RESEARCH PAPER

Effect of H_2 reduction on the catalytic properties of MoO_3 with noble metals for the conversions of pentane and propan-2-ol

Takeshi Matsuda,* Shuhei Uozumi and Nobuo Takahashi

Department of Materials Science, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido 090-8507, Japan. E-mail: matsutk@mail.kitami-it.ac.jp; Fax: +81 157 26 4973; Tel: +81 157 26 9448

Received 15th August 2003, Accepted 26th November 2003 First published as an Advance Article on the web 12th January 2004

The catalytic properties of H₂-reduced MoO₃ with noble metals for the conversions of pentane and propan-2-ol were studied. No appreciable difference appeared in the pentane isomerization activity and in the propan-2-ol dehydration activity among Pt, Pd, Rh, and Ir/MoO₃ catalysts after reduction at 773 K for 12 h. H₂-Reduced Ru/MoO₃ exhibited lower isomerization and dehydration activities than the other catalysts. The isomerization and the dehydration activities of H₂-reduced Ru/MoO₃ was improved by an increase in the amount of Ru loading, while those of H₂-reduced Pt/MoO₃ changed very little. XRD and TPR studies showed that the reduction process of Ru/MoO₃ varied with the amount of Ru. By contrast, reduction of Pt/MoO₃ involved the formation of a hydrogen molybdenum bronze, H_xMoO₃, irrespective of the amount of Pt. We suggest from these results that reduction of H_xMoO₃ can yield the active phase for pentane isomerization and for propan-2-ol dehydration.

Introduction

Hydrocarbon upgrading processes such as reforming, hydrocracking, isomerization, and catalytic iso-dewaxing play important roles in the hydrocarbon processing industry. In these processes, hydrocarbon molecules are cracked, aromatized and/or isomerized. Boosting the octane quality of a gasoline fraction by increasing the degree of branching of alkanes is an environmentally more acceptable alternative compared with other technologies such as blending with oxygenates and aromatics. Thus, skeletal isomerization of alkanes has attracted much attention as a reaction to produce clean fuels with high octane quality. Bifunctional catalysts containing both acid and metal functions have shown high efficiency in the isomerization of alkanes. The isomerization of pentane and hexane has successfully been carried out using Pt/chlorinated Al₂O₃, Pt/zeolites, and Pt/SO₄²⁻-ZrO₂ catalysts.

Iglesia and co-workers¹⁻⁴ reported that WC modified by chemisorbed oxygen catalyzed alkane isomerization without excessive cracking. They have suggested a traditional bifunctional mechanism on the oxygen modified WC, dehydrogenation-hydrogenation reactions on sites with a metallic character (WC_x) and C-C bond rearrangement reactions on acid sites (WO_x). Ledoux and co-workers have proposed that alkane isomerization reactions on oxygen-modified Mo₂C and carbon-modified MoO₃ proceeded through a metallocyclobutane intermediate-based mechanism.⁵⁻⁸ Molybdenum oxycarbide, MoO_xC_y, which is formed by incorporating carbon atoms in the molybdenum oxide lattice, has been considered to be the active phase for alkane isomerization.^{9,10} We showed in previous papers¹¹⁻¹⁴ that H₂ reduction of

We showed in previous papers¹¹⁻¹⁴ that H_2 reduction of MoO₃ at 623 K yielded an active and selective catalyst for heptane isomerization, and its activity was dependent on the extent of reduction. H₂-Reduced MoO₃ catalyzed the dehydrogenation and the dehydration of propan-2-ol simultaneously. We have suggested on the basis of these experimental results that the isomerization of heptane on H₂-reduced MoO₃ can proceed *via* a conventional bifunctional mechanism. Maire and co-workers have also proposed a traditional bifunctional mechanism on MoO_2 .¹⁵ Loading of noble metals onto MoO_3 was reported to improve the catalytic activities for both heptane isomerization and propan-2-ol dehydration.¹⁶⁻¹⁸ The isomerization and dehydration activities of H₂-reduced Pt/ MoO_3 were dependent on the extent of reduction, and the highest activities appeared at a reduction degree of about 70%. We reported in a previous paper¹⁹ that H₂-reduced Pt/ MoO_3 exhibited high isomerization activity only when reduction of Pt/ MoO_3 involved the formation of the hydrogen molybdenum bronze, H_xMoO_3 . However, the role of Pt in the generation of the active phase for alkane isomerization is still under investigation. The aim of the present work is to describe the effects of loading of noble metals on the catalytic behaviors of H₂-reduced MoO₃ for the conversions of pentane and propan-2-ol.

Experimental

Materials

 H_2 and He were purified by passage through molecular sieves and a Mn/SiO₂ oxygen trap. H₂MoO₄ of purity 98% was purchased from Kanto Chemical Co. Inc. Commercially available noble metal chlorides, H₂PtCl₆·6H₂O, PdCl₂, RhCl₃·3H₂O, RuCl₃·nH₂O and IrCl₄·nH₂O, were used without further purification. Pentane and propan-2-ol of purity 99.3 and 99.5%, respectively, were dried using molecular sieves prior to use. The MoO₃ used in this study was obtained by calcination of H₂MoO₄ at 673 K for 3 h. Noble metalloaded MoO₃ catalysts were prepared by a conventional impregnation method using an aqueous solution of noble metal chloride. Pt, Pd, Rh and Ir/MoO3 were dried overnight at 393 K, and then were calcined at 673 K for 3 h. Since the formation of gaseous $\rm RuO_4$ leads to loss of Ru, $\rm Ru/MoO_3$ was treated at 673 K for 3 h in a stream of N2. The catalyst powders were compressed into flakes, followed by crushing and sieving (30-60 mesh).

Noble metal-loaded MoO₃ catalysts weighing 0.2 g were packed at the central position of a cell, which was made of a Pyrex glass tube with an inner diameter of 8 mm. The sample was heated to 773 K at a rate of 5 K min⁻¹ in a stream of H₂, and then was kept at that temperature for 12 h. Our previous papers showed that the physical and catalytic properties of MoO_3 with and without Pt changed depending on the flow rate of H₂ in the reduction process.^{20–22} Hence, the reduction was performed at a fixed H_2 flow rate of 30 ml min⁻¹ in this study.

Catalytic tests

Reaction of pentane was carried out at 523 K under atmospheric pressure in a conventional fixed bed flow reactor equipped with a sampling valve for gas chromatographic analysis. After H₂ reduction and cooling to reaction temperature in a stream of H₂, pentane was introduced onto the catalyst bed at a partial pressure of 9211 Pa with H₂ as a complement to atmospheric pressure. Reaction of propan-2-ol was performed at 398 K and at a molar He/2-propanol ratio of 20. The composition of effluent gases was analyzed by FID gas chromatography using a TC-1 glass capillary separation column, and using a Porapak Q separation column.

Characterization methods

The surface area was determined from an N2 adsorption isotherm, which was obtained on the sample without exposure to air. The reduced sample was cooled to room temperature under H₂ flow. After evacuation for 0.5 h at room temperature, adsorption of N2 was measured at 77 K with a conventional high-vacuum static system.

The extent of reduction was calculated from the amounts of O₂ consumed in the reoxidation that was performed at 773 K by a pulse technique. Since H₂O was formed in the reoxidation, the concentration of O2 was monitored with TCD gas chromatography using a Porapak N separation column. In this study, reduction of MoO₃ to Mo metal is defined to be a reduction degree of 100%.

Crystalline phases of the H2-reduced sample were determined by X-ray diffraction (XRD) using Ni-filtered Cu-Ka radiation (Rigaku, Rint-1000). The sample for XRD measurements was obtained as follows: noble metal-loaded MoO₃ was reduced under set conditions, followed by flowing N2 for 0.5 h. After cooling to room temperature under N2 flow, the reduced sample was transferred to a glove box without exposure to air, and was dispersed in a solution of heptane to avoid any bulk oxidation.

Temperature-programmed reduction (TPR) was carried out to investigate the reducibility of noble metal-loaded MoO₃. A sample weighing 0.4 g was treated at 673 K for 1 h in a stream of Ar, and then was cooled to room temperature. Ar was replaced by a H_2 -Ar gas mixture with 20% or 50% H_2 , followed by heating to 1098 K at a rate of 5 K min⁻¹. The concentrations of H2 and H2O were monitored with TCD gas chromatography using a Porapak N separation column at 413 K.

Results and discussion

Conversion of pentane was carried out at 523 K under atmospheric pressure using noble metal-loaded MoO₃ catalysts. Here, the catalysts were reduced at 773 K for 12 h. The activities of the H2-reduced catalysts for the conversion of pentane declined very slightly with time on stream: under the reaction conditions employed, the conversion level of pentane over H₂-reduced 0.01 mol% Pt/MoO₃ after a 1 h run was 15.1%, and was lowered to 14.0% after a 6 h run. The degree of catalyst deactivation was independent of the noble metal and of the amounts of noble metal loading. Hence, the catalytic activity was estimated using data taken after a 1 h run. The physical and the catalytic properties of H2-reduced MoO3 with noble metal are summarized in Table 1. All of the catalysts exhibited a reduction degree of about 80%. No appreciable difference appeared in the pentane isomerization activity among Pt, Pd, Rh, and Ir/MoO₃ catalysts. H₂-reduced Ru/MoO₃ exhibited a lower isomerization activity than other catalysts, although the isomerization selectivity changed very little with the noble metal used . Since the surface area of H2-reduced Ru/MoO₃ was small compared with those of other catalysts, the pentane isomerization activity was evaluated by taking the surface area into consideration. As shown in Table 1, the smaller surface area of H2-reduced Ru/MoO3 was not responsible for its lower isomerization activity.

Alkane isomerization has been considered to proceed via a bifunctional mechanism, a C5-ring hydrogenolysis process, or a metallocyclobutane bond-shift mechanism. Ledoux and coworkers⁵⁻⁸ proposed that molybdenum oxycarbide catalyzed the isomerization of alkanes through a metallocyclobutane bond-shift mechanism. Maire and co-workers¹⁵ reported that the MoO₂ phase was able to catalyze the isomerization of alkanes. They have suggested, from the results of systematic studies using catalytic reactions in association with spectroscopic techniques, that the isomerization reaction on MoO₂ proceeded via a bifunctional mechanism. Dehydrogenation and hydrogenation reactions might occur on the metallic sites represented by a certain density of state of the free valence electrons localized along the *c*-axis of a rutile deformed lattice. Electronegative oxygen might act as an acid site by fixing dissociated hydrogen produced on the metallic sites, thus providing Brønsted acid sites. Recently, Meunier has reported that a bifunctional mechanism operated in the isomerization of butane over H₂-reduced MoO₃ and the rate-determinig step may be the isomerization of an *n*-butene intermediate to isobutene.²³ We showed in previous papers^{13,18} that H₂-reduced MoO₃ and Pt/MoO₃ were active for both the dehydration and the dehydrogenation of propan-2-ol, indicating the presence of dual sites. H₂-Reduced MoO₃ and Pt/MoO₃ provided negative reaction orders toward H_2 in pentane and heptane isomerization.^{24,25} This behavior is a characteristic of alkane isomerization on bifunctional catalysts, such as Pt/zeolite. We have suggested from these experimental results that H₂reduced Pt/MoO₃ can catalyze alkane isomerization through the conventional bifunctional mechanism.

To study the bifunctional properties of noble metal-loaded MoO₃ samples, reaction of propan-2-ol was carried out at 398 K. Typical results are summarized in Table 2, where the catalytic activities were compared using data after a 0.5 h run to minimize the effect of catalyst deactivation. Here, the catalysts reduced at 773 K for 12 h were employed. Propan-2-ol was dehydrated to propene and diisopropyl ether (DIPE),

Table 1 Catalytic activity of H2-reduced noble metal-MoO3 samples for the conversion of pentane

Noble metal ^a	Reduction degree ^b (%)	Surface area/m ² g ⁻¹	Conversion ^c (%)	Isomerization selectivity (%)	Rate of isomerization/ 10^{-5} mol h^{-1} m ⁻²
Pt	78.8	272	15.1	99.7	5.5
Pd	80.6	279	15.0	99.7	5.3
Rh	77.5	288	12.9	99.7	4.3
Ir	80.1	270	12.3	99.7	4.6
Ru	82.3	212	5.6	99.3	2.7

^a 0.01 mol%. ^b Reduction conditions, 773 K 12 h. ^c Reaction conditions: temperature, 523 K; catalyst weight, 0.2 g; flow rate of pentane, 2.0×10^{-2} mol h⁻¹; H₂/pentane, 10 (molar ratio).

Table 2 Catalytic activity of H2-reduced noble metal-MoO3 samples for the conversion of propan-2-ol

		Formation rate				
Noble metal	Conversion ^a (%)	Propene	Diisopropyl ether	Acetone	Ratio of formation rate: $R_{\text{propene}}/R_{\text{acetone}}$	
Pt	24.7	3.5×10^{-2}	6.5×10^{-3}	1.6×10^{-3}	22	
Pd	25.2	3.6×10^{-2}	6.9×10^{-3}	5.7×10^{-4}	63	
Rh	23.4	3.4×10^{-2}	6.2×10^{-3}	4.8×10^{-4}	71	
Ir	22.9	3.4×10^{-2}	$5.5 imes 10^{-3}$	7.2×10^{-4}	47	
Ru	11.8	1.7×10^{-2}	3.1×10^{-3}	$5.5 imes 10^{-4}$	31	
The amounts of n	oble metal loading and redu	action conditions: see	Table 1. ^{<i>a</i>} Reaction condition	ons: temperature, 398	K; catalyst weight, 0.1 g; flow	

rate of propan-2-ol, 2.0×10^{-2} mol/h; He/propan-2-ol, 20 (molar ratio).

and was dehydrogenated to acetone. All of the catalysts yielded propene much more selectively by dehydration relative to DIPE. No appreciable difference appeared in the dehydration activity among H₂-reduced Pt, Pd, Rh and Ir/MoO₃ catalysts. H₂-Reduced Ru/MoO₃ exhibited a lower dehydration activity than the other catalysts. The highest dehydrogenation activity was obtained on H₂-reduced Pt/MoO₃. H₂-Reduced Pd, Rh, Ir and Ru/MoO₃ catalysts provided almost comparable dehydrogenation activity. We deduce from these results that the isomerization activity of H₂-reduced MoO₃ with noble metals can be controlled by the acidity. The lower isomerization activity of H₂-reduced Ru/MoO₃ is likely to result from its lower ability to act as an acid catalyst.

Table 3 shows the physical and catalytic properties of H₂reduced MoO₃ with the different amounts of Pt and Ru. In the case of H₂-reduced Pt/MoO₃, the reduction degree, the surface area, and the pentane isomerization activity depended little on the amounts of Pt loading. By contrast, the pentane isomerization activity of H2-reduced Ru/MoO3 was improved by an increase in the amount of Ru loading. The isomerization activities of the catalysts with 0.05 and 0.1 mol% Ru were comparable to those of H2-reduced Pt/MoO3. The amount of Ruloading had effects on the surface area and the reduction degree as well as on the isomerization activity. The surface area increased and the reduction degree decreased with increasing amount of Ru. 0.005 mol% Ru/MoO3 showed the largest reduction degree and the smallest surface area among the catalysts tested after reduction at 773 K for 12 h. We showed in previous papers^{13,18} that the alkane isomerization activity of H2-reduced MoO3 with and without Pt was strongly affected by the extent of reduction. Hence, the isomerization activity was compared at a reduction degree of about 80%. A reduction degree of 82% was obtained in 0.005 mol% Ru/ MoO₃ after reduction at 773 K for 6 h. As expected from the previous results, the surface area and the isomerization

Table 3 Catalytic activities of H_2 -reduced Pt/MoO_3 and Ru/MoO_3 for the conversion of pentane

Noble metal	Amount (mol%)	Reduction degree (%)	Surface area/ $m^2 g^{-1}$	Conversion ^b (%)	Rate of isomerization/ mol $h^{-1} m^{-2}$
Pt	0.001	79.4	280	8.9	5.4×10^{-5}
	0.01	78.8	272	9.6	$5.9 imes 10^{-5}$
	0.1	80.3	277	11.9	6.9×10^{-5}
Ru	0.005	98.0	55	0.02	6.7×10^{-7}
	0.01	82.3	212	4.7	3.6×10^{-5}
	0.05	78.0	275	10.1	6.1×10^{-5}
	0.1	78.3	280	10.0	6.1×10^{-5}
	0.005^{a}	81.6	152	0.4	3.6×10^{-6}

Catalysts were reduced at 773 K for 12 h. ^{*a*} Catalyst was reduced at 773 K for 6 h. ^{*b*} Reaction conditions: temperature, 523 K; catalyst weight, 0.2 g; flow rate of pentane, 3.3×10^{-2} mol h⁻¹.

activity were improved by a decrease in the reduction degree. However, the isomerization activity of the above sample was much lower than those of the catalysts with a larger amount of Ru.

Reaction of propan-2-ol was conducted to evaluate the bifunctional properties of H2-reduced MoO3 with the different amounts of Pt and Ru. Typical results are shown in Table 4. The dehydrogenation reaction on H₂-reduced Pt/MoO₃ was promoted by an increase in the amount of Pt, while the dehydration activity did not change at all. In the case of H2-reduced Ru/MoO_3 , the dehydration activity was enlarged and the dehydrogenation activity was lowered by an increase in the amount of Ru loading. A decrease in the reduction degree seems to lower the dehydrogenation activity. No appreciable difference appeared in the dehydration activity between 0.001 and 0.1 mol% Pt/MoO₃ and 0.1 mol% Ru/MoO₃. When the dehydration activity was compared at a reduction degree of about 80%, H2-reduced 0.005 mol% Ru/MoO3 exhibited the lowest dehydration activity among the catalysts tested. Since the dependency of the dehydration activity on the amounts of Pt and Ru loading was very similar to that of the isomerization activity, we suggest that the isomerization activity of H2reduced MoO₃ with noble metals can be determined by the ability to act as an acid catalyst.

Fig. 1 illustrates the XRD patterns of Pt/MoO₃ reduced at 773 K for 12 h. The XRD pattern did not change at all with the amount of Pt. The diffraction lines appeared at $2\theta = 38.1, 40.7$ and 44.3°. The line at 40.7° is assigned to the d(110) plane of Mo metal. The diffraction lines at $2\theta = 38.1$ and 44.3° are considered to reflect the formation of a molybdenum oxyhydride phase, MoO_xH_y according to the the literature.^{12,18} As shown in Fig. 2, Ru/MoO₃ reduced at 773 K for 12 h was also a mixture of the MoO_xH_v and Mo metal phase, irrespective of the amount of Ru. However, the intensity of the line at 40.7° was strengthened by a decrease in the amount of Ru, indicating that the formation of Mo metal was promoted in the presence of a smaller amount of Ru. This phenomenon is consistent with the results shown in Table 3: The extent of reduction was increased by a decrease in the amount of Ru. 0.005 mol% Ru/MoO₃ reduced at 773 K for 6 h, of which the reduction degree was 82%, consisted of MoO_2 , MoO_xH_y and Mo metal phases. By contrast, no diffraction line due to the MoO_2 phase was observed in 0.1 mol% Ru/MoO₃ and 0.001-0.1 mol% Pt/MoO₃, which were reduced at 773 K for 12 h and their reduction degrees were 78-80%.

To study the reduction process of MoO₃ in the presence of Pt and Ru, changes in the XRD patterns during heating to 773 K in a stream of H₂ were measured. The sample was kept at room temperature for 0.5 h in an H₂ flow, followed by heating to a desired temperature and then quenching. The XRD patterns of 0.005 mol% Ru/MoO₃ are depicted in Fig. 3. 0.005 mol% Ru/MoO₃ heated to 473 K consisted of a hydrogen molybdenum bronze, H_{0.34}MoO₃ and the MoO₃ phases, although the bulk was mostly the MoO₃ phase. The intensity of the lines due to the H_{0.34}MoO₃ phase was strengthened at

Table 4 Catalytic activities of H2-reduced Pt/MoO3 and Ru/MoO3 for the conversion of propan-2-ol

Noble metal	Amount (mol%)	Conversion ^b (%)	Formation rate/mol $h^{-1} g^{-1}$			
			Propene	Diisopropyl ether	Acetone	Ratio of formation rate: $R_{\text{propene}}/R_{\text{acctone}}$
Pt	0.001	26.6	3.9×10^{-2}	$6.7 imes 10^{-3}$	6.5×10^{-4}	60
	0.01	24.7	3.5×10^{-2}	6.5×10^{-3}	1.6×10^{-3}	22
	0.1	29.8	3.6×10^{-2}	7.8×10^{-3}	7.9×10^{-3}	5
Ru	0.005	3.3	3.1×10^{-3}	1.2×10^{-3}	$1.1 imes 10^{-3}$	28
	0.01	11.8	1.7×10^{-2}	3.1×10^{-3}	5.5×10^{-4}	31
	0.05	16.4	2.6×10^{-2}	3.4×10^{-3}	$2.0 imes 10^{-4}$	130
	0.1	19.7	3.0×10^{-2}	4.1×10^{-3}	1.6×10^{-4}	187
	0.005^{a}	10.2	$1.3 imes 10^{-2}$	2.6×10^{-3}	1.7×10^{-3}	8

573 K. The diffraction lines due to the $H_{0.34}MoO_3$ phase disappeared, and MoO_2 was formed at 673 K. 0.005 mol% Ru/ MoO_3 gave the diffraction lines only due to the MoO_2 phase after heating to 773 K. The MoO_2 phase was also detected by XRD in 0.01 mol% Ru/MoO_3 after heating to 673 K and above, although the formation of $H_{0.34}MoO_3$ was promoted. 0.01 mol% Ru/MoO_3 heated to 773 K in an H₂ flow was a mixture of the MoO_2 and the MoO_xH_y phases. When compared at a reduction degree of about 80%, H₂-reduced 0.01 mol% Ru/MoO_3 gave no MoO_2, while the MoO_2 phase was observed in H₂-reduced 0.005 mol% Ru/MoO_3 (Fig. 2). This implies that the amount of MoO_2 formed in 0.01 mol% Ru/ MoO_3 was smaller than that in 0.005 mol% Ru/MoO_3.

Fig. 4 shows the XRD diagrams of 0.1 mol% Ru/MoO₃ heated to 298–773 K in a stream of H₂. The formation of H_{0.34}MoO₃ was detected at 373 K. When heated to 473 K, the MoO₃ phase disappeared completely, and hydrogen molybdenum phases, H_{0.93}MoO₃ and H_{1.64}MoO₃, were formed. 0.1 mol% Ru/MoO₃ heated to 573 K and above gave no diffraction lines due to the hydrogen molybdenum bronze phases, and was almost amorphous with respect to XRD. As shown in Fig. 5, the H_{0.34}MoO₃ and the H_{0.93}MoO₃ phases were detected in 0.001 mol% Pt/MoO₃ at room temperature, indicating the high ability of Pt to activate hydrogen. These phases were converted to the H_{1.68}MoO₃ phase at 473 K. No

appreciable difference appeared in the XRD pattern between 0.001 mol% Pt/MoO₃ and 0.1 mol% Ru/MoO₃ when they were heated to 573 K and above. 0.1 mol% Pt/MoO₃ provided almost the same results as 0.1 mol% Pt/MoO₃ and 0.001 mol% Pt/MoO₃, although 0.1 mol% Pt/MoO₃ was converted to H_{1.68}MoO₃ at room temperature. These results indicate that 0.001–0.1 mol% Pt/MoO₃ and 0.1 mol% Ru/MoO₃ were reduced through the hydrogen molybdenum bronze phases without the formation of MoO₂. By contrast, reduction of 0.005 and 0.01 mol% Ru/MoO₃ was accompanied by the formation of MoO₂, probably due to its low activity for hydrogen activation, although a part of the MoO₃ phase was converted to H_{0.34}MoO₃.

Temperature-programmed reduction (TPR) was performed to evaluate the reduction process of Pt and Ru/MoO₃. Fig. 6 shows the profiles of H₂ consumption and of H₂O formation during TPR of Pt/MoO₃ in a 20% H₂–80% Ar gas mixture. 0.001 mol% Pt/MoO₃ reacted with H₂ without an equivalent amount of water being generated in the region of 298–495 K,

Fig. 1 XRD Patterns of Pt/MoO_3 reduced at 773 K for 12 h. Pt loading (mol%): (a) 0.1, (b) 0.01, (c) 0.001: Mo metal (\blacksquare).

Fig. 2 XRD Patterns of Ru/MoO₃. Ru loading (mol%): (a) 0.1, (b) 0.01, (c) 0.005, (d) 0.005; (a), (b), (c) were reduced at 773 K for 12 h; (d) was reduced at 773 K for 6 h: MoO₂ (\blacktriangle), Mo metal (**■**).

Fig. 3 Change in the XRD patterns of 0.005 mol% Ru/MoO₃ during heating in an H₂ flow. (a) Room temperature, (b) 473 K, (c) 573 K, (d) 673 K, (e) 773 K: MoO₃ (\bullet), MoO₂ (\blacktriangle), H_{0.34}MoO₃ (\triangle).

Fig. 5 Change in the XRD patterns of 0.001 mol% Pt/MoO₃ during heating in an H₂ flow. (a) Room temperature, (b) 373 K, (c) 473 K, (d) 573 K, (e) 773 K: H_{0.34}MoO₃ (\triangle), H_{0.93}MoO₃ (\diamond), H_{1.68}MoO₃ (\bigcirc).

5 H2-Ar Ar 🕨 4 (C) 3 2 1 Rate (10⁻⁴ mol/min g-cat.) New Bar 0 5 (b) 4 3 2 1 19₆₀1 home 0 5 (a) 4 3 2 1 0 495 295 695 895 1095 Temperature (K)

Fig. 4 Change in the XRD patterns of 0.1 mol% Ru/MoO₃ during heating in an H₂ flow. (a) Room temperature, (b) 373 K, (c) 473 K, (d) 573 K, (e) 773 K: MoO₃ (\bullet), H_{0.34}MoO₃ (\triangle), H_{0.93}MoO₃ (\diamond), H_{1.68}MoO₃ (\odot).

This journal is © The Owner Societies 2004

Fig. 6 TPR spectra of 0.001 mol% Pt/MoO₃ (a) and 0.01 mol% Pt/MoO₃ (b, c). Conditions: sample weight, 0.4 g; gas, 20% H₂-Ar (a, b), Ar (c); flow rate, 20 ml min⁻¹; heating rate, 5 K min⁻¹: H₂ consumption (\bigcirc), H₂ formation (\bigoplus), H₂O formation (\square).

indicating the formation of the H_xMoO₃ phase. This phenomenon can be understood by hydrogen spillover. H₂O was formed with consuming H_2 in the middle temperature range of 495–695 K, although large amounts of H_2O were evolved compared with the amounts of H₂ reacted. No appreciable difference appeared between the amounts of H₂O formed and those of H₂ consumed at temperatures above 795 K. 0.01 mol% Pt/MoO₃ consumed large amounts of H₂ in the low temperature region compared with 0.001 mol% Pt/MoO₃. In the case of 0.01 mol% Pt/MoO_3 , the amounts of H₂O formed in temperatures of 495-695 K were much larger than those of H₂ consumed. Bond and Tripathi have reported that hydrogen bronzes of molybdenum begin to dehydrate at above 473 K.^{26,27} Hence, temperature-programmed decomposition was conducted under an Ar flow using 0.01 mol% Pt/MoO₃ heated to 423 K in a stream of 20% H_2 -80% Ar. As shown in Fig. 6(c), the formation of H₂O was detected in the same temperature range as in the TPR, indicating that the formation of H₂O at temperatures of 495-695 K was caused by the decomposition of H_xMoO_3 . In 0.001 mol% Pt/MoO₃, the formation and the decomposition of the H_xMoO_3 phase seem to occur at almost the same time.

TPR profiles of Ru/MoO_3 and MoO_3 in a 20% H_2 -80% Ar gas mixture are depicted in Fig. 7. 0.005 mol% Ru/MoO_3 provided markedly different TPR profiles from those of Pt/ MoO_3 . 0.005 mol% Ru/MoO_3 consumed negligible amounts

Published on 12 January 2004. Downloaded by University of Michigan Library on 25/10/2014 19:09:31

Fig. 7 TPR spectra of 0.005 mol% Ru/MoO₃ (a), 0.01 mol% Ru/MoO₃ (b), 0.1 mol% Ru/MoO₃ (c) and MoO₃ (d). Conditions: sample weight, 0.4 g; gas, 20% H₂–Ar; flow rate, 20 ml min⁻¹; heating rate, 5 K min⁻¹: H₂ consumption (\bigcirc), H₂O formation (\square).

of H₂ at low temperatures, and the H₂ consumption profile was analogous to the H₂O formation profile. The maximum peaks for H₂ consumption and for H₂O formation appeared at 940 K. The peaks were shifted to lower temperature regions by loading of larger amounts of Ru. 0.1 mol% Ru/MoO₃ exhibited almost the same TPR profile in the region of 695-1050 K as Pt/MoO_3 , whereas it was difficult to evaluate the formation and decomposition of H_xMoO₃ in 0.1 mol% Ru/ MoO₃ from the TPR. In MoO₃, H₂ consumption started at 752 K and the maximum H₂ consumption peak was observed at 1023 K. The amounts of H₂ consumed were consistent with those of H₂O formed. The consumed amount of H₂ in the temperature range of 752–1050 K was 6.4×10^{-3} mol g⁻¹, which was equal to the amount of H₂ required for reduction of MoO_3 to $MoO_2.$ The TPR profile of 0.005 mol% Ru/MoO_3 in the high temperature regions was very similar to those of MoO₃. As shown in Figs. 2 and 3, 0.005 mol% Ru/MoO₃ was converted to MoO2 during H2 reduction. Thus, the peak appearing at 940 K will reflect the formation of MoO₂. Since the MoO₂ phase was detected by XRD in 0.01 mol% Ru/ MoO₃ after heating to 673 K and above in an H₂ flow, the peaks for H₂ consumption and H₂O formation at temperatures of 780-900 K seem to originate from reduction to MoO₂

The amount of H₂ reacted with 0.01 mol% Pt/MoO₃ in 295– 473 K was calculated to be 6.2×10^{-3} mol/g–MoO₃ from the TPR spectrum shown in Fig. 6. This value can account for the formation of H_{1.68}MoO₃. As shown in Fig. 5, 0.001 mol% Pt/ MoO₃ was converted to H_{1.68}MoO₃ at 473 K. However, the amount of H₂ consumed in 298–473 K was evaluated to be 1.7×10^{-3} mol/g-MoO₃ from the TPR spectrum. This discrepancy could be related to the difference in partial pressure of H₂ because the XRD studies were performed using pure H₂, while a 20% H₂–80% Ar gas mixture was employed for the TPR studies. Hence, TPR was carried out using a 50% H₂–50% Ar gas mixture to study the effect of partial pressure of H₂ on the reduction process.

Typical results are shown in Fig. 8. In the case of 0.001 mol% Pt/MoO₃, the TPR spectrum in the low temperature region varied with partial pressure of H₂, although the partial pressure of H₂ showed no effect on the spectrum in the high temperature region. The amount of H2 consumed during heating from 298 to 473 K in 50% H₂–50% Ar was 4.2×10^{-3} mol/ g-MoO₃, from which the value of x in H_x MoO₃ was calculated to be 1.22. 0.1 mol% Ru/MoO₃ gave the maximum peaks for H₂ consumption and H₂O formation at 560 and 590 K, respectively, in 50% H₂ atmosphere, while these peaks appeared at 615 K in 20% H₂-80% Ar. The formation of H_xMoO₃ was promoted in 0.005 mol% Ru/MoO₃ by an increase in partial pressure of H₂. However, the TPR profile of 0.005 mol% Ru/MoO₃ differed markedly from the other catalysts even in 50% H₂-50% Ar. The peak for reduction to MoO₂ appeared at 863 K. We propose from the results of XRD and TPR that reduction of 0.005 mol% and 0.01 mol% Ru/MoO3 is accompanied by the formation of both MoO_2 and H_xMoO_3 , probably due to its low activity for hydrogen activation, while 0.001-0.1 mol% Pt/MoO3 and 0.1 mol% Ru/MoO3 are reduced through the H_xMoO_3 phases without the formation of MoO2. Pt/MoO3 and 0.1 mol% Ru/MoO3 gave broad peaks in the temperature region of 695-1050 K. These peaks are considered to reflect the reduction to MoO_xH_v because the MoO_xH_v phase was observed in XRD after the disappearance of H₂MoO₃.

As shown in Fig. 8, reduction to Mo metal started at 900 K in 0.005 mol% Ru/MoO₃, and at around 1050 K in 0.001 mol% Pt/MoO₃ and 0.1 mol% Ru/MoO₃. These results indicate that reduction of MoO₂ to Mo metal was faster than that of MoO_xH_y to Mo metal. As shown in Table 3, 0.005 mol% Ru/MoO₃ exhibited a large reduction degree compared with other catalysts after reduction at 773 K for 12 h. This seems

Fig. 8 TPR spectra of 0.001 mol% Pt/MoO₃ (a), 0.1 mol% Ru/MoO₃ (b) and 0.005 mol% Ru/MoO₃ (c). Conditions: sample weight, 1 g; gas, 50% H₂–Ar; flow rate, 20 ml min⁻¹; heating rate, 5 K min⁻¹: H₂ consumption (\bigcirc), H₂O formation (\square).

to be attributed to the formation of MoO_2 , which can easily be reduced to Mo metal.

0.01 mol% Ru/MoO₃ had the lowest activities for pentane isomerization and for propan-2-ol dehydration among the catalysts with 0.01 mol% noble metal after reduction at 773 K for 12 h. The isomerization and the dehydration activities of H₂reduced Ru/MoO₃ was enlarged by an increase in the amount of Ru loading, whereas those of H2-reduced Pt/MoO3 was independent of the amount of Pt. Reduction of Pt/MoO₃ proceeded via the H_xMoO_3 phases, and yielded a MoO_xH_v phase, irrespective of the amount of Pt. By contrast, the reduction process of Ru/MoO₃ varied with the amount of Ru. The formation of the MoO₂ phase was suppressed and that of H_xMoO_3 was enhanced by an increase in the amount of Ru. No appreciable difference appeared in XRD and TPR results between 0.01 mol% Pd/MoO₃ and 0.01 mol% Pt/MoO₃. 0.01 mol% Rh/MoO3 and 0.01 mol% Ir/MoO3 gave similar XRD and TPR results to 0.1 mol% Ru/MoO₃. We propose from these results that the low isomerization and dehydration activities of H2-reduced 0.005 and 0.01 mol% Ru/MoO_3 can result from its reduction process, which involves the formation of the MoO₂ phase.

Our previous papers^{12,18} showed that reduction of MoO₃ at temperatures above 673 K did not yield the H_xMoO₃ and MoO_xH_y phases at all. H₂-Reduced MoO₃ with a reduction degree of about 80% was a mixture of MoO₂ and Mo metal, and had a surface area of 30–40 m² g⁻¹. As shown in Figs. 2 and 3, 0.005 mol% Ru/MoO₃ was partly converted to H_{0.34}MoO₃, and then to MoO_xH_y during H₂ reduction. H₂-Reduced 0.005 mol% Ru/MoO₃, with a reduction degree of 82% consisted of MoO₂, MoO_xH_y, and Mo metal phases, and its surface area was 152 m² g⁻¹. Furthermore, H₂-reduced 0.005 mol% Ru/MoO₃ was more active for the isomerization and the dehydration than H₂-reduced MoO₃. These results also show that the physical and catalytic properties of MoO_3 will be improved by H₂ reduction involving the formation of H_xMoO₃, but not by reduction through MoO₂. As the active catalysts for the pentane isomerization and the propan-2-ol dehydration contained the MoO_xH_y phase, the MoO_xH_y phase, which can originate from H_xMoO₃ is likely to play an important role in the generation of the acidity.

Conclusions

Reactions of pentane and propan-2-ol were carried out using H₂-reduced MoO₃ with noble metals. There was no appreciable difference in the pentane isomerization activity and in the propan-2-ol dehydration activity among Pt, Pd, Rh and Ir/MoO₃ catalysts after reduction at 773 K for 12 h. The isomerization and dehydration activities of H₂-reduced Ru/ MoO₃ were lower than those of the other catalysts. The isomerization and the dehydration activities of H2-reduced Pt/ MoO₃ varied very little with the amount of Pt. In the case of H₂-reduced Ru/MoO₃, however, the isomerization and dehydration activities were increased and the dehydrogenation activity was lowered by an increase in the amount of Ru. We conclude from these results that the isomerization activity of H₂-reduced MoO₃ with noble metals can be determined by the ability to act as an acid catalyst. XRD and TPR studies showed that the reduction process of Ru/MoO₃ was affected by the amount of Ru. The formation of MoO₂ was suppressed and that of H_xMoO₃ was promoted by an increase in the amount of Ru. By contrast, reduction of Pt/MoO₃ involved the formation of a hydrogen molybdenum bronze, $H_x MoO_3$, irrespective of the amount of Pt. We suggest from these results that the active phase for pentane isomerization and propan-2-ol dehydration can generate from reduction of H_xMoO₃.

Acknowledgements

This work was supported in part by a Grant-in-Aid for Science Research (C) from the Japanese Society for the Promotion of Science.

References

- F. H. Ribeiro, R. A. Dalla Betta, M. Boudart, J. E. Baumgartner and E. Iglesia, J. Catal., 1991, 130, 86.
- 2 F. H. Ribeiro, M. Boudart, R. A. Dalla Betta and E. Iglesia, J. Catal., 1991, 130, 498.
- 3 E. Iglesia, J. É. Baumgartner, F. H. Ribeiro and M. Boudart, J. Catal., 1991, 131, 523.
- 4 E. Iglesia, F. H. Ribeiro, M. Boudart and J. E. Baumgartner, *Catal. Today*, 1992, 15, 307.
- 5 E. A. Blekkam, C. Pham-Huu, M. J. Ledoux and J. Guille, *Ind. Eng. Chem. Res.*, 1994, **33**, 1657.
- 6 M. J. Ledoux, C. Pham-Huu, P. Delporte, E. A. Blekkam, A. P. E. York, E. G. Derouane and A. Fonseca, *Stud. Surf. Sci. Catal.*, 1994, 92, 81.
- 7 C. Pham-Huu, P. D. Gallo, E. Peschiera and M. J. Ledoux, *Appl. Catal.*, 1995, **132**, 77.
- 8 A. P. E. York, C. Pham-Huu, P. D. Gallo, E. A. Blekkam and M. J. Ledoux, *Ind. Eng. Chem. Res.*, 1996, **35**, 672.
- P. Delporte, F. Meunier, C. Pham-Huu, P. Vennegues, M. J. Ledoux and J. Guille, *Catal. Today*, 1995, 23, 251.
 C. Pham-Huu, A. P. E. York, M. Benaissa, P. D. Gallo and M. J.
- C. Pham-Huu, A. P. E. York, M. Benaissa, P. D. Gallo and M. J. Ledoux, *Ind. Eng. Chem. Res.*, 1995, 34, 1107.
 T. Matsuda, H. Shiro, H. Sakagami and N. Takahashi, *Catal.*
- 11 T. Matsuda, H. Shiro, H. Sakagami and N. Takahashi, Catal. Lett., 1997, 47, 99.
- 12 T. Matsuda, Y. Hirata, H. Itoh, H. Sakagami and N. Takahashi, *Microporous Mesoporous Mater.*, 2000, 42, 337.
- 13 T. Matsuda, Y. Hirata, H. Sakagami and N. Takahashi, Microporous Mesoporous Mater., 2000, 42, 345.
- 14 T. Matsuda, Y. Hirata, S. Suga, H. Sakagami and N. Takahashi, Appl. Catal. A: Gen., 2000, 193, 185.

- A. Katrib, V. Logie, N. Saurel, P. Wehrer, H. Leflaive and G. Maire, *Surf. Sci.*, 1997, **377–379**, 754.
 T. Matsuda, F. Uchijima, S. Endo and N. Takahashi, *Appl. Catal.*
- A: Gen., 1999, **176**, 91.
- F. Uchijima, T. Takagi, H. Itoh, T. Matsuda and N. Takahashi, 17 Phys. Chem. Chem. Phys., 2000, 2, 1077.
- T. Matsuda, F. Uchijima, H. Sakagami and N. Takahashi, Phys. 18
- Matsuda, F. Ucnijima, H. Sakagami and N. Takanashi, *Phys. Chem. Chem. Phys*, 2001, **3**, 4430.
 Matsuda, A. Hanai, F. Uchijima, H. Sakagami and N. Takahashi, *Microporous Mesoporous Mater.*, 2002, **51**, 155.
 Matsuda, Y. Hirata, M. Suzuki, H. Sakagami and N. Takahashi, *Chem. Lett.*, 1999, **9**, 873. 19
- 20
- T. Matsuda, Y. Hirata, F. Uchijima, H. Itoh and N. Takahashi, 21
- Matsuda, T. Hirata, F. Ochjima, H. Roh and N. Takahashi, Bull. Chem. Soc. Jpn., 2000, 73, 1029.
 Matsuda, A. Hanai, F. Uchijima, H. Sakagami and N. Takahashi, Bull. Chem. Soc. Jpn., 2002, 75, 1165.
 F. C. Meunier, Chem. Commun., 2003, 1954. 22
- 23
- 24 T. Matsuda, K. Watanabe, H. Sakagami and N. Takahashi, Appl. Catal. A: Gen., 2003, 242, 267.
- Catal. A. Gen., 2003, 242, 207.
 T. Matsuda, H. Kodama, H. Sakagami and N. Takahashi, Appl. Catal. A: Gen., 2003, 248, 269.
 G. C. Bond and J. B. Tripathi, J. Chem. Soc., Faraday Trans. I, 1000. 25 26
- 1976, 72, 933.