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Abstract—A chiral bis(oxazoline) ligand was immobilized on mesoporous silica (SBA-15) and examined in an asymmetric hetero-
geneous nitro-Mannich reaction. Depending upon the size of the alkyl chain in the nitroalkane substrates, enantioselectivities com-
parable to and higher diastereoselectivities (syn/anti ratio) than those obtained from homogeneous reactions were observed. In the
case of the long chain substituted nitroalkane substrate (nitrohexane), the best selectivities (diastereoselectivity: syn/anti = 98/2, and
enantioselectivity: 93% and 82% ee�s for syn- and anti-isomers, respectively), were observed. Recycling of the catalyst in subsequent
reactions was carried out and gradually diminishing levels of both diastereo and enantioselectivities were observed after each recycle.
� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

The asymmetric addition of carbon nucleophiles to im-
ines in the presence of a chiral catalyst is one of the most
efficient methods for the generation of chiral amines.1

The asymmetric nitro-Mannich reaction is one such
reaction producing chiral 2-nitroamines from the reac-
tion of nitroalkanes with aldehydes.2,3 Recently a novel
approach to the catalytic diastereo and enantioselective
nitro-Mannich reaction of N-protected a-imino esters
with nitro compounds using catalysts based upon the
bis(oxazoline) (BOX) ligand has been reported.4 This
new catalytic asymmetric nitro-Mannich reaction leads
to a simple procedure for the formation of optically
active N-protected b-nitro-a-amino esters, which can
be converted to 2,3-diamino acid derivatives. One signif-
icant drawback of this reaction is that it usually requires
a large amount of catalyst (up to 20mol%). Due to the
high cost of the chiral BOX ligand, recycling of the cat-
alyst through immobilization on a solid support can be
extremely useful. However, reports are scarce for the
heterogeneous asymmetric nitro-Mannich reaction.

The immobilization of homogeneous catalysts onto a
heterogeneous support material offers several advan-
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tages such as catalyst recovery and simplified product
purification.5 Recently mesoporous silicas with varying
pore sizes have been fabricated from the sol–gel poly-
merization of a silica precursor in the presence of tem-
plates including self assemblies of surfactants and
block copolymers.6 These mesoporous materials have
been successfully applied as supports for a variety of cat-
alytic asymmetric reactions.7–9 Mesoporous silicas have
advantages over amorphous silicas due to high surface
area and large pore sizes for favorable reaction kinet-
ics.7d Herein we report on the heterogeneous nitro-Man-
nich reaction using immobilized chiral BOX ligand onto
mesoporous SBA-15 silica support.
2. Results and discussion

The preparation of the chiral catalyst for the asymmetric
nitro-Mannich reaction and its immobilization onto
SBA-15 are shown in Scheme 1. Treatment of 2,2 0-meth-
ylenebis[(4R)-phenyl-2-oxazoline] with 2.5equiv of
n-butyl lithium followed by 3equiv of tert-butyl-(6-iodo-
hexyloxy)dimethylsilane in dry THF provided dialkyl-
ated BOX 2 in 70% yield.10 After deprotection of the
tert-butyldimethylsilyl group, anchoring of the modified
ligand onto the mesoporous silica to 4 was accomplished
by heating a mixture of 311 and chloropropyl-grafted
SBA-15 in dry xylene for 24h followed by extensive
washing with acetone and methylene chloride.12
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Scheme 1. Reagents and conditions: (a) (R)-Phenylglycinol, CH2Cl2, rt, 36h, 86%; (b) n-BuLi, tert-butyl-(6-iodohexyloxy)dimethylsilane, THF,

�78�C to rt, 3h, 70%; (c) tetrabutylammonium fluoride, THF, rt, 3h, 96%; (d) 3, xylene, reflux, 24h.
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The reaction conditions employed in our heterogeneous
nitro-Mannich reaction are based upon those of the
known asymmetric nitro-Mannich reactions using
homogeneous catalyst system.4a Generation of a Cu-
BOX catalyst and a representative nitro-Mannich
reaction is shown in Scheme 2. Heterogeneous catalyst
system A was generated from the reaction of 4 with
Cu(OTf)2 in dichloromethane for 3h. A typical protocol
for this asymmetric reaction employed catalyst A
(0.2equiv), triethylamine (0.2equiv), N-protected a-imi-
no ester (1.0equiv), and a nitro compound (1.5equiv) in
methylene chloride.

We carried out the nitro-Mannich reaction with repre-
sentative nitro compounds with diverse results being
observed depending on the substitution of nitro com-
pounds.13 For comparison, homogeneous reactions were
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Scheme 2. Asymmetric nitro-Mannich reaction catalyzed by silica-BOX A.
carried out for each substrate using a catalyst generated
from compound 1. These results are summarized in
Table 1.

Reaction with nitromethane in the presence of the hetero-
geneous BOX-Cu(OTf)2 catalyst A gave the desired
product of 51% ee in 31% yield, which is quite similar
to the result obtained in homogeneous conditions where
products of 51% ee were obtained in 39% yield (Table 1,
entry 1). Apparently, dialkyl substitution at the methyl-
ene bridge of the BOX ligand during heterogenization
did not influence the reaction enantioselectivity to a
considerable degree. In the case of the reaction with
nitroethane, 62% yield was obtained with the diastereo-
meric ratio (syn/anti = 60/40) being the same as the
homogeneous case, along with enantiomeric excesses
of the syn and anti products (90% and 64% ee, respec-
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Table 1. Catalytic enantioselective nitro-Mannich reaction at room temperature

Entry R Homogeneous reactiona Heterogeneous reactionb

Yield (%)c syn/anti ratiod Ee (%) syn/anti d Yield (%)c syn/anti ratiod Ee (%) syn/anti d

1 H 39 –– 51 31 –– 51

2 Me 62 60/40 91/65 50 60/40 90/64

3 Et 80 90/10 94/66 52 98/2 94/66

4 Pentyl 53 92/8 94/82 54 98/2 93/82

a The reaction was run at rt for one day with ligand 2.
b The reaction was run at rt for 3days.
c Yields of isolated products.
d Determined by HPLC with Chiralcel OD�, see Ref. 4a.

Table 2. Results of recycling experiments in catalytic enantioselective nitro-Mannich reactions

Entry R Results of recycling experimentsa, (% yield,b syn/anti ratio,c % ee syn/anti c)

First Second Third Fourthd Fifth

1 H 31, ––, 51 33, ––, 17 30, ––, 6 32, ––, nd 30, ––, nd

2 Me 50, 60/40, 90/64 45, 70/30, 50/35 47, 72/28, 21/24 52, 70/30, 22/20 50, 68/32, 10/6

3 Et 52, 98/2, 94/66 50, 68/32, 70/66 51, 65/35, 30/37 48, 89/11, 38/6 46, 56/44, 13/3

4 Pentyl 54, 98/2, 93/82 50, 79/21, 52/31 52, 59/41, 41/40 56, 92/8, 44/20 52, 72/28, 10/10

5 Et Trace, ––/––, ––/––e –– –– –– ––

a The reaction was run at rt for 3days.
b Yields of isolated products.
c Determined by HPLC with Chiralcel OD�, See Ref. 4a.
d At every fourth experiment, 1equiv of Cu(OTf)2 was added.
e Reaction was carried out in presence of SBA-15 without the ligand under otherwise the same conditions.
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tively), being almost the same as those obtained for the
homogeneous case (91% ee for syn and 65% ee for anti,
entry 2). In reactions involving longer-chain containing
nitroalkanes, noticeable improvement in the syn/anti
ratios were observed under heterogeneous reaction con-
ditions when compared to their homogeneous counter-
parts (98/2 and 98/2 vs 90/10 and 92/8 for reactions of
nitropropane and nitrohexane, respectively, entries 3
and 4). This enhanced diastereoselectivity with longer
chain substrates may be due to the mesoporous environ-
ment of the catalyst. Almost similar enantioselectivities
were obtained for reactions employing both
nitroalkanes.

With the heterogeneous catalyst system in hand, we then
turned our attention to the recycling of the catalyst for
the reactions examined in Table 1 with the results shown
in Table 2. When the heterogeneous catalyst was recy-
cled five times for the reaction employing nitromethane,
a comparable level of yield was maintained. However,
enantioselectivity dropped significantly upon each recy-
cle with only 6% ee being observed in the third recycling
experiment (entry 1). In the case of nitroethane, slightly
enhanced diastereoselectivities were observed upon recy-
cling of the catalyst. However, the enantioselectivity of
the reaction for both syn and anti diastereomers de-
creased upon each recycle (entry 2). In the case of nitro-
propane and nitrohexane, rapid decreases in both
diastereo and enantioselectivities were observed after
each recycling experiment (entries 3 and 4). Since we
envisioned that the reduced stereoselectivities of the
recycling experiments might be due to leaching out of
the copper metal from the ligand–metal complex, a fresh
dose of Cu(OTf)2 was added after the third recycling
experiment in each reaction. The reaction diastereoselec-
tivities in the fourth recycle rebounded noticeably in
both cases (entries 3 and 4). However, the enantioselec-
tivities exhibited a marginal increase in all cases. Only a
trace amount of the product was obtained after 3days
when Cu(OTf)2 and base were used without the box lig-
and in the presence or absence of mesoporous silica.7c
3. Conclusion

In summary, a modified BOX ligand has been immobi-
lized on SBA-15 while asymmetric nitro-Mannich reac-
tions employing this heterogeneous catalyst system
were examined. Comparable enantioselectivities and
even higher diastereoselectivities than those from the
homogeneous reaction were observed. The catalyst was
easily recovered and reused five times without significant
loss of reactivity. However, gradually reduced levels of
diastereo and enantioselectivities upon each recycling
experiment were observed.
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