 2H, NH), 3.30 (t, $6.9 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$), 2.86 (t, $\left.6.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Py}\right), 2.39\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{ArCH}_{3}\right), 1.23\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 21.6,30.6,34.8,36.8,42.4,118.8,127.2,129.8,137.2,143.3,158.0,161.9 . \operatorname{RR}\left(\mathrm{cm}^{-1}\right) 2959(\mathrm{w})$, $1600(\mathrm{~m}), 1555(\mathrm{w}), 1416(\mathrm{w}) . \mathrm{MS} m / z 530.80(\mathrm{MH})^{+}$. Anal. calcd for $\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}_{2}$: C, 61.22; H, 6.66; N, 7.93; Found: C, 61.35; H, 6.86; N, 8.21.

4-Methoxy-2,6-bis(2-p-toluenesulfonamidoethyl)pyridine (4e). Following the general procedure, $0.18 \mathrm{~g}(0.92 \mathrm{mmol})$ of 2,6-bis(2-aminoethyl)-4-methoxypyridine (15e) gave 0.43 g (93%) of $\mathbf{4 e}$ as a glassy brown solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.71(\mathrm{~d}, 8.4 \mathrm{~Hz}, 4 \mathrm{H}, o-\mathrm{Ts})$, 7.27 (d, $8.3 \mathrm{~Hz}, 4 \mathrm{H}, m-\mathrm{Ts}$), 6.47 (s, $2 \mathrm{H}, \mathrm{Py}$), $3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.31\left(\mathrm{t}, 6.0 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right)$, $2.84\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Py}\right), 2.41\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{ArCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.9,159.6,143.2$, 137.1, 129.7, 127.0, 107.8, 55.2, 42.1, 36.7, 21.5. IR (cm ${ }^{-1}$) 2942 (w), 1597 (s), 1573 (w), 1493 (w), $1438(\mathrm{~m}) . \mathrm{MS} m / z 504.48(\mathrm{M}+\mathrm{Na})^{+}$. Anal. calcd for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}_{2}: \mathrm{C}, 57.24 ; \mathrm{H}, 5.80 ; \mathrm{N}$, 8.34; Found: C, 56.97; H, 6.10; N, 8.33.

4-Ethoxy-2,6-bis(2-p-toluenesulfonamidoethyl)pyridine (4f). Following the general procedure, $0.24 \mathrm{~g}(1.15 \mathrm{mmol})$ of 2,6-bis(2-aminoethyl)-4-ethoxypyridine ($\mathbf{1 5 f}$) gave $0.54 \mathrm{~g}(92 \%)$ of $\mathbf{4 f}$ as a brown glassy solid. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.70(\mathrm{~d}, 8.3 \mathrm{~Hz}, 4 \mathrm{H}, o-\mathrm{Ts}), 7.26(\mathrm{~d}, 8.2$ $\mathrm{Hz}, 4 \mathrm{H}, \mathrm{m}$-Ts), 6.47 (s, $2 \mathrm{H}, \mathrm{Py}$), 4.02 (q, $7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}$), $3.30\left(\mathrm{t}, 6.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.85(\mathrm{t}$, 6.5 Hz, $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Py}$), $2.39\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{ArCH}_{3}\right), 1.39\left(\mathrm{t}, 6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 166.6,159.3,143.3,137.2,129.8,127.1,108.5,63.9,42.3,36.5,21.6,14.5 . \mathrm{IR}\left(\mathrm{cm}^{-1}\right)$ $1628(\mathrm{~m}), 1599(\mathrm{w}), 1455(\mathrm{~m}) . \mathrm{MS} \mathrm{m} / \mathrm{z} 518.41(\mathrm{MH})^{+}, 100 \% ; 540.25(\mathrm{M}+\mathrm{Na})^{+}, 15 \%$. Anal. calcd for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 57.01 ; \mathrm{H}, 6.12 ; \mathrm{N}, 7.98$; Found: C, $57.06 ; \mathrm{H}, 6.28 ; \mathrm{N}, 8.18$.

4-Benzyloxy-2,6-bis(2-p-toluenesulfonamidoethyl)pyridine (4g). Following the general procedure, $0.55 \mathrm{~g}(2.0 \mathrm{mmol})$ of 4-benzyloxy-2,6-bis(2-aminoethyl)pyridine ($\mathbf{1 5 g}$) gave 1.1 g
(93%) of $\mathbf{4 g}$ as a brown glassy solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.71(\mathrm{~d}, 8.2 \mathrm{~Hz}, 4 \mathrm{H}, o-\mathrm{Ts})$, 7.38 (m, 5 H, Ph), 7.26 (d, $8.3 \mathrm{~Hz}, 4 \mathrm{H}, m-\mathrm{Ts}$), $6.54(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Py}), 5.02\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.29(\mathrm{t}, 6.2$ $\mathrm{Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$), 2.83 (t, $6.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Py}$), $2.38\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{ArCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 166.0,159.6,143.2,137.0,135.4,129.7,128.7,128.4,127.5,127.0,108.5,69.9,42.1$, 36.6, 21.5. IR (cm^{-1}) 1596 (s), 1572 (m), 1449 (w). MS $m / z 580.50(\mathrm{MH})^{+}, 100 \% ; 581.41(\mathrm{M}+2)^{+}$, $41 \% ; 602.49(\mathrm{M}+\mathrm{Na})^{+}, 18 \%$. Anal. Calcd. for $\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}_{2}: \mathrm{C}, 62.15 ; \mathrm{H}, 5.74 ; \mathrm{N}, 7.25$; Found: C, 61.90; H, 6.12; N, 7.54.

4-Cyclohexylmethoxy-2,6-bis(2-p-toluenesulfonamidoethyl)pyridine (4h). Following the general procedure, $0.53 \mathrm{~g}(1.91 \mathrm{mmol})$ of 2,6-bis(2-aminoethyl)-4-cyclohexylmethoxypyridine (15h) gave $0.65 \mathrm{~g}(58 \%)$ of $\mathbf{4 h}$ as a brown solid, $\mathrm{mp} 80-85^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.71$ (d, 8.4 Hz, $4 \mathrm{H}, o-\mathrm{Ts}$), 7.27 (d, $8.3 \mathrm{~Hz}, 4 \mathrm{H}, m-\mathrm{Ts}), 6.49(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Py}), 5.58(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}), 3.75(\mathrm{~d}, 6.5$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cy}$), 3.32 (t, $6.3 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$), 2.87 (br, $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Py}$), $2.40\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{ArCH}_{3}\right)$, 1.84$1.0(\mathrm{~m}, 11 \mathrm{H}, \mathrm{Cy}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.1,159.2,143.3,137.2,129.8,127.1,108.7$, $73.7,42.3,37.5,36.5,29.9,26.5,25.8,21.6$. IR (cm^{-1}) 2923 (m), 2851 (m), 1628 (m), 1597 (m), 1570 (w), 1485 (w), $1450(\mathrm{~m}) . \mathrm{MS} m / z 586.73(\mathrm{MH})^{+}$Anal. calcd for $\mathrm{C}_{30} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}_{2} \cdot 2.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}$, 57.12; H, 7.03; N, 6.66; Found: C, 57.45; H, 6.81; N, 6.59.

4-Propyl-2,6-bis(2-p-toluenesulfonamidoethyl)pyridine (4i). Following the general procedure, $0.16 \mathrm{~g}(0.77 \mathrm{mmol})$ of 2,6-bis(2-aminoethyl)-4-propylpyridine ($\mathbf{1 5 i}$) gave $0.30 \mathrm{~g}(75 \%)$ of 4 i as a glassy brown solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.71(\mathrm{~d}, 8.2 \mathrm{~Hz}, 4 \mathrm{H}, o-\mathrm{Ts}), 7.27(\mathrm{~d}$, $8.6 \mathrm{~Hz}, 4 \mathrm{H}, m-\mathrm{Ts}$), 6.78 (s, $2 \mathrm{H}, \mathrm{Py}$), 3.33 (t, $6.0 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$), 2.89 (t, $6.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), $2.48\left(\mathrm{t}, 7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right) 2.40\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{ArCH}_{3}\right), 1.60\left(\mathrm{~m}, 7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.93(\mathrm{t}$, $\left.7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.5,154.1,143.2,137.1,129.7,127.0$, 122.3, $45.8,42.2,37.2,23.4,21.5,13.8 .4 i \cdot \mathbf{H C l}: \mathrm{mp} 148-153{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$):
$\delta 7.68(\mathrm{~d}, 8.4 \mathrm{~Hz}, 4 \mathrm{H}, o-\mathrm{Ts}), 7.62(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Py}), 7.36(\mathrm{~d}, 8.4 \mathrm{~Hz}, 4 \mathrm{H}, m-\mathrm{Ts}), 3.19(\mathrm{~m}, 8 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 2.84\left(\mathrm{t}, 7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 2.41\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{ArCH}_{3}\right), 1.78\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.31$ $\left(\mathrm{t}, 7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 165.7,154.7,145.1,138.8,131.0,128.1$, 127.4, 42.9, 39.0, 35.1, 24.3, 21.6, 14.1. IR (cm^{-1}) 3065 (br), 2678 (br), 2361 (s), 2341 (s), 1633 (s), $1598(\mathrm{~m}), 1437(\mathrm{~s}) . \mathrm{MS} m / z 516.80(\mathrm{MH})^{+}$. Anal. calcd for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}_{2} \cdot 1.5 \mathrm{H}_{2} \mathrm{O} \cdot \mathrm{HCl}: \mathrm{C}$, 53.92; H, 6.44; N, 7.26; Found: C, 53.72; H, 6.82; N, 7.30.

4-Butyl-2,6-bis(2-p-toluenesulfonamidoethyl)pyridine (4j). Following the general procedure, $0.30 \mathrm{~g}(1.36 \mathrm{mmol})$ of 2,6-bis(2-aminomethyl)-4-butylpyridine ($\mathbf{1 5 j}$) gave $0.68 \mathrm{~g}(95 \%)$ of $\mathbf{4 j}$ as a glassy brown solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.71(\mathrm{~d}, 8.0 \mathrm{~Hz}, 4 \mathrm{H}, o-\mathrm{Ts}), 7.26(\mathrm{~d}$, $8.1 \mathrm{~Hz}, 4 \mathrm{H}, m$-Ts), 6.73 (s, $2 \mathrm{H}, \mathrm{Py}$), 5.79 (t, $6.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NH}), 3.30\left(\mathrm{q}, 6.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.84$ (t, $6.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), $2.47\left(\mathrm{t}, 8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$), $2.39\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{ArCH}_{3}\right), 1.52(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.30\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.91\left(\mathrm{t}, 7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.9,153.7,143.2,137.2,129.7,127.1,122.0,42.3,36.5,34.9,32.4,22.4,21.6$, 13.9. $\mathbf{4 j} \cdot \mathrm{HCl}: \mathrm{mp} 143-150{ }^{\circ} \mathrm{C}(\mathrm{dec}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 7.68(\mathrm{~d}, 8.3 \mathrm{~Hz}, 4 \mathrm{H}, o-\mathrm{Ts})$, 7.62 (s, $2 \mathrm{H}, ~ P y), ~ 7.36(\mathrm{~d}, 8.5 \mathrm{~Hz}, 4 \mathrm{H}, m-\mathrm{Ts}), 3.17$ (t, $6.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$), 2.86 (t, 7.6 Hz, 4 H , $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), $2.42\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{ArCH}_{3}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.72\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.43(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{3}, 0.99\left(\mathrm{t}, 7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ 165.9, 154.7, 145.1, $138.8,131.0,128.0,127.3,42.9,36.8,35.1,33.1,23.5,21.6,14.2$. IR ($\left.\mathrm{cm}^{-1}\right) 3064(\mathrm{~s}), 2929(\mathrm{~s})$, 2861 (s), 2648 (br), 2362 (w), 1632 (s), 1598 (m), 1438 (s). MS m/z 530.80 (MH) ${ }^{+}$. Anal. calcd for $\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}_{2} \cdot 2.25 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 56.87$; H, 6.98; N, 7.37; Found: C, 56.96; H, 7.32; N, 7.44.

4-Isobutyl-2,6-bis(2-p-toluenesulfonamidoethyl)pyridine (4k). Following the general procedure, $0.27 \mathrm{~g}(1.22 \mathrm{mmol})$ of 2,6-bis(2-aminoethyl)-4-isobutylpyridine ($\mathbf{1 5 k}$) gave 0.50 g (77\%) of 4k as a dark brown glassy solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.71(\mathrm{~d}, 8.4 \mathrm{~Hz}, 4 \mathrm{H}, o-$

Ts), 7.27 (d, $8.4 \mathrm{~Hz}, 4 \mathrm{H}, m-\mathrm{Ts}$), 6.74 (s, $2 \mathrm{H}, \mathrm{Py}$), 5.68 (br, $2 \mathrm{H}, \mathrm{NH}$), 3.33 (t, $6.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$), 2.89 (t, $6.9 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), $2.40\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.37\left(\mathrm{~d}, 6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\right), 1.84(\mathrm{~m}, 1$ $\left.\mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.88\left(\mathrm{~d}, 7.0 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 157.6, 152.5, 143.1, 137.1, 129.6, 127.0, 122.6, 44.5, 42.3, 36.4, 29.4, 22.3, 21.5. $4 \mathbf{k} \cdot \mathbf{H C l}:{ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 7.68$ (d, $8.1 \mathrm{~Hz}, 4 \mathrm{H}, o-\mathrm{Ts}$), 7.61 (s, $2 \mathrm{H}, \mathrm{Py}$), 7.36 (d, $8.2 \mathrm{~Hz}, 4 \mathrm{H}, m-\mathrm{Ts}$), 3.31 (br, $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$), $3.20\left(\mathrm{t}, 7.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right.$), $2.74\left(\mathrm{~d}, 7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\right), 2.41(\mathrm{~s}, 6 \mathrm{H}$, $\left.\mathrm{ArCH}_{3}\right), 2.03\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.99\left(\mathrm{~d}, 6.3 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ $\delta 165.0,154.8,145.3,138.9,131.2,128.3,128.2,46.4,43.2,35.4,31.2,23.0,21.8 . \operatorname{IR}\left(\mathrm{cm}^{-1}\right) 3065$ (s), 2957 (m), 2868 (m), 2678 (m), 1632 (s), 1597 (s), 1516 (w), 1495 (w), 1440 (s). MS m/z $530.59(\mathrm{MH})^{+} . \mathrm{Mp} 138-145{ }^{\circ} \mathrm{C}(\mathrm{dec})$. Anal. calcd for $\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}_{2} \cdot \mathrm{HCl}: \mathrm{C}, 57.28 ; \mathrm{H}, 6.41$; N, 7.42; Found: C, 57.55; H, 6.80; N, 7.46.

4-Phenyl-2,6-bis(2-p-toluenesulfonamidoethyl)pyridine (41). Following the general procedure, $0.23 \mathrm{~g}(0.95 \mathrm{mmol})$ of 2,6-bis(2-aminomethyl)-4-phenylpyridine (15I) gave 0.45 g (87%) of 4 I as a glassy brown solid. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.72(\mathrm{~d}, 8.6 \mathrm{~Hz}, 4 \mathrm{H}, o-\mathrm{Ts})$, 7.54 (m, $2 \mathrm{H}, o-\mathrm{Ph}), 7.46$ (m, $3 \mathrm{H}, m, p-\mathrm{Ph}$), 7.26 (d, $8.4 \mathrm{~Hz}, 4 \mathrm{H}, m-\mathrm{Ts}$), 7.12 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{Py}$), 3.39 (t, 6.4 Hz, $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Py}$), $2.96\left(\mathrm{t}, 6.3 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.38\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{ArCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 158.4,149.8,143.1,137.6,137.0,129.6,129.1,129.0,126.9,126.9,119.6,42.1,36.6$, 21.4. IR ($\left.\mathrm{cm}^{-1}\right) 2919(\mathrm{w}), 1601(\mathrm{~s}), 1553(\mathrm{~m}), 1495(\mathrm{w}) . \mathrm{MS} \mathrm{m} / \mathrm{z} 550.75(\mathrm{MH})^{+}, 572.73(\mathrm{M}+\mathrm{Na})^{+}$. Anal. calcd for $\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 59.47 ; \mathrm{H}, 6.02 ; \mathrm{N}, 7.17$; Found: C, 59.85; H, 6.42; N, 7.17.

4-Methyl-2,6-bis(2-p-toluenesulfonamidoethyl)pyridine (4m). Following the general procedure, $0.40 \mathrm{~g}(2.23 \mathrm{mmol})$ of 2,6-bis(2-aminoethyl)-4-methylpyridine $(\mathbf{1 5 m})$ gave 0.85 g (78%) of $\mathbf{4 m}$ as an orange, glassy residue. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.71(\mathrm{~d}, 9.7 \mathrm{~Hz}, 4 \mathrm{H}, o-$ Ts), 7.24 (d, $8.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{m}$-Ts), 6.71 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{Py}$), 3.29 (t, $6.3 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$), $2.80(\mathrm{t}, 6.3 \mathrm{~Hz}, 4$
$\left.\mathrm{H}, \mathrm{CH}_{2} \mathrm{Py}\right), 2.39\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{TsCH}_{3}\right), 2.20\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{PyCH}_{3}\right) \cdot{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 157.8$, 148.6, 143.2, 137.1, 129.7, 127.1, 122.6, 42.3, 36.5, 21.5, 20.9. IR (neat, cm^{-1}) 2923 (w), 1607 (s), 1564 (w), 1446 (w), 1321 (s), 1152 (s), 1091 (s), 933 (w), 851 (w), 813 (s), 658 (s). MS m/z 488.73 $(\mathrm{MH})^{+}$. Anal. calcd for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}_{2}$: C, 59.11 ; H, 5.99 ; N, 8.62; Found: C, 58.72; H, 6.21; N, 8.46.

General procedure for palladium-catalyzed conversion of disulfonamides $\mathbf{(4 , 1 9}$, or 22) to macrocycles (3, 20, or 23). Glassware and equipment used in macrocyclization reactions, including magnetic stir bars, spatulas, syringes and needles, were dried overnight at $110{ }^{\circ} \mathrm{C} . \mathrm{A}$ mixture of 0.5 mmol of $\mathbf{4}, \mathbf{1 9}$, or $\mathbf{2 2}, 2 \mathrm{mmol}$ of 2-methylene-1,3-propanebis(tert-butylcarbonate), 0.05 mmol of 1,4-bis(diphenylphosphinobutane) (dppb), 0.025 mmol of tris(dibenzylideneacetone)dipalladium (0) $\left(\mathrm{Pd}_{2}(\mathrm{dba})_{3}\right), 0.25 \mathrm{mmol}$ of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and 30 mL of anhydrous MeCN was stirred and boiled under reflux for 24 h then cooled to room temperature and concentrated by rotary evaporation. A solution of the residue in 50 mL of DCM was washed with sat. aq. NaHCO_{3} solution ($2 \times 50 \mathrm{~mL}$) then with 50 mL of sat. aq. NaCl solution, dried, filtered, and concentrated by rotary evaporation. The residue was dried in vacuo overnight then subjected to column chromatography on alumina, eluting with DCM/EtOAc, chloroform/EtOAc, or hexanes/EtOAc. A solution of the resulting free base in 30 mL of 2 N HCl in methanol/water was stirred at room temperature for 6 h then concentrated to dryness by rotary evaporation. The residue was dried in vacuo, triturated with anhydrous diethyl ether, then dried in vacuo yielding the HCl salt of $\mathbf{3}, \mathbf{2 0}$, or $\mathbf{2 3}$.

13-Ethyl-6-methylene-4,8-di(p-

toluenesulfonyl)-4,8,15-triazabicyclo[9.3.1]pentadeca-1(15),11,13-triene (3b). Following the
general macrocyclization procedure, $0.25 \mathrm{~g}(0.50 \mathrm{mmol})$ of 4-ethyl-2,6-bis(2-p-
toluenesulfonamidoethyl)pyridine (4b) gave $0.12 \mathrm{~g}(40 \%)$ of the $\mathbf{3 b} \cdot \mathbf{H C l}$ as pale yellow solid, mp 134-140 ${ }^{\circ} \mathrm{C}(\mathrm{dec}) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 7.77(\mathrm{~d}, 8.1 \mathrm{~Hz}, 4 \mathrm{H}, o-\mathrm{Ts}), 7.62(\mathrm{~s}, 2 \mathrm{H}$, Py), 7.45 (d, $8.1 \mathrm{~Hz}, 4 \mathrm{H}, m-\mathrm{Ts}), 4.63\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2}\right), 3.65(\mathrm{t}, 5.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H} 3,9), 3.42(\mathrm{~s}, 4 \mathrm{H}$, H5, 7), 3.39 (t, $5.7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H} 2,10), 2.88\left(\mathrm{q}, 7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$), $2.46\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{ArCH}_{3}\right), 1.34$ (t, $7.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 167.8,156.0,146.1,139.9,135.8$, $131.3,129.0,128.0,116.8,55.5,52.2,36.2,30.2,21.7,14.2$. IR ($\left.\mathrm{cm}^{-1}\right) 1631(\mathrm{~s}), 1596(\mathrm{~m}), 1445$ (m). MS $m / z 555.79(\mathrm{M}+2)^{+}$. Anal. calcd for $\mathrm{C}_{29} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}_{2} \cdot \mathrm{HCl} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 57.27 ; \mathrm{H}, 6.30 ; \mathrm{N}, 6.91$; Found: C, 57.01; H, 6.03; N, 6.77.

13-tert-Butyl-6-methylene-4,8-di(p-

toluenesulfonyl)-4,8,15-triazabicyclo[9.3.1]pentadeca-1(15),11,13-triene (3c). Following the general macrocyclization procedure, $0.18 \mathrm{~g}(0.34 \mathrm{mmol})$ of 4-tert-butyl-2,6-bis(2-ptoluenesulfonamidoethyl)pyridine (4c) gave $0.10 \mathrm{~g}(48 \%)$ of $\mathbf{3 c} \cdot \mathbf{H C l}, \mathrm{mp} 154-160{ }^{\circ} \mathrm{C}(\mathrm{dec}) .{ }^{1} \mathrm{H}$ NMR (400 MHz, CD ${ }_{3} \mathrm{OD}$): ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\mathrm{CD}_{3} \mathrm{OD}$): $\delta 7.89$ (s, $2 \mathrm{H}, \mathrm{Py}$), 7.82 (d, 8.9 Hz, $4 \mathrm{H}, o-\mathrm{Ts}), 7.51(\mathrm{~d}, 8.3 \mathrm{~Hz}, 4 \mathrm{H}, m-\mathrm{Ts}), 4.62\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2}\right), 3.69(\mathrm{t}, 5.7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H} 3,9), 3.47$ (s, $4 \mathrm{H}, \mathrm{H} 5,7$), 3.34 (t, $6.0 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H} 2,10$), $2.47\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{ArCH}_{3}\right), 1.47\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right): \delta 174.6,156.0,146.1,140.2,135.8,131.4,129.0,126.0,116.6$, 55.7, 52.7, 37.8, 36.6, 30.4, 21.7. IR (cm^{-1}) 2964 (m), 1979 (m), 1631 (s), 1596 (m), 1447 (s). MS $m / z 582.18(\mathrm{MH})^{+}$. Anal. calcd for $\mathrm{C}_{31} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}_{2} \cdot \mathrm{HCl}$: C, $60.23 ; \mathrm{H}, 6.52 ; \mathrm{N}, 6.80$; Found: C, 60.01; H, 6.46; N, 6.51.

13-Methoxy-6-methylene-4,8-di(p-

toluenesulfonyl)-4,8,15-triazabicyclo[9.3.1]pentadeca-1(15),11,13-triene (3e). Following the general macrocyclization procedure, $0.60 \mathrm{~g}(1.19 \mathrm{mmol})$ of 4-methoxy-2,6-bis(2-ptoluenesulfonamidoethyl)pyridine (4e) gave $0.20 \mathrm{~g}(53 \%)$ of $\mathbf{3 e} \cdot \mathbf{H C l}$ as a pale yellow solid, mp
$170-175{ }^{\circ} \mathrm{C}(\mathrm{dec}) .{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.78(\mathrm{~d}, 8.3 \mathrm{~Hz}, 4 \mathrm{H}, o-\mathrm{Ts}), 7.46(\mathrm{~d}, 8.5 \mathrm{~Hz}, 4$ H, m-Ts), 7.28 (s, 2 H, Py), 4.71 (br, $2 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2}$), $4.13\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.62(\mathrm{t}, 5.5 \mathrm{~Hz}, 4 \mathrm{H}$, H3,9), 3.46 (s, $4 \mathrm{H}, \mathrm{H} 5,7$), 3.31 (br, $4 \mathrm{H}, \mathrm{H} 2,10$), 2.46 (s, $6 \mathrm{H}, \mathrm{ArCH}_{3}$). ${ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 174.4,157.9,146.1,140.1,135.8,131.3,129.0,116.7,113.9,58.7,55.6,52.1,36.3$, 21.7. IR ($\left.\mathrm{cm}^{-1}\right) 1624$ (m), 1488 (m). MS m/z 556.49 (MH). Anal. calcd for $\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}_{2} \cdot \mathrm{HCl} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 55.94 ;$ H, 5.87 ; N, 6.99; Found: C, $55.83 ; \mathrm{H}, 6.18 ; \mathrm{N}, 7.22$.

13-Ethoxy-6-methylene-4,8-di(p-

toluenesulfonyl)-4,8,15-triazabicyclo[9.3.1]pentadeca-1(15),11,13-triene (3f). Following the general macrocyclization procedure, $0.15 \mathrm{~g}(0.29 \mathrm{mmol})$ of 4-ethoxy-2,6-bis(2-ptoluenesulfonamidoethyl)pyridine (4f) gave $90 \mathrm{mg}(52 \%)$ of $\mathbf{3 f} \cdot \mathbf{H C l}$ as a beige solid, $\mathrm{mp} 160-165$ ${ }^{\circ} \mathrm{C}$ (dec). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.77$ (br, $4 \mathrm{H}, o-\mathrm{Ts}$), 7.46 (br, $4 \mathrm{H}, m-\mathrm{Ts}$), 7.20 (br, 2 H,-Py), 4.74 (br, $2 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2}$), 4.40 (br, 2H, OCH_{2}), 3.63 (br, $4 \mathrm{H}, \mathrm{H} 3,9$), 3.45 (br, $4 \mathrm{H}, \mathrm{H} 5,7$), $3.31 \mathrm{br}, 4 \mathrm{H}, \mathrm{H} 2,10), 2.46\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{ArCH}_{3}\right), 1.51\left(\mathrm{br}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{OD}\right): \delta 173.3,157.6,145.9,139.7,135.6,131.2,128.9,116.9,114.2,68.4,55.3,51.7,36.2$, 21.6, 14.6. IR (cm^{-1}) 1624 (m), 1596 (w), 1488 (m). MS $m / z 570.49(\mathrm{MH})^{+}$. Anal. calcd for $\mathrm{C}_{29} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}_{2} \cdot \mathrm{HCl}$: C, $57.46 ; \mathrm{H}, 5.99$; N, 6.93; Found: C, $57.08 ; \mathrm{H}, 6.38 ; \mathrm{N}, 7.00$.

13-Benzyloxy-6-methylene-4,8-di(p-

toluenesulfonyl)-4,8,15-triazabicyclo[9.3.1]pentadeca-1(15),11,13-triene (3g). Following the general macrocyclization procedure, $0.19 \mathrm{~g}(0.33 \mathrm{mmol})$ of 4-benzyloxy-2,6-bis(2-ptoluenesulfonamidoethyl)pyridine ($\mathbf{4 g}$) gave $10 \mathrm{mg}(48 \%)$ of $\mathbf{3 g} \cdot \mathbf{H C l}$ as a beige solid, mp 145-150 ${ }^{\circ} \mathrm{C}(\mathrm{dec}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.78(\mathrm{~d}, 8.2 \mathrm{~Hz}, 4 \mathrm{H}, o-\mathrm{Ts}), 7.53-7.37(\mathrm{~m}, 9 \mathrm{H}, m-\mathrm{Ts}$, Ph), $7.30(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Py}), 5.44\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.60\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2}\right), 3.59(\mathrm{t}, 5.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H} 3,9)$, 3.45 ($\mathrm{s}, 4 \mathrm{H}, \mathrm{H} 5,7$), $3.30(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H} 2,10), 2.45\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{ArCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$):
$\delta 172.9,158.0,146.0,140,135.7,131.2,130.2,130.0,129.5,128.9,116.6,114.3,111.6,73.5$, 55.5, 51.9, 36.3, 21.5. IR (cm^{-1}) 2420 (w), 1944 (w), 1624 (m), 1597 (w), 1481 (m). MS m/z $633.01(\mathrm{MH})^{+}$. Anal. calcd for $\mathrm{C}_{34} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}_{2} \cdot 0.5 \mathrm{HCl} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 61.13 ; \mathrm{H}, 5.96 ; \mathrm{N}, 6.29$; Found: C , 61.49; H, 6.22; N, 6.53.

13-Cyclohexylmethoxy-6-methylene-4,8-di(p-

toluenesulfonyl)-4,8,15-triazabicyclo[9.3.1]pentadeca-1(15),11,13-triene (3h). Following the general macrocyclization procedure, $0.30 \mathrm{~g}(0.51 \mathrm{mmol})$ of 4-cyclohexylmethoxy-2,6-bis(2-ptoluenesulfonamidoethyl)pyridine ($\mathbf{4 h}$) gave $0.19 \mathrm{~g}(54 \%)$ of $\mathbf{3 h} \cdot \mathbf{H C l}$ as a beige solid, mp 145$150{ }^{\circ} \mathrm{C}(\mathrm{dec}) .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65(\mathrm{~d}, 8.4 \mathrm{~Hz}, 4 \mathrm{H}, o-\mathrm{Ts}), 7.33(\mathrm{~d}, 8.5 \mathrm{~Hz}, 4 \mathrm{H}, m-$ Ts), 6.91 (s, $2 \mathrm{H}, \mathrm{Py}$), $4.86\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2}\right), 4.21\left(\mathrm{br}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.03$ (br, 2 H, H3,9), 3.22 (br, $\left.10 \mathrm{H}, \mathrm{H} 5,7, \mathrm{H} 2,10, \mathrm{CH}_{2} \mathrm{Cy}\right), 2.44\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{ArCH}_{3}\right), 1.83(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Cy}), 1.22(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Cy}) .{ }^{13} \mathrm{C}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.0,156.6,144.1,134.0,129.8,127.4,118.8,112.6,75.6,51.9,46.0$, 37.0, 33.8, 29.4, 26.1, 25.4, 21.4. IR (cm^{-1}) 2924 (m), 2851 (m), 1625 (s), 1596 (m), 1485 (m), 1450 (m). MS m/z $638.75(\mathrm{MH})^{+}$. Anal. calcd for $\mathrm{C}_{34} \mathrm{H}_{43} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}_{2} \cdot \mathrm{HCl}: \mathrm{C}, 60.56 ; \mathrm{H}, 6.58 ; \mathrm{N}, 6.23$; Found: C, 60.90; H, 6.91; N, 6.08.

6-Methylene-13-propyl-4,8-di(p-

toluenesulfonyl)-4,8,15-triazabicyclo[9.3.1]pentadeca-1(15),11,13-triene (3i). Following the general macrocyclization procedure, $0.21 \mathrm{~g}(0.41 \mathrm{mmol})$ of 4-propyl-2,6-bis(2-ptoluenesulfonamidoethyl)pyridine (4i) gave $0.10 \mathrm{~g}(40 \%)$ of $\mathbf{3 i} \cdot \mathbf{H C I}$ as a beige solid, mp 167$180{ }^{\circ} \mathrm{C}(\mathrm{dec}) .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta 7.77(\mathrm{~d}, 8.7 \mathrm{~Hz}, 4 \mathrm{H}, o-\mathrm{Ts}), 7.61(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Py}), 7.45$ (d, 8.7 Hz, $4 \mathrm{H}, m-\mathrm{Ts}$), 4.65 (s, $2 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2}$), 3.66 (br, $4 \mathrm{H}, \mathrm{H} 3,9$), 3.39 (br, $8 \mathrm{H}, \mathrm{H} 5,7, \mathrm{H} 2,10$), $2.82\left(\mathrm{t}, 7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.46\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{ArCH}_{3}\right), 1.76\left(\mathrm{sext}, 7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.03$ (t, $7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 166.7,155.9,146.0,139.6,135.8$,
131.3, 129.0, 128.6, 117.1, 55.3, 51.9, 38.9, 36.1, 24.4, 21.7, 14.3. IR ($\left.\mathrm{cm}^{-1}\right) 2967$ (m), 2286 (s), 2012 (s), 1632 (s), 1596 (m), 1493 (w), 1447 (s). MS m/z 569.72 (M+2) ${ }^{+}$. Anal. calcd for $\mathrm{C}_{30} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{O} \cdot \mathrm{HCl}: \mathrm{C}, 58.76 ; \mathrm{H}, 6.41$; N, 6.85; Found: C, $58.95 ; \mathrm{H}, 6.67$; N, 7.07.

13-Butyl-6-methylene-4,8-di(p-

toluenesulfonyl)-4,8,15-triazabicyclo[9.3.1]pentadeca-1(15),11,13-triene (3j). Following the general macrocyclization procedure, $0.37 \mathrm{~g}(0.70 \mathrm{mmol})$ of 4-butyl-2,6-bis(2-ptoluenesulfonamidoethyl)pyridine ($\mathbf{4 j}$) gave $60 \mathrm{mg}(23 \%)$ of $\mathbf{3 j} \cdot \mathbf{H C l}$ as a beige solid, $\mathrm{mp} 120-$ $125{ }^{\circ} \mathrm{C}(\mathrm{dec}) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 7.78$ (d, $8.5 \mathrm{~Hz}, 4 \mathrm{H}, o-\mathrm{Ts}$), 7.64 (s, 2 H, Py), 7.47 (d, $8.5 \mathrm{~Hz}, 4 \mathrm{H}, m-\mathrm{Ts}), 4.61\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2}\right), 3.62(\mathrm{t}, 5.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H} 3,9), 3.43(\mathrm{~s}, 4 \mathrm{H}, \mathrm{H} 5,7)$, 3.37 (t, $5.9 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H} 2,10), 2.87\left(\mathrm{t}, 7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$), $2.46\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{ArCH}_{3}\right), 1.73$ (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $1.45\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.00\left(\mathrm{t}, 7.4 \mathrm{~Hz}, 3 \mathrm{H} \mathrm{CH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 166.7,156.0,146.1,139.8,135.8,131.3,129.0,128.5,117.0,55.4,52.0,36.8$, 36.3, 33.3, 23.66, 21.7, 14.3. IR (cm^{-1}) 2927 (m), 2297 (w), 1981 (w), 1738 (m), 1631 (s), 1596 (m), 1444 (s). MS m/z $582.53(\mathrm{MH})^{+}$. Anal. calcd for $\mathrm{C}_{31} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}_{2} \cdot 2.0 \mathrm{H}_{2} \mathrm{O} \cdot \mathrm{HCl}$: C, $56.91 ; \mathrm{H}$, 6.78; N, 6.42; Found: C, 57.16; H, 7.15; N, 6.55.

13-Isobutyl-6-methylene-4,8-di(p-

toluenesulfonyl)-4,8,15-triazabicyclo[9.3.1]pentadeca-1(15),11,13-triene (3k). Following the general macrocyclization procedure, $0.32 \mathrm{~g}(0.60 \mathrm{mmol})$ of 4-isobutyl-2,6-bis(2-ptoluenesulfonamidoethyl)pyridine ($\mathbf{4 k}$) gave $0.18 \mathrm{~g}(57 \%)$ of $\mathbf{3 k} \cdot \mathbf{H C l}, \mathrm{mp} 162-170{ }^{\circ} \mathrm{C}(\mathrm{dec}) .{ }^{1} \mathrm{H}$ NMR (500 MHz, $\mathrm{CD}_{3} \mathrm{OD}$): $\delta{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.77$ (d, $8.0 \mathrm{~Hz}, 4 \mathrm{H}, o-\mathrm{Ts}$), 7.58 (s, 2 H, Py), 7.45 (d, $8.0 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{m}-\mathrm{Ts}$), 4.71 (s, $2 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2}$), 3.68 (br, $4 \mathrm{H}, \mathrm{H} 3,9$), 3.41 (br, $4 \mathrm{H}, \mathrm{H} 2,10), 3.36(\mathrm{~s}, 4 \mathrm{H}, \mathrm{H} 5,7), 2.70\left(\mathrm{~d}, 7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\right), 2.45\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.03(\mathrm{~m}$,
$\left.1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.98\left(\mathrm{t}, 7.4 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 165.8$, 155.7, 146.0, 139.1, 135.8, 131.3, 129.1, 129.0, 117.6, 54.9, 51.0, 46.0, 35.8, 30.9, 22.9, 21.7. IR (cm^{-1}) 2957 (w), 2866 (m), 2231 (m), 1962 (s), 1741 (m), 1630 (s), 1597 (m), 1493 (w), 1454 (s). MS $m / z 583.72(\mathrm{M}+2)^{+}$. Anal. calcd for $\mathrm{C}_{31} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}_{2} \cdot \mathrm{HCl}: \mathrm{C}, 60.23 ; \mathrm{H}, 6.52 ; \mathrm{N}, 6.80$; Found: C, 59.90; H, 6.92; N, 6.49.

6-Methylene-13-phenyl-4,8-di(p-

toluenesulfonyl)-4,8,15-triazabicyclo[9.3.1]pentadeca-1(15),11,13-triene (31). Following the general macrocyclization procedure, $0.36 \mathrm{~g}(0.58 \mathrm{mmol})$ of 4-phenyl-2,6-bis(2-ptoluenesulfonamidoethyl)pyridine (4I) gave $0.15 \mathrm{~g}(36 \%)$ of $\mathbf{3 I} \cdot \mathbf{H C l}$ as a white solid, mp 162$171{ }^{\circ} \mathrm{C}(\mathrm{dec}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 8.07$ (s, $2 \mathrm{H}, \mathrm{Py}$), 7.79 (d, $8.3 \mathrm{~Hz}, 4 \mathrm{H}, o-\mathrm{Ts}$), 7.95 (m, $2 \mathrm{H}, o-\mathrm{Ph}), 7.65(\mathrm{~m}, 3 \mathrm{H}, m, p-\mathrm{Ph}), 7.45(\mathrm{~d}, 8.3 \mathrm{~Hz}, 4 \mathrm{H}, m-\mathrm{Ts}), 4.64\left(\mathrm{~s} .2 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2}\right)$, 3.69 (br, $4 \mathrm{H}, \mathrm{H} 3,9$), 3.47 (br, $8 \mathrm{H}, \mathrm{H} 5,7,2,10$), $2.45\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(} 100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 160.1,156.7,146.1,140.3,135.8,133.4,131.4,131.1,129.4,129.0,125.8,116.6,55.8,52.8$, 36.5, 35.4, 21.7. IR (cm^{-1}) 2487 (m), 1630 (s), 1597 (m), 1444 (m). MS m/z 602.77 (MH) ${ }^{+}$. Anal. calcd for $\mathrm{C}_{33} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}_{2} \cdot \mathrm{HCl}: \mathrm{C}, 62.10 ; \mathrm{H}, 5.69 ; \mathrm{N}, 6.58$; Found: C, $61.81 ; \mathrm{H}, 5.57 ; \mathrm{N}, 7.02$.

13-Methyl-6-methylene-4,8-di(p-

toluenesulfonyl)-4,8,15-triazabicyclo[9.3.1]pentadeca-1(15),11,13-triene (3m). Following the general macrocyclization procedure, $0.27 \mathrm{~g}(0.57 \mathrm{mmol})$ of 4-methyl-2,6-bis(2-ptoluenesulfonamidoethyl)pyridine (4m) gave $40 \mathrm{mg}(32 \%)$ of $\mathbf{3 m} \cdot \mathbf{H C l}, \mathrm{mp} 175-185{ }^{\circ} \mathrm{C}(\mathrm{dec}) .{ }^{1} \mathrm{H}$ NMR (400 MHz, CD ${ }_{3} \mathrm{OD}$): $\delta 7.79$ (d, $\left.8.9 \mathrm{~Hz}, 4 \mathrm{H}, o-\mathrm{Ts}\right), 7.61(\mathrm{~d}, 8.3 \mathrm{~Hz}, 4 \mathrm{H}, m-\mathrm{Ts}), 7.45$ (s, 2 H , Py), 4.85 (s. $2 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2}$), 3.63 (t, $5.7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H} 3,9$), 3.44 (s, $4 \mathrm{H}, \mathrm{H} 5,7$), 3.36 (t, $6.0 \mathrm{~Hz}, 4 \mathrm{H}$, H2,10), $2.61\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{TsCH}_{3}\right), 2.46\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{PyCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 162.6,155.6$, $145.9,140.0,135.7,131.2,128.9,116.5,55.6,52.4,36.2,22.2,21.5 . \operatorname{IR}\left(\mathrm{cm}^{-1}\right) 2918(\mathrm{~m}), 1979$
(w), 1633 (s), 1607 (s), 1493 (s), 1448 (s). MS $m / z 539.13(\mathrm{M})^{+}$. Anal. calcd for $\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}_{2} \cdot \mathrm{HCl}$: C, 58.37; H, 5.95; N, 7.29; S, 11.13; Found: C, 58.18; H, 6.34; N, 7.10; S, 11.52.

6-Methylene-4,8-bis(4-p-toluenesulfonyl-4,8,15-triazabicyclo[9.3.1]pentadeca-

 $\mathbf{1}(\mathbf{1 5}), \mathbf{1 1}, \mathbf{1 3}$-trien-13-ol (3d). A solution of $0.19 \mathrm{~g}(0.30 \mathrm{mmol})$ of 13-benzyloxy-6-methylene-4,8-di(p-toluenesulfonyl)-4,8,15-triazabicyclo[9.3.1]pentadeca-1(15),11,13-triene (3g) in 10 mL of dry DCM was stirred at $-10^{\circ} \mathrm{C}$ as 3 mL of a 1 M solution of BBr_{3} in DCM was added. The mixture was allowed to warm to room temperature and stirred for $17 \mathrm{~h}, 6 \mathrm{~mL}$ of water was added and the mixture and was stirred for 30 min . The aq. layer was separated and extracted with DCM (5×30 $\mathrm{mL})$. The combined organic solutions were dried, filtered, and concentrated by rotary evaporation. The residue was dried in vacuo overnight, triturated with anhydrous diethyl ether ($5 \times 5 \mathrm{~mL}$) and dried in vacuo overnight giving $0.11 \mathrm{~g}(59 \%)$ of $\mathbf{3 d} \cdot \mathbf{H B r}$ as a brown powder, mp $180-190{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.64(\mathrm{~d}, 8.4 \mathrm{~Hz}, 2 \mathrm{H}, o-\mathrm{Ts}), 7.32(\mathrm{~d}, 8.2 \mathrm{~Hz}, 2 \mathrm{H}, m-\mathrm{Ts}), 7.00(\mathrm{~s}, 2 \mathrm{H}$, Py), 4.85 (s, $2 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2}$), 3.76 (br, $4 \mathrm{H}, \mathrm{H} 3,9$), 3.35 (s, $4 \mathrm{H}, \mathrm{H} 5,7$), 3.30 (t, $6.0 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H} 2,10$), 2.43 (s, $6 \mathrm{H}, \mathrm{ArCH}_{3}$). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.7,155.2,144.4,135.5,134.0,130.0$, $127.5,118.8,114.4,52.8,48.0,33.9,21.6 . \operatorname{IR}\left(\mathrm{cm}^{-1}\right) 2758(\mathrm{~m}), 1628(\mathrm{~s}), 1596(\mathrm{~m}), 1484(\mathrm{~s})$, $1447(\mathrm{~m}) . \mathrm{MS} \mathrm{m} / z 542.49(\mathrm{MH})^{+}$. Anal. calcd for $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}_{2} \cdot \mathrm{HBr}: \mathrm{C}, 52.09 ; \mathrm{H}, 5.18 ; \mathrm{N}, 6.75$; Found: C, 52.15; H, 5.53; N, 6.68.
12-tert-Butyl-4,7-bis(p-toluenenesulfonyl)-4,7,14-triazabicyclo[8.3.1]tetradeca-1(14),1

 0,12-triene (16). A mixture of $0.20 \mathrm{~g}(0.38 \mathrm{mmol})$ of 4-tert-butyl-2,6-bis(2-ptoluenesulfonamidoethyl)pyridine (4c), $0.49 \mathrm{~g}(1.5 \mathrm{mmol})$ of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ and 25 mL of acetonitrile was stirred and boiled under reflux for 1 h , then a solution of $0.05 \mathrm{~mL}(0.11 \mathrm{~g}, 0.58 \mathrm{mmol})$ of $1,3-$ dibromoethane in 5 mL of acetonitrile was added by syringe pump over 2 h . The reaction mixture was stirred and boiled under reflux for 21 h , cooled to room temperature and filtered, washing theflask and residue with 50 mL of acetonitrile. The filtrate was concentrated by rotary evaporation, and the resulting brown oil was dried in vacuo overnight then submitted to column chromatography on silica, eluting with DCM, then 9:1 (v/v) DCM/ethyl acetate, giving 50 mg of 16 as a clear oil. A solution of this sample of 16 in 10 mL of 2 N HCl in methanol/water was stirred at room temperature for 5 h then concentrated by rotary evaporation. The residue was dried in vacuo, triturated with anhydrous diethyl ether ($3 \times 10 \mathrm{~mL}$) and dried in vacuo overnight, giving 50 $\operatorname{mg}(23 \%)$ of $\mathbf{1 6} \mathbf{~} \mathbf{H C l}, \mathrm{mp} 140-148{ }^{0} \mathrm{C}(\mathrm{dec}) . \mathbf{1 6 :}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.74(\mathrm{~d}, 8.4 \mathrm{~Hz}, 4$ $\mathrm{H}, o-\mathrm{Ts}), 7.33(\mathrm{~d}, 8.3 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{m}-\mathrm{Ts}), 6.91(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Py}), 3.55\left(\mathrm{br}, 12 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.44(\mathrm{~s}, 6 \mathrm{H}$, $\left.\mathrm{ArCH}_{3}\right), 1.47\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.2,158.3,143.4,135.9,129.8$, $127.4,118.4,53.2,50.0,39.3,34.7,30.7,21.6 .16 \cdot \mathbf{H C l}:$ IR ($\left.\mathrm{cm}^{-1}\right) 2361$ (m), 1999 (m), 1630 (s), $1596(\mathrm{~m})$. MS m/z $556.49(\mathrm{MH})^{+}$. Anal. calcd for $\mathrm{C}_{29} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}_{2} \cdot \mathrm{HCl}: \mathrm{C}, 58.82 ; \mathrm{H}, 6.47 ; \mathrm{N}, 7.10$; Found: C, 58.43; H, 6.67; N, 6.89.

4-Ethyl-2,6-bis[2-p-(dimethylamino)benzenesulfonamidoethyl]pyridine
 (19). A

solution of $0.26 \mathrm{~g}(1.4 \mathrm{mmol})$ of 2,6-bis(2-aminoethyl)-4-ethylpyridine ($\mathbf{1 5 b}$), $0.80 \mathrm{~mL}(0.58 \mathrm{~g}, 5.7$ mmol) of triethylamine and 50 mL of DCM was stirred at room temperature as a solution of 1.26 $\mathrm{g}(5.74 \mathrm{mmol})$ of p-(dimethylamino)benzenesulfonyl chloride ${ }^{124,125}$ in 30 mL of DCM was added dropwise over 30 min . The resulting solution was stirred at room temperature for 24 h , washed with saturated aq. NaHCO_{3} solution ($2 \times 50 \mathrm{~mL}$), then with 50 mL of saturated aq. NaCl solution. The organic layer was separated, dried, filtered, and concentrated by rotary evaporation. The residue was subjected to column chromatography on alumina, eluting with $\mathrm{DCM}, 1: 9$ (v/v) DCM/EtOAc, EtOAc, and 1:9 (v/v) EtOH/EtOAc, giving $0.66 \mathrm{~g}(88 \%)$ of pure 19 as a glassy light brown solid. As described for 16, a portion was converted to the HCl salt for elemental analysis and biological testing. 19: $\delta 7.72(\mathrm{~d}, 8.3 \mathrm{~Hz}, 4 \mathrm{H}, o-\mathrm{Ts}), 7.27(\mathrm{~d}, 8.6 \mathrm{~Hz}, 4 \mathrm{H}, m-\mathrm{Ts}), 6.76(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Py}), 5.64(\mathrm{~s}, 2$
H, NH), $3.32\left(\mathrm{t}, 7.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.86\left(\mathrm{t}, 7.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 2.40\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.54$ (q, $7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), $1.19\left(\mathrm{t}, 7.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 157.9, $154.7,143.2,137.1,129.7,127.0,121.4,42.4,36.4,28.1,21.4,14.2 .19 \cdot \mathrm{HCl}: \mathrm{mp} 150-155{ }^{\circ} \mathrm{C}$ (dec). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 7.86(\mathrm{~d}, 8.2 \mathrm{~Hz}, 4 \mathrm{H}, o-\mathrm{Ts}), 7.66$ (s, $2 \mathrm{H}, \mathrm{Py}$), 7.48 (d, 8.2 $\mathrm{Hz}, 4 \mathrm{H}, m-\mathrm{Ts}$), $3.35\left(\mathrm{br}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.22\left(\mathrm{br}, 20 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}, \mathrm{NCH}_{3}\right), 2.89(\mathrm{q}, 7.3 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), $1.33\left(\mathrm{t}, 7.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 164.88,152.66,148.86$, $133.08,128.16,124.78,115.86,41.84,40.99,32.84,28.16,12.13$. IR (cm^{-1}) 2861 (m), 2563 (br), 1981 (m), 1633 (s), 1594 (s), 1516 (s), 1444 (s). MS m/z 560.83 (MH) ${ }^{+}$. Anal. calcd for $\mathrm{C}_{27} \mathrm{H}_{37} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{~S}_{2} \cdot 1.5 \mathrm{HCl} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 51.28 ; \mathrm{H}, 6.45 ; \mathrm{N}, 11.07$; Found: C, $51.59 ; \mathrm{H}, 6.81 ; \mathrm{N}, 10.82$.

4,8-Di[(p-dimethylamino)benzenesulfonyl]-13-ethyl-6-methylene-

4,8,15-triazabicyclo[9.3.1]pentadeca-1(15),11,13-triene (20). By the general macrocyclization procedure, $0.25 \mathrm{~g} \quad(0.45 \mathrm{mmol})$ of 4-ethyl-2,6-bis[2-p(dimethylamino)benzenesulfonamidoethyl]pyridine $\mathbf{1 9}$ gave $0.15 \mathrm{~g}(46 \%)$ of $\mathbf{2 0} \cdot \mathbf{H C l}$ as a pale yellow solid, mp $153-158{ }^{\circ} \mathrm{C}$ (dec). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 7.74$ (br, $4 \mathrm{H}, o-\mathrm{Ts}$), 7.60 (s, $2 \mathrm{H}, \mathrm{Py}$), 7.02 (br, $4 \mathrm{H}, \mathrm{m}$-Ts), 4.66 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2}$), 3.66 (br, $4 \mathrm{H}, \mathrm{H} 3,9$), 3.38 (br, 8 H , $\mathrm{H} 2,5,7,10), 3.11\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.87\left(\mathrm{br}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.33\left(\mathrm{t}, 7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 167.9,155.9,153.8,140.0,130.8,128.0,126.2,116.9,114.3,55.4$, $52.0,41.6,36.0,30.2,14.3$. IR (cm^{-1}) 1632 (s), 1593 (s), 1515 (s), 1444 (s). MS m/z 612.50 $(\mathrm{MH})^{+}, 613.83(\mathrm{M}+2)^{+}$. Anal. calcd for $\mathrm{C}_{31} \mathrm{H}_{41} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{~S}_{2} \cdot \mathrm{H}_{2} \mathrm{O} \cdot \mathrm{HCl}: \mathrm{C}, 55.88 ; \mathrm{H}, 6.66 ; \mathrm{N}, 10.51$; Found: C, 56.06; H, 6.95; N, 10.41.

4,5-Bis(p-toluenesulfonamidomethyl)acridine (22). A mixture of $1.3 \mathrm{~g}(3.5 \mathrm{mmol})$ of 4,5-bis(bromomethyl)acridine ${ }^{107}$ (21), $2.1 \quad \mathrm{~g} \quad(7.7 \mathrm{mmol})$ of Boc-protected p toluenesulfonamide, ${ }^{108} 2.1 \mathrm{~g}(15 \mathrm{mmol})$ of $\mathrm{K}_{2} \mathrm{CO}_{3}$ and 100 mL of acetonitrile were stirred and
boiled under reflux for 24 h , cooled to room temperature and concentrated by rotary evaporation. A mixture of the residue and 300 mL of water was extracted with DCM ($4 \times 100 \mathrm{~mL}$). The combined extracts were dried, washed with 400 mL of a saturated aq. NaCl solution, dried, filtered, and concentrated by rotary evaporation. The residue was dried in vacuo overnight then stirred with 100 mL of DCM and 100 mL of 2 N HCl in MeOH /water at room temperature for 5 h, then the mixture was concentrated to dryness by rotary evaporation. The residue was dried in vacuo for 2 d , triturated with anhydrous diethyl ether ($3 \times 20 \mathrm{~mL}$) and dried in vacuo overnight. The crude HCl salt was converted to the free base by stirring with 200 mL of $\mathrm{DCM}, 100 \mathrm{~mL}$ of saturated aq. NaCl solution, and 100 mL of $2 \mathrm{Naq} . \mathrm{NaOH}$ solution at room temperature for 5 h . The aq. layer was separated, extracted with DCM ($5 \times 100 \mathrm{~mL}$). The combined extracts were dried, filtered, concentrated by rotary evaporation. The residue was dried in vacuo overnight and subjected to column chromatography on alumina, eluting with $9: 1,1: 1$, and $3: 7$ (v/v) DCM/EtOAc giving $1.1 \mathrm{~g}(58 \%)$ of 22 as a yellowish solid, mp $210-211^{\circ} \mathrm{C}(\mathrm{dec}) .{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.68$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H} 9$), 7.87 (d, $8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 1,8$), 7.63 (d, $6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 3,6$), 7.58 (d, $8.2 \mathrm{~Hz}, 4 \mathrm{H}, o-\mathrm{Ts}$), $7.40(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 2,7), 7.06(\mathrm{~d}, 8.2 \mathrm{~Hz}, 4 \mathrm{H}, m-\mathrm{Ts}), 6.05(\mathrm{t}, 6.7 \mathrm{~Hz}, 2$ $\mathrm{H}, \mathrm{NH}), 4.80\left(\mathrm{~d}, 6.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.32(\mathrm{~s}, 6 \mathrm{H}, \mathrm{ArMe}) .{ }^{13} \mathrm{CNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 146.1,143.1$, $137.3,137.2,133.7,130.7,129.4,128.3,126.9,126.5,125.6,45.6,21.4 . \operatorname{RR}\left(\mathrm{cm}^{-1}\right) 3277(\mathrm{~m})$, 1739 (m), 1625 (m), 1598 (w), 1531 (m), 1496 (w), 1413 (s). MS m/z $546.69(\mathrm{MH})^{+}$. Anal. calcd for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}_{2}$: C, 63.83; H, 4.99; N, 7.70; Found: C, 63.51; H, 5.36; N, 7.81.

9-Methylene-7,11,19-7,11-bis(p-toluenesulfonyl)-

triazatetracyclo[15.3.1.0 $\left.{ }^{5,20} \cdot 0^{13,18}\right]$ henicosa-1(21),2,4,13,15,17,19-heptaene (23). By the general macrocyclization procedure, $1.0 \mathrm{~g}(1.8 \mathrm{mmol})$ of $4,5-\mathrm{bis}(p$-toluenesulfonamidomethyl)acridine (22) gave $0.10 \mathrm{~g}(50 \%)$ of $\mathbf{2 3} \cdot \mathbf{H C l}$ salt as a bright yellow solid, mp $200-210{ }^{\circ} \mathrm{C}(\mathrm{dec}) .{ }^{1} \mathrm{H}$ NMR
(400 MHz, CDCl_{3}): $\delta 8.68$ (s, $1 \mathrm{H}, \mathrm{H} 21$), 7.92 (d, $8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 2,16$), 7.84 (d, $6.5 \mathrm{~Hz}, 2 \mathrm{H}$, H4, 14), 7.59 (d, $8.5 \mathrm{~Hz}, 4 \mathrm{H}, o-\mathrm{Ts}$), 7.45 (t, $7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 3,15$), 7.15 (d, $8.8 \mathrm{~Hz}, 4 \mathrm{H}, m-\mathrm{Ts}$), 5.42 (br, $2 \mathrm{H}, \mathrm{H} 6,12$), $5.26\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2}\right), 4.72(\mathrm{br}, 2 \mathrm{H}, \mathrm{H} 6,12), 3.90(\mathrm{~s}, 4 \mathrm{H}, \mathrm{H} 8,10), 2.37$ (s, 6 H , ArMe). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl} 3$) δ 147.3, 143.1, 138.4, 137.6, 136.8, 134.4, 133.9, 129.5, $128.9,127.4,126.4,125.9,113.7,50.6,45.0,21.6$. IR (neat, $\left.\mathrm{cm}^{-1}\right) 1739$ (m), 1633 (w), 1596 (m), $1534(\mathrm{~m}), 1493(\mathrm{~m}), 1428(\mathrm{~m}) . \mathrm{MS} m / z 598.78(\mathrm{MH})^{+}$. Anal. calcd for $\mathrm{C}_{33} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}_{2} \cdot 1.25 \mathrm{H}_{2} \mathrm{O}$: C, 63.90; H, 5.44; N, 6.77; Found: C, 63.92; H, 5.86; N, 6.97.

AUTHOR INFORMATION

Author Contributions

The major contributor to the research presented in this publication is LAL, followed by EC, KV, and TWB. LAL and TWB contributed equally to the preparation of this manuscript.

ACKOWLEDGEMENTS

This work was supported by the National Institutes of Health (NIH, 1R15 GM120659-01).

ABBREVIATIONS USED

AIDS, aquired immunodeficiency syndrome; CD4, cluster of differentiation 4; CADA, cyclotriazadisulfonamide; ER, endoplasmic reticulum; HIV, human immunodeficiency virus; SP, signal peptide; SIV, simian immunodeficieny virus.

REFERENCES

(1) Vermeire, K.; Zhang, Y.; Princen, K.; Hatse, S.; Samala, M. F.; Dey, K.; Choi, H.-J.; Ahn, Y.; Sodoma, A.; Snoeck, R.; Andrei, G.; De Clercq, E.; Bell, T. W.; Schols, D. CADA Inhibits Human Immunodeficiency Virus and Human Herpesvirus 7 Replication by DownModulation of the Cellular CD4 Receptor. Virology 2002, 302, 342-353.
(2) Vermeire, K.; Bell, T. W.; Choi, H.-J.; Jin, Q.; Samala, M. F.; Sodoma, A.; De Clercq, E.;

Schols, D. The Anti-HIV Potency of Cyclotriazadisulfonamide Analogs Is Directly Correlated with Their Ability to down-Modulate the CD4 Receptor. Mol. Pharmacol. 2003, 63, 203-210.
(3) Vermeire, K.; Schols, D. Specific CD4 Down-Modulating Compounds with Potent AntiHIV Activity. J. Leukoc. Biol. 2003, 74, 667-675.
(4) Vermeire, K.; Schols, D.; Bell, T. W. CD4 Down-Modulating Compounds with Potent AntiHIV Activity. Curr. Pharm. Des. 2004, 10, 1795-1803.
(5) Vermeire, K.; Schols, D.; Bell, T. W. Inhibitors of HIV Infection via the Cellular CD4 Receptor. Curr. Med. Chem. 2006, 13, 731-743.
(6) Bell, T. W.; Demillo, V. G.; Schols, D.; Vermeire, K. Improving Potencies and Properties of CD4 Down-Modulating CADA Analogs. Expert Opin. Drug Discov. 2012, 7, 39-48.
(7) Dalgleish, A. G.; Beverley, P. C.; Clapham, P. R.; Crawford, D. H.; Greaves, M. F.; Weiss, R. A. The CD4 (T4) Antigen Is an Essential Component of the Receptor for the AIDS Retrovirus. Nature 1984, 312, 763-767.
(8) Klatzmann, D.; Champagne, E.; Chamaret, S.; Gruest, J.; Guetard, D.; Hercend, T.; Gluckman, J. C.; Montagnier, L. T-Lymphocyte T4 Molecule Behaves as the Receptor for Human Retrovirus LAV. Nature 1984, 312, 767-768.
(9) Esté, J. A.; Telenti, A. HIV Entry Inhibitors. Lancet 2007, 81-88.
(10) Qian, K.; Morris-Natschke, S.; Lee, K.-H. HIV Entry Inhibitors and Their Potential in HIV Therapy. Med. Res. Rev. 2009, 29, 369-393.
(11) Tilton, J. C.; Doms, R. W. Entry Inhibitors in the Treatment of HIV-1 Infection. Antiviral

Res. 2010, 85, 91-100.
(12) Este, J. A. Inhibition of HIV Entry. In Antiviral Drug Strategies; De Clercq, E., Ed.; WileyVCH: Weinheim, 2011; pp. 29-50.
(13) Henrich, T. J.; Kuritzkes, D. R. HIV-1 Entry Inhibitors: Recent Development and Clinical Use. Curr. Opin. Virol. 2013, 3, 51-57.
(14) Haqqani, A. A.; Tilton, J. C. Entry Inhibitors and Their Use in the Treatment of HIV-1 Infection. Antiviral Res. 2013, 98, 158-170.
(15) Zhan, P.; Pannecouque, C.; De Clercq, E.; Liu, X. Anti-HIV Drug Discovery and Development: Current Innovations and Future Trends. J. Med. Chem. 2016, 59, 28492878.
(16) Lu, L.; Yu, F.; Cai, L.; K. Debnath, A.; Jiang, S. Development of Small-Molecule HIV Entry Inhibitors Specifically Targeting Gp120 or Gp41. Curr. Top. Med. Chem. 2016, 16, 1074-1090.
(17) Sun, M.; Pace, C. S.; Yao, X.; Yu, F.; Padte, N. N.; Huang, Y.; Seaman, M. S.; Li, Q.; Ho, D. D. Rational Design and Characterization of of the Novel, Broad and Potent Bispecific HIV-1 Neutralizing Antibody IMabm36. J. Acquir. Immune Def. Syndr. 2014, 66, 473-483.
(18) Tiberi, M.; Tintori, C.; Ceresola, E. R.; Fazi, R.; Zamperini, C.; Calandro, P.; Franchi, L.; Selvaraj, M.; Botta, L.; Sampaolo, M.; Saita, D.; Ferrarese, R.; Clementi, M.; Canducci, F.; Botta, M. 2-Aminothiazolones as Anti-Hiv Agents That Act as Gp120-Cd4 Inhibitors. Antimicrob. Agents Chemother. 2014, 58, 3043-3052.
(19) Li, Z.; Zhou, N.; Sun, Y.; Ray, N.; Lataillade, M.; Hanna, G. J.; Krystal, M. Activity of the

HIV-1 Attachment Inhibitor BMS-626529, the Active Component of the Prodrug BMS663068, against CD4-Independent Viruses and HIV-1 Envelopes Resistant to Other Entry Inhibitors. Antimicrob. Agents Chemother. 2013, 57, 4172-4180.
(20) Zhu, L.; Hruska, M.; Hwang, C.; Shah, V.; Furlong, M.; Hanna, G. J.; Bertz, R.; Savant Landry, I. Pharmacokinetic Interactions between BMS-626529, the Active Moiety of the HIV-1 Attachment Inhibitor Prodrug BMS-663068, and Ritonavir or Ritonavir-Boosted Atazanavir in Healthy Subjects. Antimicrob. Agents Chemother. 2015, 59, 3816-3822.
(21) Landry, I.; Zhu, L.; Abutarif, M.; Hruska, M.; Sadler, B. M.; Pitsiu, M.; Joshi, S.; Hanna, G. J.; Lataillade, M.; Boulton, D. W.; Bertz, R. J. Model-Based Phase 3 Dose Selection for HIV-1 Attachment Inhibitor Prodrug BMS-663068 in HIV-1-Infected Patients: Population Pharmacokinetics/Pharmacodynamics of the Active Moiety, BMS-626529. Antimicrob. Agents Chemother. 2016, 60, 2782-2789.
(22) NIH. Attachment Inhibitor Comparison in Heavily Treatment Experienced Patients https://aidsinfo.nih.gov/clinical-trials/details/NCT02362503 (accessed July 8, 2020).
(23) Wensel, D.; Sun, Y.; Davis, J.; Li, Z.; Zhang, S.; Mcdonagh, T.; Langley, D.; Mitchell, T.; Tabruyn, S.; Nef, P.; Cockett, M.; Krystal, M. GSK3732394: A Multi-Specific Inhibitor of HIV Entry. J. Virol. 2019, 93, 1-21 (e00907-19).
(24) NIH. Evaluation of the Safety, Tolerability and Pharmacokinetics (PK) of GSK3732394 First-Time-in-Human (FTIH) Study https://clinicaltrials.gov/ct2/show/NCT03984812 (accessed July 8, 2020).
(25) Wighton, K. First randomized trial of "kick and kill" approach to HIV cure leaves puzzles to be solved https://www.sciencedaily.com/releases/2018/07/180724110046.htm (accessed

July 8, 2020).
(26) Günthard, H. F.; Aberg, J. A.; Eron, J. J.; Hoy, J. F.; Telenti, A.; Benson, C. A.; Burger, D. M.; Cahn, P.; Gallant, J. E.; Glesby, M. J.; Reiss, P.; Saag, M. S.; Thomas, D. L.; Jacobsen, D. M.; Volberding, P. A. Antiretroviral Treatment of Adult HIV Infection: 2014 Recommendations of the International Antiviral Society-USA Panel. JAMA 2014, 312, 410-425.
(27) Menéndez-Arias, L. Molecular Basis of Human Immunodeficiency Virus Type 1 Drug Resistance: Overview and Recent Developments. Antiviral Res. 2013, 98, 93-120.
(28) Vermeire, K.; Van Laethem, K.; Janssens, W.; Bell, T. W.; Schols, D. Human Immunodeficiency Virus Type 1 Escape from Cyclotriazadisulfonamide-Induced CD4Targeted Entry Inhibition Is Associated with Increased Neutralizing Antibody Susceptibility. J. Virol. 2009, 83, 9577-9583.
(29) Bartholomew, M.; Brett, S.; Barber, K.; Rossman, C.; Crowe, S.; Tite, J. Functionalanalysis of the Effects of a Fully Humanized Anti-CD4 Antibody on Resting and Activated Human T Cells. Immunology 1995, 85, 41-48.
(30) Helling, B.; König, M.; Dälken, B.; Engling, A.; Krömer, W.; Heim, K.; Wallmeier, H.; Haas, J.; Wildemann, B.; Fritz, B.; Jonuleit, H.; Kubach, J.; Dingermann, T.; Radeke, H. H.; Osterroth, F.; Uherek, C.; Czeloth, N.; Schüttrumpf, J. A Specific CD4 Epitope Bound by Tregalizumab Mediates Activation of Regulatory T Cells by a Unique Signaling Pathway. Immunol. Cell Biol. 2015, 93, 396-405.
(31) König, M.; Rharbaoui, F.; Aigner, S.; Dälken, B.; Schüttrumpf, J. Tregalizumab - A Monoclonal Antibody to Target Regulatory T Cells. Front. Immunol. 2016, 7, 11.
(32) Brett, S. J.; Rowan, W.; Smith, M.; Bartholomew, M.; Tite, J. P. Differential Functional Effects of a Humanized Anti-CD4 Antibody on Resting and Activated Human T Cells. Immunology 1997, 91, 346-353.
(33) Choy, E. H.; Connolly, D. J.; Rapson, N.; Jeal, S.; Brown, J. C.; Kingsley, G. H.; Panayi, G. S.; Johnston, J. M. Pharmacokinetic, Pharmacodynamic and Clinical Effects of a Humanized IgG1 Anti-CD4 Monoclonal Antibody in the Peripheral Blood and Synovial Fluid of Rheumatoid Arthritis Patients. Rheumatology (Oxford). 2000, 39, 1139-1146.
(34) Lorenz, H.-M. T-Cell-Activation Inhibitors in Rheumatoid Arthritis. BioDrugs 2003, 17, 263-270.
(35) Scheerens, H.; Su, Z.; Irving, B.; Townsend, M. J.; Zheng, Y.; Stefanich, E.; Chindalore, V.; Bingham, C. O.; Davis, J. C. MTRX1011A, a Humanized Anti-CD4 Monoclonal Antibody, in the Treatment of Patients with Rheumatoid Arthritis: A Phase I Randomized, Double-Blind, Placebo-Controlled Study Incorporating Pharmacodynamic Biomarker Assessments. Arthritis Res. Ther. 2011, 13, R177.
(36) Rigo, V.; Corrias, M. V.; Orengo, A. M.; Brizzolara, A.; Emionite, L.; Fenoglio, D.; Filaci, G.; Croce, M.; Ferrini, S. Recombinant IL-21 and Anti-CD4 Antibodies Cooperate in Syngeneic Neuroblastoma Immunotherapy and Mediate Long-Lasting Immunity. Cancer Immunol. Immunother. 2014, 63, 501-511.
(37) Kim, Y. H.; Duvic, M.; Obitz, E.; Gniadecki, R.; Iversen, L.; Österborg, A.; Whittaker, S.; Illidge, T. M.; Schwarz, T.; Kaufmann, R.; Cooper, K.; Knudsen, K. M.; Lisby, S.; Baadsgaard, O.; Knox, S. J. Clinical Efficacy of Zanolimumab (HuMax-CD4): Two Phase 2 Studies in Refractory Cutaneous T-Cell Lymphoma. Blood 2007, 109, 4655-4662.
(38) Alexandroff, A. B.; Shpadaruk, V.; Bamford, W. M.; Kennedy, D. B. J.; Burd, R.; Dyer, M. J. S. Alemtuzumab-Resistant Sezary Syndrome Responding to Zanolimumab. Br. J. Haematol. 2011, 154, 419-421.
(39) Beaumier, C. M.; Harris, L. D.; Goldstein, S.; Klatt, N. R.; Whitted, S.; McGinty, J.; Apetrei, C.; Pandrea, I.; Hirsch, V. M.; Brenchley, J. M. CD4 Downregulation by Memory CD4+ T Cells in Vivo Renders African Green Monkeys Resistant to Progressive SIVagm Infection. Nat. Med. 2009, 15, 879-885.
(40) Vermeire, K.; Bell, T. W.; Puyenbroeck, V. Van; Giraut, A.; Noppen, S.; Liekens, S.; Schols, D.; Hartmann, E.; Kalies, K.-U.; Marsh, M. Signal Peptide-Binding Drug as a Selective Inhibitor of Co-Translational Protein Translocation. PLOS Biol. 2014, 12, 1-18, el002011.
(41) Salom, D.; Palczewski, K. Structural Biology of Membrane Proteins. In Production of Membrane Proteins; Robinson, A. S., Ed.; Wiley-VCH: Berlin, 2011; pp. 249-273.
(42) Rucevic, M.; Hixson, D.; Josic, D. Mammalian Plasma Membrane Proteins as Potential Biomarkers and Drug Targets. Electrophoresis 2011, 32, 1549-1564.
(43) Osborne, A. R.; Rapoport, T. A.; van den Berg, B. Protein Translocation By the Sec61/SecY Channel. Annu. Rev. Cell Dev. Biol. 2005, 21, 529-550.
(44) Rapoport, T. A. Protein Translocation across the Eukaryotic Endoplasmic Reticulum and Bacterial Plasma Membranes. Nature 2007, 450, 663-669.
(45) Hegde, R. S.; Keenan, R. J. Tail-Anchored Membrane Protein Insertion into the Endoplasmic Reticulum. Nat. Rev. Mol. Cell Biol. 2011, 12, 787-798.
(46) Park, E.; Rapoport, T. A. Mechanisms of Sec61/SecY-Mediated Protein Translocation Across Membranes. Annu. Rev. Biophys. 2012, 41, 21-40.
(47) Nyathi, Y.; Wilkinson, B. M.; Pool, M. R. Co-Translational Targeting and Translocation of Proteins to the Endoplasmic Reticulum. Biochim. Biophys. Acta-Mol. Cell Res. 2013, 1833, 2392-2402.
(48) Cymer, F.; Von Heijne, G.; White, S. H. Mechanisms of Integral Membrane Protein Insertion and Folding. J. Mol. Biol. 2015, 427, 999-1022.
(49) Voorhees, R. M.; Hegde, R. S. Structures of the Scanning and Engaged States of the Mammalian SRP-Ribosome Complex. Elife 2015, 4, 1-21 (DOI: 10.7554/eLife.07975).
(50) Voorhees, R. M.; Hegde, R. S. Structure of the Sec61 Channel Opened By a Signal Sequence. Science 2016, 351, 88-91.
(51) Lumangtad, L. A.; Bell, T. W. The Signal Peptide as a New Target for Drug Design. Bioorg. Med. Chem. Lett. 2020, 30, DOI: 10.1016/j.bmcl.2020.127115.
(52) Van Puyenbroeck, V.; Claeys, E.; Schols, D.; Bell, T. W.; Vermeire, K. A Proteomic Survey Indicates Sortilin as a Secondary Substrate of the ER Translocation Inhibitor Cyclotriazadisulfonamide (CADA). Mol. Cell. Proteomics 2017, 16, 157-167.
(53) Goettsch, C.; Kjolby, M.; Aikawa, E. Brief Review Sortilin and Its Multiple Roles in Cardiovascular and Metabolic Diseases. Atherscler Thromb Vasc Biol 2018, 19-25.
(54) Hu, F.; Padukkavidana, T.; Vægter, C. B.; Brady, O. A.; Zheng, Y.; Mackenzie, I. R.; Feldman, H. H.; Nykjaer, A.; Strittmatter, S. M. Sortilin-Mediated Endocytosis Determines Levels of the Frontotemporal Dementia Protein, Progranulin. Neuron 2010, 68, 654-667.
(55) Patel, A. B.; Tsilioni, I.; Leeman, S. E.; Theoharides, T. C. Neurotensin Stimulates Sortilin and MTOR in Human Microglia Inhibitable by Methoxyluteolin, a Potential Therapeutic Target for Autism. PNAS 2016, 113, E7049-E7058.
(56) Andersson, C.; Hansson, O.; Minthon, L.; Andreasen, N.; Blennow, K. A Genetic Variant of the Sortilin 1 Gene Is Associated with Reduced Risk of Alzheimer's Disease. 2016, 53, 1353-1363.
(57) Goettsch, C.; Hutcheson, J. D.; Aikawa, M.; Iwata, H.; Pham, T.; Nykjaer, A.; Kjolby, M.; Rogers, M.; Michel, T.; Shibasaki, M.; Hagita, S.; Kramann, R.; Rader, D. J.; Libby, P.; Singh, S. A.; Aikawa, E. Sortilin Mediates Vascular Calcification via Its Recruitment into Extracellular Vesicles. J. Clin. Invest. 2016, 126, 1323-1336.
(58) Zhong, L.; Cayabyab, F. S.; Tang, C.; Zheng, X.; Peng, T.; Lv, Y. Sortilin: A Novel Regulator in Lipid Metabolism and Atherogenesis. Clin. Chim. Acta 2016, 460, 11-17.
(59) Lee, W. C.; Almeida, S.; Prudencio, M.; Caulfield, T. R.; Zhang, Y.; Tay, W. M.; Bauer, P. O.; Chew, J.; Sasaguri, H.; Jansen-west, K. R.; Gendron, T. F.; Stetler, C. T.; Finch, N.; Mackenzie, I. R.; Rademakers, R.; Gao, F.; Petrucelli, L. Targeted Manipulation of the Sortilin - Progranulin Axis Rescues Progranulin Haploinsufficiency. Hum. Mol. Genet. 2014, 23, 1467-1478.
(60) Bell, T. W.; Anugu, S.; Bailey, P.; Catalano, V. J.; Dey, K.; Drew, M. G. B.; Duffy, N. H.; Jin, Q.; Samala, M. F.; Sodoma, A.; Welch, W. H.; Schols, D.; Vermeire, K. Synthesis and Structure - Activity Relationship Studies of CD4 Down-Modulating Cyclotriazadisulfonamide (CADA) Analogues. J. Med. Chem. 2006, 49, 1291-1312.
(61) Demillo, V. G.; Goulinet-Mateo, F.; Kim, J.; Schols, D.; Vermeire, K.; Bell, T. W.

Unsymmetrical Cyclotriazadisulfonamide (CADA) Compounds as Human CD4 Receptor down-Modulating Agents. J. Med. Chem. 2011, 54, 5712-5721.
(62) Chawla, R.; Van Puyenbroeck, V.; Pflug, N. C.; Sama, A.; Ali, R.; Schols, D.; Vermeire, K.; Bell, T. W. Tuning Side Arm Electronics in Unsymmetrical Cyclotriazadisulfonamide (CADA) Endoplasmic Reticulum (ER) Translocation Inhibitors to Improve Their Human Cluster of Differentiation 4 (CD4) Receptor Down-Modulating Potencies. J. Med. Chem. 2016, 59, 2633-2647.
(63) Taylor, R. D.; Maccoss, M.; Lawson, A. D. G. Rings in Drugs. J. Med. Chem. 2014, 57, 5845-5859.
(64) Altaf, A. A.; Shahzad, A.; Gul, Z.; Rasool, N.; Badshah, A.; Lal, B.; Khan, E. A Review on the Medicinal Importance of Pyridine Derivatives. J. Drug Des. Med. Chem. 2015, 1, 1-11 (DOI: 10.11648/J.JDDMC.20150101.11).
(65) Hamada, Y. Role of Pyridines in Medicinal Chemistry and Design of BACE1 Inhibitors Possessing a Pyridine Scaffold. IntechOpen 2018.
(66) Pryde, D. C.; Dalvie, D.; Hu, Q.; Jones, P.; Obach, R. S.; Tran, T. D. Aldehyde Oxidase: An Enzyme of Emerging Importance in Drug Discovery. J. Med. Chem. 2010, 53, 84418460.
(67) St. Jean, D. J.; Fotsch, C. Mitigating Heterocycle Metabolism in Drug Discovery. J. Med. Chem. 2012, 55, 6002-6020.
(68) Buckingham, A. D.; Chau, J. Y. H.; Freeman, H. C.; Le Fevre, R. J. W.; Narayana Rao, D. A. A. S.; Tardif, J. The Dipole Moments of Pyridine, Quinoline, and IsoQuinoline as Vapours and Solutes. J. Chem. Soc. 1956, 1405-1411.
(69) van Staveren, C. J.; Aarts, V. M. L. J.; Grootenhuis, P. D. J.; Droppers, W. J. H.; Van Eerden, J.; Harkema, S.; Reinhoudt, D. N. Synthetic Molecular Receptors for Urea. Macrocyclic Ligands with Intraannular Acidic Groups and the Complexes with Urea. J. Am. Chem. Soc. 1988, 110, 8134-8144.
(70) Bradshaw, J. S.; Huszthy, P.; Wang, T.; Zhu, C.; Nazarenko, A. Y.; Izatt, R. M. Enantiomeric Recognition and Separation of Chiral Organic Ammonium Salts by Chiral Pyridino-18-Crown-6 Ligands. Supramol. Chem. 1993, 1, 267-275.
(71) Chessa, G.; Scrivanti, A. Synthesis of Dendritic Polypyridines with Ethoxycarbonyl Groups as Surface Functionality. J. Chem. Soc. Perkin Trans. I 1996, 307-311.
(72) Horvath, G.; Rusa, C.; Kontos, Z.; Gerencser, J.; Huszthy, P. A New Efficient Method for the Preparation of 2,6-Pyridinedimethyl Ditosylates from Dimethyl 2,6Pyridinedicarboxylates. Synth. Commun. 1999, 29, 3719-3731.
(73) Bridger, G. J.; Skerlj, R. T.; Padmanabhan, S. A.; Martellucci, S. A.; Henson, G. W.; Struyf, S.; Witvrouw, M.; Schols, D.; De Clercq, E. Synthesis and Structure-Activity Relationships of Phenylenebis(Methylene)-Linked Bis-Azamacrocycles That Inhibit HIV-1 and HIV-2 Replication by Antagonism of the Chemokine Receptor CXCR4. J. Med. Chem. 1999, 42, 3971-3981.
(74) Storm, O.; Lüning, U. Concave Pyridines with Extended π-Systems. European J. Org. Chem. 2002, 3680-3685.
(75) Vermonden, T.; Branowska, D.; Marcelis, A. T. M.; Sudhölter, E. J. R. Synthesis of 4Functionalized Terdendate Pyridine-Based Ligands. Tetrahedron 2003, 59, 5039-5045.
(76) Selvakumar, K.; Motiei, L.; Margulies, D. Enzyme-Artificial Enzyme Interactions as a

Means for Discriminating among Structurally Similar Isozymes. J. Am. Chem. Soc. 2015, 137, 4892-4895.
(77) Wessel, A. J.; Schultz, J. W.; Tang, F.; Duan, H.; Mirica, L. M. Improved Synthesis of Symmetrically \& Asymmetrically: N -Substituted Pyridinophane Derivatives. Org. Biomol. Chem. 2017, 15, 9923-9931.
(78) Li, L.; Jaraquemada-Peláez, M. D. G.; Kuo, H. T.; Merkens, H.; Choudhary, N.; Gitschtaler, K.; Jermilova, U.; Colpo, N.; Uribe-Munoz, C.; Radchenko, V.; Schaffer, P.; Lin, K. S.; Bénard, F.; Orvig, C. Functionally Versatile and Highly Stable Chelator for 111 In and 177 Lu: Proof-of-Principle Prostate-Specific Membrane Antigen Targeting. Bioconjug. Chem. 2019, 30, 1539-1553.
(79) Shelkov, R.; Melman, A. Free-Radical Approach to 4-Substituted Dipicolinates. European J. Org. Chem. 2005, 1397-1401.
(80) Geist, A.; Muellich, U.; Zevaco, T.; Karpov, A.; Mueller, T. Preparation of Alkylated Bis(Pyrazolyl)Pyridines for the Selective Extraction of Actinides. DE 102009003783 B4, 2010.
(81) Hantzsch, A. Condensationprodukte Aus Aldehydammoniak Und Ketoniartigen Verbindungen. Chem. Ber. 1881, 14, 1637-1638.
(82) Eisner, U.; Kuthan, J. The Chemistry of Dihydropyridines. Chem. Rev. 1972, 72, 1-42.
(83) Watanabe, Y.; Shiota, K.; Hoshiko, T.; Ozaki, S. An Efficient Procedure for the Hantzsch Dihydropyridine Synthesis. Synthesis (Stuttg). 1983, 761-761.
(84) Rimoli, M. G.; Avallone, L.; Zanarone, S.; Abignente, E.; Mangoni, A. Research on

Heterocyclic Compounds. XLIII. Synthetic Studies on 1,4-Dihydropyridine Derivatives. J. Heterocycl. Chem. 2002, 39, 1117-1122.
(85) Vanden Eynde, J. J.; Mayence, A. Synthesis and Aromatization of Hantzsch 1,4Dihydropyridines under Microwave Irradiation. An Overview. Molecules 2003, 8, 381-391.
(86) Li, G.; Chen, R.; Wu, L.; Fu, Q.; Zhang, X.; Tang, Z. Alkyl Transfer from C-C Cleavage. Angew. Chemie - Int. Ed. 2013, 52, 8432-8436.
(87) Singer, A.; McElvain, S. M. 2,6-Dimethylpyridine. In Organic Syntheses Collective Volume II; Blatt, A. H., Ed.; Wiley: New York, 1943; pp. 214-216.
(88) Filipan-Litvić, M.; Litvić, M.; Vinković, V. An Efficient, Metal-Free, Room Temperature Aromatization of Hantzsch-1,4-Dihydropyridines with Urea-Hydrogen Peroxide Adduct, Catalyzed by Molecular Iodine. Tetrahedron 2008, 64, 5649-5656.
(89) Kumar, A.; Maurya, R. A.; Sharma, S. Oxidative Aromatization of 1,4-Dihydropyridines and Pyrazolines Using HbA-H2O2: An Efficient Biomimetic Catalyst System Providing Metabolites of Drug Candidates. Bioorganic Med. Chem. Lett. 2009, 19, 4432-4436.
(90) Bai, C. B.; Wang, N. X.; Wang, Y. J.; Lan, X. W.; Xing, Y.; Wen, J. L. A New Oxidation System for the Oxidation of Hantzsch-1,4-Dihydropyridines and Polyhydroquinoline Derivatives under Mild Conditions. $R S C A d v .2015,5,100531-100534$.
(91) Carabateas, P. M.; Brundage, P.; Gelotte, K. O.; Gruett, M. D.; Lorenz, R. R.; Opalka, C. J.; Singh, B.; Thielking, W. H.; Williams, G. L.; Lesher, G. Y. 1-Ethyl-1,4-Dihydro-4-Oxo-7-(Pyridinyl)-3-Quinolinecarboxylic Acids. I. Synthesis and 3- and 4-(3Aminophenyl)Pyridine Intermediates. J. Heterocycl. Chem. 1984, 21, 1849-1856.
(92) Van Staveren, C. J. Macrocyclic (Metallo)Enzyme Models; Synthetic Receptors for Neutral Polar Molecules, Ph.D. Dissertation, University of Twente, Netherlands, 1987.
(93) Bell, T. W.; Khasanov, A. B.; Drew, M. G. B. Role of Pyridine Hydrogen-Bonding Sites in Recognition of Basic Amino Acid Side Chains. J. Am. Chem. Soc. 2002, 124, 14092-14103.
(94) Roblou, E.; Sasaki, I.; Pezet, F.; Ait-Haddou, H.; Vincendeau, S. Synthesis of Dicyanopyridines. Synth. Commun. 2004, 34, 3743-3749.
(95) Ren, Z. H.; Zhang, Z. Y.; Yang, B. Q.; Wang, Y. Y.; Guan, Z. H. Copper-Catalyzed Coupling of Oxime Acetates with Aldehydes: A New Strategy for Synthesis of Pyridines. Org. Lett. 2011, 13, 5394-5397.
(96) Avestro, A. J.; Gardner, D. M.; Vermeulen, N. A.; Wilson, E. A.; Schneebeli, S. T.; Whalley, A. C.; Belowich, M. E.; Carmieli, R.; Wasielewski, M. R.; Stoddart, J. F. Gated Electron Sharing within Dynamic Naphthalene Diimide-Based Oligorotaxanes. Angew. Chem. - Int. Ed. 2014, 53, 4442-4449.
(97) Chen, D.; Martell, A. E.; Sun, Y. New Synthetic Cobalt Schiff Base Complexes as Oxygen Carriers. Inorg. Chem. 1989, 28, 2647-2652.
(98) Xue, F.; Fang, J.; Delker, S. L.; Li, H.; Martásek, P.; Roman, L. J.; Poulos, T. L.; Silverman, R. B. Symmetric Double-Headed Aminopyridines, a Novel Strategy for Potent and Membrane-Permeable Inhibitors of Neuronal Nitric Oxide Synthase. J. Med. Chem. 2011, 54, 2039-2048.
(99) Gawali, S. S.; Gunanathan, C. Iron-Catalyzed Regioselective Cyclotrimerization of Alkynes to Benzenes. J. Organomet. Chem. 2019, 881, 139-149.
(100) Chifuku, K.; Sawada, T.; Kuwahara, Y.; Shosenji, H. The Synthesis and Property of Dihydropyrene Derivatives Containing a Nitrogen Atom. Mol. Cryst. Liq. Cryst. 2007, 470, 369-381.
(101) Pellegatti, L.; Zhang, J.; Drahos, B.; Villette, S.; Suzenet, F.; Guillaumet, G.; Petoud, S.; Tóth, É. Pyridine-Based Lanthanide Complexes: Towards Bimodal Agents Operating as near Infrared Luminescent and MRI Reporters. Chem. Commun. 2008, 6591-6593.
(102) Caddick, S.; Judd, D. B.; Lewis, A. K. D. K.; Reich, M. T.; Williams, M. R. V. A Generic Approach for the Catalytic Reduction of Nitriles. Tetrahedron 2003, 59, 5417-5423.
(103) Ali, R.; Anugu, S.; Chawla, R.; Demillo, V. G.; Goulinet-Mateo, F.; Gyawali, S.; Hamal, S.; Jones, D. E.; Lamprecht, K.; Le, T.; Lumangtad, L. A.; Pflug, N. C.; Sama, A.; Scarbrough, E. D.; Bell, T. W. Tsuji-Trost Cyclization of Disulfonamides: Synthesis of 12Membered, 11-Membered, and Pyridine-Fused Macrocyclic Triamines. ACS Omega 2019, 4, 1254-1264.
(104) Richman, J. T.; Atkins, J. E. Nitrogen Analogs of Crown Ethers. J. Am. Chem. Soc. 1974, 96, 2268-2270.
(105) Atkins, J. E.; Oettle, W. F.; Richman, J. T. Macrocyclic Polyamines: 1,4,7,10,13,16Hexaäzacycloöctadecane. In Org. Synth. Coll. Vol. 6; Noland, W. E., Ed.; Wiley: New York, 1988; pp. 652-662.
(106) Prasher, P.; Sharma, M. Medicinal Chemistry of Acridine and Its Analogues. Medchemcomm 2018, 9, 1589-1618.
(107) Chiron, J.; Galy, J. P. Reactivity of the Acridine Ring: One-Pot Regioselective Single and Double Bromomethylation of Acridine and Some Derivatives. Synlett 2003, 2349-2350.
(108) Hu, J.; Kong, B.; Liu, Y.; Xu, B.; Zhao, Y.; Gong, P. Highly Stereoselective Synthesis of Imidazolidines through the Palladium(0)-Catalyzed Three-Component Reaction of 2,3Allenylamines, Organic Halides, and Imines. ChemCatChem 2017, 9, 403-406.
(109) Kerns, E. H.; Di, L. Drug-like Properties: Concepts, Structure Design and Methods: From ADME to Toxicity Optimization; Academic Press/Elsevier: Burlington, MA, 2008.
(110) Kerns, E. H.; Di, L.; Carter, G. T. In Vitro Solubility Assays in Drug Discovery. Curr. Drug Metab. 2008, 9, 879-885.
(111) Bevan, C. D.; Lloyd, R. S. A High-Throughput Screening Method for the Determination of Aqueous Drug Solubility Using Laser Nephelometry in Microtiter Plates. Anal. Chem. 2000, 72, 1781-1787.
(112) Calloway, D. Beer-Lambert Law. J. Chem. Educ. 1997, 74, 744.
(113) Kupai, J.; Huszthy, P.; Székely, K.; Tóth, T.; Párkányi, L. Synthesis of New Enantiopure Dimethyl- and Diisobutyl -Substituted Pyridino-18-Crown-6 Ethers Containing a Halogen Atom or a Methoxy Group at Position 4 of the Pyridine Ring for Enantiomeric Recognition Studies. ARKIVOC 2011, 77-93.
(114) Lüning, U.; Baumstark, R.; Peters, K.; Schnering, H. G. Concave Reagents, 3. Synthesis, Basicity, and Conformation of New Concave Pyridines. Liebigs Ann. der Chim. 1990, 129143.
(115) Busto, E.; González-álvarez, A.; Gotor-fernández, V.; Alfonso, I. Optically Active Macrocyclic Hexaazapyridinophanes Decorated at the Periphery: Synthesis and Applications in the NMR Enantiodiscrimination of Carboxylic Acids. Tetrahedron 2010, 66, 6070-6077.
(116) Arnaud, M.; Pedra, A.; Roussel, C.; Metzger, J. Pyrylium Salts from Friedel-Crafts Acetylation of Isoparaffins. J. Org. Chem. 1979, 44, 2972-2976.
(117) Siddiqui, R. H.; Usmani, R. H.; Ali, S. M. Studies of the Pyridine Series. Part IV. Syntheses of Some Bases of the Pyridine Group. J. Indian Chem. Soc. 1944, 21, 245-248.
(118) Kaiser, E. M.; Bartling, G. J.; Thomas, W. R.; Nichols, S. B.; Nash, D. R. Selective Metalations of Methylated Pyridines and Quinolines. Condensation Reactions. J. Org. Chem. 1973, 6345, 71-75.
(119) Rojoharison, H. G.; Roussel, C. Diacylation of Alkenes Catalyzed by Sulfonic Acids 3 • Application of Weak Sulfonic Acids to the Regioselective Synthesis of Pyrylium Salts from Isoolefins and Linear Olefins. Bull. Soc. Chim. Fr. 1985, 2, 307-313.
(120) Yamamoto, S.; Okamoto, K.; Murakoso, M.; Kuninobu, Y.; Takai, K. Rhenium-Catalyzed Regioselective Synthesis of Multisubstituted Pyridines from β-Enamino Ketones and Alkynes via C-C Bond Cleavage. Org. Lett. 2012, 14, 3182-3185.
(121) Gupta, A. K.; Ila, H.; Junjappa, H. Cycloatomatization of Alpha-Oxoketene Dithioacetals with Lithioacetonitrile and Lithiopropiononitrile: A Facile Route to Substituted and Annnelated Pyridines. Tetrahedron 1990, 46, 2561-2572.
(122) Gan, X.; Paine, R. T.; Duesler, N.; Nöth, H. Synthesis and Coordination Chemistry of Arene Soluble 4-Alkyl-2,6-Bis[(Diphenylphosphino)Methyl]Pyridine N,P,P’-Trioxide Ligands. Dalt. Trans. 2003, 153-159.
(123) ReingoId, I. D.; Boekelheide, V.; Schmidt, W. Syntheses, Properties, and Photoelectron Spectra of Substituted and Layered [2.2](2, 6)Pyridinoparacyclophanes. J. Am. Chem. Soc. 1979, 101, 2121-2128.
(124) Garst, M.; Sachs, G.; Shin, J. Prodrugs of Proton Pump Inhibitors Including the (1h-Pyrrol-1-Y1)-1h-Benzimidazole Moiety. WO2008036211 (A1), March 2008.
(125) Binisti, C.; Assogba, L.; Touboul, E.; Mounier, C.; Huet, J.; Ombetta, J.-E.; Dong, C. Z.; Redeuilh, C.; Heymans, F.; Godfroid, J.-J. Structure-Activity Relationships in PlateletActivating Factor (PAF). 11-From PAF-Antagonism to Phospholipase A2 Inhibition: Syntheses and Structure-Activity Relationships in 1-Arylsulfamido-2-Alkylpiperazines. Eur. J. Med. Chem. 2001, 36, 809-828.

Graphical abstract

Declaration of interests

\boxtimes The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
\square The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

