Subscriber access provided by University of Newcastle, Australia

Article

Total Synthesis of Resolvin D5

Narihito Ogawa, Takuo Sugiyama, Masao Morita, Yuta Suganuma, and Yuichi Kobayashi

J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.6b02870 • Publication Date (Web): 18 Jan 2017

Downloaded from http://pubs.acs.org on January 20, 2017

Just Accepted

Abstract

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

Total Synthesis of Resolvin D5

Narihito Ogawa, Takuo Sugiyama, Masao Morita, Yuta Suganuma, and Yuichi Kobayashi*
Department of Biotechnology, Tokyo Institute of Technology
B-52, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8501, Japan

Table of Contents/Abstract Graphic

ABSTRACT:

Resolvin D5 (RvD5) is a metabolite of docosahexanoic acid with anti-inflammatory activity that has not yet been thoroughly investigated because of its low biological availability. A synthetic route to optically active RvD5 was developed by assembling the C1-C10 aldehyde, C11-C13 phosphonium salt, and C14-C22 aldehyde building blocks. The aldehyde fragments were prepared by Sharpless asymmetric epoxidation of corresponding racemic (E)-1-TMS-1-alken-3-ols followed by reaction of the TBS ethers of the resulting epoxy alcohols with $\mathrm{Et}_{2} \mathrm{AlCN}$, and DIBAL reduction of the (E)-1-cyano-1-alken-3-ol derivatives. The C14-C22 aldehyde was connected with the C11-

INTRODUCTION

Lipoxygenase metabolites of docosahexaenoic acid (DHA) are potent inflammation-resolving chemical mediators. ${ }^{1}$ Among them, protectin D1 (1) and maresin 1 (2) (Figure 1) have been widely studied with their supply by organic synthesis, whereas others, including resolvins D1-D6, are still at early stages of investigation. Resolvin D5 (RvD5) (4) is a particularly attractive synthetic target. It was originally detected in leukocytes, brain, and glial cells, ${ }^{2}$ and later its presence was also demonstrated in patient models, ${ }^{3}$ and its ability to activate the host defense system in mice during bacterial infection was disclosed. ${ }^{4}$ In addition, 4 was reported to be produced from DHA by plant lipoxygenases. ${ }^{5}$ However, biological and biochemical studies of 4 are hampered by the limited biological availability of this compound. To our knowledge, only one synthetic route to $\mathbf{4}$ was reported by Spur, ${ }^{6}$ involving a Sonogashira coupling of 1,4-pentadiyne with vinyl iodides corresponding to the $\mathrm{C} 1-\mathrm{C} 9$ and $\mathrm{C} 15-\mathrm{C} 22$ moieties, which were in turn obtained from a glycidol derivative through NHK-Takai iodoolefination. The olefination reaction was convenient, but suffered from somewhat low stereoselectivity; moreover, it involved the undesirable use of highly toxic chromium reagents. Thus, an alternative approach to $\mathbf{4}$ with highly stereoselective formation of the stereogenic centers and the E,Z-diene was sought.

resolvin D1 (3)

resolvin D5 (4)

Figure 1. Metabolites of DHA.

Abstract

Previously, we reported the TMS-specific reaction of epoxy alcohol derivatives A with $\mathrm{Et}_{2} \mathrm{AlCN}$ followed by hydride reduction of the resulting nitriles \mathbf{B} to afford aldehydes \mathbf{C} stereoselectively as shown in Scheme 1. ${ }^{7}$ With this transformation in mind and in view of the ready availability of epoxy alcohol derivatives \mathbf{A} by Sharpless asymmetric epoxidation, ${ }^{8}$ we envisaged the synthesis of RvD5 (4) by connecting aldehydes \mathbf{E} and \mathbf{F} to the central fragment \mathbf{D} by Wittig reaction (Scheme 1). This method, which is complementary to the synthesis reported by Spur, would provide an additional opportunity for biological investigations using 4.

Scheme 1. An Access to RvD5

$\mathrm{X}, \mathrm{Y}=\mathrm{Ph}_{3} \mathrm{P}^{+}$

RESULTS AND DISCUSSION

Aldehyde $\mathbf{1 1}$ corresponding to the key intermediate \mathbf{F} was synthesized by a sequence of reactions delineated in Scheme 2. Alcohol 5 was synthesized from 3-(trimethylsilyl)propargyl alcohol in 69% yield in three steps involving (1) LiAlH_{4} reduction; (2) PCC oxidation; and (3) aldol reaction with $\mathrm{MeCOO}-n-\mathrm{Bu} / \mathrm{LDA}$ according to the reported procedure, ${ }^{9}$ and converted to the TBS ether $\mathbf{6}$ in 89% yield. DIBAL reduction of $\mathbf{6}$ afforded aldehyde 7 , which upon Wittig reaction with the ylide derived from $\left[\mathrm{PrPPh}_{3}\right]^{+}$ Br^{-}and $\mathrm{NaN}(\mathrm{TMS})_{2}$ (NaHMDS) followed by desilylation with TBAF afforded racemic allylic alcohol rac-8 in 74% yield from ester $\mathbf{6}$ and with high cis olefin purity ($>98 \%$) as confirmed by ${ }^{13} \mathrm{C}$ NMR spectroscopy. Sharpless asymmetric epoxidation of rac-8 using L-(+)-diisopropyl tartrate (DIPT) and $\mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4}$ was regio- and stereoselective, producing epoxy alcohol 9 and allylic alcohol (R)-8 in 47% and 48% yields, respectively, after silica gel chromatography. High enantiomeric excess (ee) given in the scheme was determined by ${ }^{1}$ H NMR spectroscopy of the derived MTPA esters. The hydroxyl group in $\mathbf{9}$ was protected with TBSOTf^{10} and the resulting TBS ether was subjected to reaction with $\mathrm{Et}_{2} \mathrm{AlCN}$ to
afford nitrile 10 in 79% yield from 9 via epoxide ring opening followed by Peterson elimination. Nitrile $\mathbf{1 0}$ was also obtained from $(R)-\mathbf{8}$ in five steps. Briefly, epoxidation of $(R)-\mathbf{8}(96.5 \%$ ee $)$ using D-(-)-DIPT/Ti(O-i-Pr) $)_{4}$ produced epoxide ent $-\mathbf{9}$ with $>99 \%$ ee. The increased ee was the result of the slow epoxidation of the (S)-enantiomer, which was contaminated (in ca. 2\%) in 96.5% ee of (R)-8. The Mitsunobu inversion, silylation of the resulting epoxy alcohol 12, and subsequent reaction with $\mathrm{Et}_{2} \mathrm{AlCN}$ proceeded smoothly, affording nitrile $\mathbf{1 0}$ in 70% yield from (R)-8. Finally, reduction of $\mathbf{1 0}$ with DIBAL gave aldehyde $\mathbf{1 1}$ in $\mathbf{7 3 \%}$ yield. The total yield of $\mathbf{1 1}$ from rac-8 through $\mathbf{9}$ and $(R)-\mathbf{8}$ was calculated to be 52%.

Scheme 2. Synthesis of Aldehyde 11 Corresponding to the Intermediate \mathbf{F}

Several reaction sequences were attempted to obtain an intermediate corresponding to aldehyde \mathbf{E} in Scheme 1. Allylation of $\mathbf{1 3}$ with allyl bromide under literature conditions ${ }^{11}$ followed by silylation proceeded to completion to afford 14 in 82% yield (Scheme 3).

However, hydroboration of $\mathbf{1 4}$ with $\mathrm{Sia}_{2} \mathrm{BH}$ gave a complex mixture of products (TLC, ${ }^{1} \mathrm{H}$ NMR). ${ }^{12}$ Moreover, alkylation of the ethoxyethyl (EE) ether of $\mathbf{1 3}$ with $\mathrm{I}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{OTBS}$ $\left(\mathrm{LiNH}_{2}, \mathrm{NH}_{3} / \mathrm{THF}\right.$; BuLi, HMPA/THF) gave the product in low yield (<22\%). ${ }^{13}$

Scheme 3. Attempted Construction of Intermediate \mathbf{E}

Alternatively, Wittig reaction of aldehyde $\mathbf{7}$ synthesized again from ester $\mathbf{6}$ with the ylide derived from 16 and NaHMDS yielded olefin 17, which was converted to racemic alcohol rac-19 in good yield by deprotection with TBAF followed by regioselective silylation with TBSCl and imidazole (Scheme 4). The ${ }^{13} \mathrm{C}$ NMR spectrum of rac-19 revealed the high purity of the cis olefin ($>98 \%$). Asymmetric epoxidation of rac-19 with $\mathrm{L}-(+)-\mathrm{DIPT} / \mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4}$ provided a mixture of $\mathbf{2 0}$ and $(R)-\mathbf{1 9}$, which were separated by silica gel chromatography in 44% and 49% yields, respectively. The ee was determined by Mosher analysis to be 98% and $>99 \%$, respectively. Similar to the transformation of 9 to nitrile 10 (Scheme 2), epoxy alcohol 20 was converted into nitrile 22 in 92% yield. ${ }^{14}$ Finally, reduction of $\mathbf{2 2}$ with DIBAL provided aldehyde 23.

Scheme 4. Synthesis of the C1-C10 Intermediate 23

Conversion of epoxy alcohol 20 to the aldehyde 23

Among the two possible pathways for connecting the two aldehydes $\mathbf{2 3}$ and $\mathbf{1 1}$ to the C11-C13 unit, a sequence first connecting 11 and the C11-C13 unit was examined, because the reverse order of the connection was expected to be unsuccessful in regioselective deprotection of the TBS group at C13 in the 1,13-bis-TBS ether intermediate. As delineated in Scheme 5, Wittig reaction of $\mathbf{1 1}$ with phosphonium salt $\mathbf{2 4}$ and subsequent regioselective desilylation at the primary position afforded alcohol $\mathbf{2 5}$, which was subjected to iodination and subsequent reaction with PPh_{3} to provide phosphonium salt 27 in 85% yield from 25.

Scheme 5. Synthesis of the C11-C22 Intermediate 27

The last stage of the synthesis was commenced with the Wittig reaction of aldehyde 23 with the ylide derived from 27 and NaHMDS to afford 28, which upon regioselective desilylation using PPTS in MeOH afforded primary alcohol 29 in 53\% yield from 23 (Scheme 6). The high chemical purity ($>95 \%$) of 29, confirmed by ${ }^{13} \mathrm{C}$ NMR spectroscopy, indicated the high stereoselectivity of the Wittig reaction. Alcohol 29 was then converted to carboxylic acid $\mathbf{3 0}$ in 81% yield by PCC oxidation followed by Pinnick oxidation.

Desilylation with TBAF afforded a mixture of RvD5 (4) and TBAF residue(s), which could be only partially separated by silica gel chromatography. Thus, acid $\mathbf{3 0}$ was first converted to the methyl ester, and subsequent desilylation with TBAF afforded diol ester 31, which was easily purified. Finally, hydrolysis of $\mathbf{3 1}$ with LiOH afforded RvD5 (4) in 45\% yield. The ${ }^{1} \mathrm{H}$ NMR spectrum in $\mathrm{CD}_{3} \mathrm{CN}$ was consistent with that reported in the literature. ${ }^{6}$ The structure of $\mathbf{4}$ was also confirmed by the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-APT NMR spectra in CDCl_{3} (APT: attached proton test).

Scheme 6. The Last Stage of the Synthesis of RvD5

CONCLUSION

In summary, $\mathrm{RvD} 5(4)$ was constructed by assembling three building blocks, i.e., $\mathrm{C} 11-\mathrm{C} 13$ phosphonium salts 24, C1-C10 aldehyde 23, and C14-C22 aldehyde 11, which correspond to fragments $\mathbf{D}-\mathbf{F}$ in Scheme 1. Remarkably, the E, Z-diene and the C7 and C17 stereogenic centers were constructed in a highly stereoselective manner. This synthetic methodology providing readily access to RvD5 could facilitate future biological investigations. Furthermore, we think that, based on the structural similarity, C1-C10 aldehyde 23 and C14-C22 aldehyde $\mathbf{1 1}$ would be key intermediates for synthesis of RvD2 and other RvD1,2,4, respectively.

EXPERIMENTAL SECTION

General Remarks. The ${ }^{1} \mathrm{H}(300$ or 400 MHz$)$ and ${ }^{13} \mathrm{C}$ NMR (75 or 100 MHz) spectroscopic data were recorded in CDCl_{3} using $\mathrm{Me}_{4} \mathrm{Si}(\delta=0 \mathrm{ppm})$ and the centerline of the triplet ($\delta=77.1 \mathrm{ppm}$), respectively, as internal standards. Signal patterns are indicated as br s (broad singlet), s (singlet), d (doublet), t (triplet), q (quartet), and m (multiplet).

Coupling constants (J) are given in hertz (Hz). Chemical shifts of carbons are accompanied by negative (for C and CH_{2}) and positive (for CH and CH_{3}) signs of the attached proton test (APT) experiments. High-resolution mass spectroscopy (HRMS) was performed with a double-focusing mass spectrometer. The solvents that were distilled prior to use are THF (from $\mathrm{Na} /$ benzophenone), $\mathrm{Et}_{2} \mathrm{O}$ (from $\mathrm{Na} /$ benzophenone), and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (from CaH_{2}). After extraction of the products, the extracts were concentrated by using an evaporator, and then the residues were purified by chromatography on silica gel (Kanto, spherical silica gel $60 \mathrm{~N})$.

Butyl (E)-3-[(tert-butyldimethylsilyl)oxy]-5-(trimethylsilyl)pent-4-enoate (6). A

 solution of the aldol $5^{9}(6.41 \mathrm{~g}, 26.2 \mathrm{mmol})$, imidazole ($3.68 \mathrm{~g}, 54.1 \mathrm{mmol}$), and TBSCl ($5.93 \mathrm{~g}, 39.3 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$ was stirred at rt overnight and diluted with saturated NaHCO_{3}. The resulting mixture was extracted with EtOAc three times. The combined extracts were dried over MgSO_{4} and concentrated. The residue was purified by chromatography on silica gel (hexane/EtOAc) to give silyl ester $\mathbf{6}$ ($8.36 \mathrm{~g}, 89 \%$): liquid; R_{f} 0.67 (hexane/EtOAc 5:1); IR (neat) $1740,1250,838 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $0.01(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.92(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.32-1.43$ (m, 2 H), 1.56-1.64 (m, 2 H), $2.42(\mathrm{dd}, J=14.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{dd}, J=14.5,8.2 \mathrm{~Hz}, 1$ H), 3.99-4.11 (m, 2 H), 4.54 (dt, $J=8.2,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{dd}, J=18.8,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.97(\mathrm{dd}, J=18.8,5.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{APT}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-5.0(+),-4.2(+),-$ $1.4(+), 13.8(+), 18.2(-), 19.2(-), 25.8(+), 30.7(-), 43.5(-), 64.3(-), 72.8(+), 129.8(+)$, $147.5(+), 171.3(-)$; $\mathrm{HRMS}\left(\mathrm{EI}^{+}\right)$calcd for $\mathrm{C}_{18} \mathrm{H}_{38} \mathrm{O}_{3} \mathrm{Si}_{2}\left[\mathrm{M}^{+}\right] 358.2360$, found 358.2360.(1E,5Z)-1-(Trimethylsilyl)octa-1,5-dien-3-ol (rac-8). To a solution of ester $\mathbf{6}$ (3.04 g, $8.48 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ was added DIBAL (1.03 M in hexane, $8.2 \mathrm{~mL}, 8.5 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$. After 1 h of stirring at $-78^{\circ} \mathrm{C}$, the mixture was poured into $\mathrm{H}_{2} \mathrm{O}(0.50 \mathrm{~mL}, 28$
$\mathrm{mmol}), \mathrm{NaF}(7.11 \mathrm{~g}, 169 \mathrm{mmol})$, and Celite $(8.1 \mathrm{~g})$. The resulting mixture was filtered through a pad of Celite and the filtrate was concentrated to afford a residue, which was purified by chromatography on silica gel (hexane/EtOAc) to give aldehyde 7: liquid; R_{f} 0.30 (hexane/EtOAc 10:1); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.03(\mathrm{~s}, 3 \mathrm{H}$), $0.05(\mathrm{~s}, 3 \mathrm{H}), 0.06$ (s, 9 H), 0.87 ($\mathrm{s}, 9 \mathrm{H}), 2.49(\mathrm{ddd}, J=15.6,4.8,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{ddd}, J=15.6,7.2,3.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.61(\mathrm{dt}, J=7.2,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{~d}, J=18.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{dd}, J=18.6,5.1$ $\mathrm{Hz}, 1 \mathrm{H}), 9.76(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H})$. This aldehyde was used for the next reaction without further purification.

To an ice-cold suspension of $\left[\mathrm{PrPPh}_{3}\right]^{+} \mathrm{Br}^{-}(7.24 \mathrm{~g}, 18.8 \mathrm{mmol})$ in THF $(60 \mathrm{~mL})$ was added $\mathrm{NaHMDS}(1.0 \mathrm{M}$ in THF, $14.1 \mathrm{~mL}, 14.1 \mathrm{mmol})$. The resulting yellow mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h , and cooled to $-90^{\circ} \mathrm{C}$ (liquid $\mathrm{N}_{2}+$ hexane). A solution of the above aldehyde in THF (20 mL) was added to the mixture dropwise, and then the reaction temperature was allowed to raise to rt gradually over 12 h before addition of saturated NaHCO_{3}. The mixture was extracted with EtOAc three times. The combined extracts were dried over MgSO_{4} and concentrated to afford a residue, which was semi-purified by chromatography on silica gel (hexane/EtOAc) to give the corresponding olefin, which was used for the next reaction without further purification: $R_{\mathrm{f}} 0.46$ (hexane/EtOAc 10:1).

To an ice-cold solution of the above olefin in THF (80 mL) was added TBAF (1.0 M in THF, $9.50 \mathrm{~mL}, 9.50 \mathrm{mmol}$). The solution was stirred at rt for 3 h and diluted with saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The resulting mixture was extracted with EtOAc three times. The combined extracts were dried over MgSO_{4} and concentrated to give a residue, which was purified by chromatography on silica gel (hexane/EtOAc) to afford alcohol rac-8 (1.24 g, 74\% from ester 6): liquid; $R_{\mathrm{f}} 0.33$ (hexane/EtOAc 2:1); IR (neat) $3341,1248,989,867 ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.07(\mathrm{~s}, 9 \mathrm{H}), 0.97(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.67(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.02-2.12$
(m, 2 H), $2.31(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.09-4.17(\mathrm{~m}, 1 \mathrm{H}), 5.33(\mathrm{dtt}, J=10.6,7.6,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.57(\mathrm{dtt}, J=10.6,7.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{dd}, J=18.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{dd}, J=18.8,5.2$ $\mathrm{Hz}, 1 \mathrm{H}),{ }^{13} \mathrm{C}-\mathrm{APT}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-1.2(+), 14.3(+), 20.8(-), 35.0(-), 73.8$ $(+), 123.9(+), 129.4(+), 135.3(+), 147.8(+)$; HRMS $\left(\mathrm{FAB}^{+}\right)$calcd for $\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{OSi}[(\mathrm{M}-$ $\left.\mathrm{H}^{+}\right]$197.1362, found 197.1359.

(S,Z)-1-((2S,3S)-3-(Trimethylsilyl)oxiran-2-yl)hex-3-en-1-ol (9) and

($\boldsymbol{R}, \mathbf{1 E}, \mathbf{5 Z}$)-1-(trimethylsilyl)octa-1,5-dien-3-ol [(R)-8]. To an ice-cold solution of $\mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr}) 4(1.90 \mathrm{~mL}, 6.41 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was added L-(+)-DIPT ($2.2 \mathrm{~mL}, 7.59$ mmol). The solution was stirred at $0^{\circ} \mathrm{C}$ for 20 min and cooled to $-20^{\circ} \mathrm{C}$. A solution of the allylic alcohol rac-8 $(1.24 \mathrm{~g}, 6.26 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL})$ was added to the solution. After 30 min of stirring at $-20^{\circ} \mathrm{C}$, the solution was cooled to $-40^{\circ} \mathrm{C}$ and t-BuOOH $(2.1 \mathrm{~mL}, 3.07$ M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 6.4 \mathrm{mmol}$) was added dropwise. The reaction mixture was stirred at $-18{ }^{\circ} \mathrm{C}$ for 6 h , and $\mathrm{Me}_{2} \mathrm{~S}(1.4 \mathrm{~mL}, 19 \mathrm{mmol})$ was added. Stirring was continued at $-18^{\circ} \mathrm{C}$ overnight, and aqueous 10% tartaric acid $(0.5 \mathrm{~mL}), \mathrm{NaF}(5.3 \mathrm{~g}, 126 \mathrm{mmol})$, Celite (5.3 g) were added successively. The mixture was vigorously stirred at $0^{\circ} \mathrm{C}$ for 1 h and filtered through a pad of Celite. The filtrate was concentrated and the residue was diluted in MeOH $(15 \mathrm{~mL})$ and aqueous $10 \% \mathrm{NaOH}(2.7 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was vigorously stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The combined extracts were dried over MgSO_{4} and concentrated. The residue was purified by chromatography on silica gel (hexane/EtOAc) to afford epoxy alcohol 9 (640 mg, 47\%) and allylic alcohol (R)-8 (597 mg, 48\%). Enantiomeric excess of the epoxy alcohol and the allylic alcohol was determined to be 98% and 96.5% by ${ }^{1} \mathrm{H}$ NMR spectroscopy of the derived MTPA ester. Epoxy alcohol 9: liquid; $R_{\mathrm{f}} 0.32$ (hexane/EtOAc 10:1); $[\alpha]_{\mathrm{D}}{ }^{21}+3\left(c 0.77, \mathrm{CHCl}_{3}\right.$); IR (neat) 3443, 1250, 1045, $842 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.07(\mathrm{~s}, 9 \mathrm{H}), 0.97(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.92(\mathrm{~d}, J=$
$2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.08 (quint., $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), $2.34(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~d}, J=3.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.90(\mathrm{t}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.81-3.88(\mathrm{~m}, 1 \mathrm{H}), 5.42(\mathrm{dtt}, J=10.8,7.4,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.55(\mathrm{dtt}, J=10.8,7.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{13} \mathrm{C}-\mathrm{APT} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-3.6(+), 14.3$ $(+), 20.8(-), 31.7(-), 47.9(+), 58.8(+), 69.4(+), 123.3(+), 135.0(+) ;$ HRMS $\left(\mathrm{FAB}^{+}\right)$ calcd for $\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{SiNa}\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$237.1287, found 237.1290. Allylic alcohol $(R)-\mathbf{8}:[\alpha]_{\mathrm{D}}{ }^{21}$ $+12\left(c 1.05, \mathrm{CHCl}_{3}\right)$.
(S,2E,6Z)-4-[(tert-Butyldimethylsilyl)oxy]nona-2,6-dienal (11). A solution of epoxy alcohol $9(511 \mathrm{mg}, 2.38 \mathrm{mmol})$, , 6-lutidine $(0.55 \mathrm{~mL}, 4.8 \mathrm{mmol})$, and $\operatorname{TBSOTf}(0.82 \mathrm{~mL}$, $3.57 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was stirred at $0{ }^{\circ} \mathrm{C}$ for 1.5 h and diluted with saturated NaHCO_{3}. The resulting mixture was extracted with EtOAc three times. The combined extracts were dried over MgSO_{4} and concentrated. The residue was semi-purified by chromatography on silica gel (hexane/EtOAc) to give the corresponding silyl ether, which was used for the next reaction without further purification: liquid; $R_{\mathrm{f}} 0.65$ (hexane/EtOAc 10:1); IR (neat) $1471,1250,1092,837 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.03(\mathrm{~s}, 3 \mathrm{H})$, $0.04(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.96(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 2.06$ (quint., $J=7.4 \mathrm{~Hz}$, $2 \mathrm{H}), 2.19(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.76(\mathrm{dd}, J=5.8,3.5 \mathrm{~Hz}, 2 \mathrm{H})$, $3.49(\mathrm{q}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.38-5.53(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{APT}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-4.6$ $(+),-4.3(+),-3.5(+), 14.3(+), 18.2(-), 20.8(-), 25.9(+), 33.8(-), 50.0(+), 58.5(+)$, $73.5(+), 124.2(+), 133.8(+)$.

To an ice-cold solution of the above epoxide in toluene (20 mL) was added $\mathrm{Et}_{2} \mathrm{AlCN}$ (0.70 M in toluene, $6.8 \mathrm{~mL}, 4.8 \mathrm{mmol}$). The solution was stirred overnight with gradual warm to rt before addition of $\mathrm{H}_{2} \mathrm{O}(0.50 \mathrm{~mL}, 28 \mathrm{mmol}), \mathrm{NaF}(1.99 \mathrm{~g}, 47.6 \mathrm{mmol})$, and Celite $(4 \mathrm{~g})$. The resulting mixture was filtered through a pad of Celite and the filtrate was concentrated. The residue was purified by chromatography on silica gel (hexane/EtOAc) to
afford nitrile $\mathbf{1 0}$ ($505 \mathrm{mg}, 79 \%$ from 9), which was used for the next reaction without further purification: liquid; $R_{\mathrm{f}} 0.60$ (hexane/EtOAc 10:1); IR (neat) 2226, 1252, 1107, 838, $777 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.04(\mathrm{~s}, 3 \mathrm{H}) 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.96(\mathrm{t}, J$ $=7.6 \mathrm{~Hz}, 3 \mathrm{H}$), 2.01 (quint., $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), $2.21-2.38(\mathrm{~m}, 2 \mathrm{H}), 4.27-4.34(\mathrm{~m}, 1 \mathrm{H}), 5.28$ (dtt, $J=10.8,7.5,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{dtt}, J=10.8,7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.61(\mathrm{dd}, J=16.0,2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.76(\mathrm{dd}, J=16.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{APT}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-4.85(+)$, $-4.77(+), 14.1(+), 18.2(-), 20.8(-), 25.8(+), 35.1(-), 71.5(+), 98.6(+), 117.7(-), 122.6$ $(+), 135.2(+), 157.0(+)$.

To a solution of nitrile $\mathbf{1 0}(505 \mathrm{mg}, 1.90 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was added DIBAL (1.03 M in hexane, $2.80 \mathrm{~mL}, 2.88 \mathrm{mmol}$) at $-40^{\circ} \mathrm{C}$. The solution was warmed to $0^{\circ} \mathrm{C}$ over 1 h and $1 \mathrm{~N} \mathrm{HCl}(5 \mathrm{~mL})$ was added dropwise. The resulting mixture was extracted with EtOAc three times. The combined extracts were washed with saturated NaHCO_{3}, dried over MgSO_{4}, and concentrated to give aldehyde 11 ($371 \mathrm{mg}, 73 \%$): liquid; $R_{\mathrm{f}} 0.55$ (hexane/EtOAc 10:1); $[\alpha]_{\mathrm{D}}{ }^{21}+31\left(c 0.99, \mathrm{CHCl}_{3}\right.$); IR (neat) $1696,1100,837 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.05$ (s, 3 H) 0.08 ($\mathrm{s}, 3 \mathrm{H}$), 0.91 (s, 9 H$), 0.96$ (t, $J=7.5 \mathrm{~Hz}, 3$ H), 2.03 (quint., $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), $2.28-2.43(\mathrm{~m}, 2 \mathrm{H}), 4.40-4.46(\mathrm{~m}, 1 \mathrm{H}), 5.33(\mathrm{dtt}, J=$ $10.8,7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{dtt}, J=10.8,7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{ddd}, J=15.3,8.0,2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.81(\mathrm{dd}, J=15.3,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 9.56(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{APT}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-4.78(+),-4.70(+), 14.2(+), 18.3(-), 20.8(-), 25.8(+), 35.3(-), 71.7(+)$, $123.1(+), 130.8(-), 134.8(+), 159.8(+), 193.7(+) ;$ HRMS $\left(\mathrm{FAB}^{+}\right)$calcd for $\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{O}_{2} \mathrm{Si}$ $\left[(\mathrm{M}+\mathrm{H})^{+}\right]$269.1937, found 269.1941.
(R, Z)-1-[(2R,3R)-3-(Trimethylsilyl)oxiran-2-yl]hex-3-en-1-ol (ent-9). According to the epoxidation of rac-8 to epoxide $\mathbf{9}$, allylic alcohol $(R) \mathbf{- 8}(340 \mathrm{mg}, 1.71 \mathrm{mmol})$ was converted to epoxide ent-9 using $\mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4}(0.50 \mathrm{~mL}, 1.71 \mathrm{mmol})$, D-(-)-DIPT (0.43 mL ,
2.06 mmol), and $t-\mathrm{BuOOH}\left(3.51 \mathrm{M}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.73 \mathrm{~mL}, 2.56 \mathrm{mmol}\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(11 \mathrm{~mL})$ at $-18{ }^{\circ} \mathrm{C}$ for 6 h . The reaction was quenched by adding $\mathrm{Me}_{2} \mathrm{~S}(0.38 \mathrm{~mL}, 5.14 \mathrm{mmol}), 10 \%$ tartaric acid (0.5 mL), $\mathrm{NaF}(1.6 \mathrm{~g}, 38 \mathrm{mmol})$, and Celite $(3.2 \mathrm{~g})$. The resulting mixture was filtered through a pad of Celite with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was mixed with $10 \% \mathrm{NaOH}(25$ mL) and the mixture was stirred at rt for 30 min vigorously. The phases were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ twice. The combined organic layers were washed with brine, dried over MgSO_{4}, and concentrated. The residue was purified by chromatography on silica gel (hexane/EtOAc) to afford epoxide ent-9 (331 mg, $90 \%,>99 \%$ ee by ${ }^{1} \mathrm{H}$ NMR spectroscopy of the derived MTPA ester). The ${ }^{1} \mathrm{H}$ NMR spectrum of the product was consistent with that of rac-9: $[\alpha]_{\mathrm{D}}{ }^{19}-5\left(c 0.94, \mathrm{CHCl}_{3}\right)$.
(S,2E,6Z)-4-[(tert-Butyldimethylsilyl)oxy]nona-2,6-dienenitrile (10). To an ice-cold solution of ent-9 ($302 \mathrm{mg}, 1.41 \mathrm{mmol}$), 4- $\left(\mathrm{NO}_{2}\right) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}_{2} \mathrm{H}(306 \mathrm{mg}, 1.83 \mathrm{mmol})$, and PPh_{3} ($473 \mathrm{mg}, 1.80 \mathrm{mmol}$) in THF (5 mL) was added DIAD ($0.35 \mathrm{~mL}, 1.80 \mathrm{mmol}$). The solution was stirred at rt for 11 h and diluted with saturated NaHCO_{3}. The mixture was extracted with EtOAc twice. The combined extracts were dried over MgSO_{4} and concentrated to leave the corresponding ester, which was passed through a short column of silica gel for the next reaction: liquid; $R_{\mathrm{f}} 0.59$ (hexane/EtOAc 7:1); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.09(\mathrm{~s}, 9$ H), $0.96(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.09$ (quint., $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), $2.23(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.49-$ $2.72(\mathrm{~m}, 2 \mathrm{H}), 3.09(\mathrm{dd}, J=6.9,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.30-5.42(\mathrm{~m}, 1 \mathrm{H})$, 5.48-5.61(m, 1 H), $8.40(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.30(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H})$.

To a solution of the above ester in THF (2 mL) and $\mathrm{MeOH}(2 \mathrm{~mL})$ was added 2 N $\mathrm{NaOH}(2.0 \mathrm{~mL}, 4.0 \mathrm{mmol})$. The mixture was stirred at rt for 1 h and diluted with saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The product was extracted with EtOAc twice and the combined extracts were dried over MgSO_{4}. Evaporation and column chromatography of the residue on silica gel
(hexane/EtOAc) afforded alcohol $12\left(279 \mathrm{mg}, 92 \%\right.$ from ent-9): liquid; $R_{\mathrm{f}} 0.35$ (hexane/EtOAc 7:1); $[\alpha]_{\mathrm{D}}{ }^{20}+7\left(c 0.98, \mathrm{CHCl}_{3}\right)$; IR (neat) $3421,1250,1065,842 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.07(\mathrm{~s}, 9 \mathrm{H}), 0.98(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.08$ (quint., $J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 2.20-2.30(\mathrm{~m}, 2 \mathrm{H}), 2.30-2.48(\mathrm{~m}, 2 \mathrm{H}), 2.86(\mathrm{t}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.46$ (quint., $J=5.4$ $\mathrm{Hz}, 1 \mathrm{H}), 5.33(\mathrm{dt}, J=10.2,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{dt}, J=10.2,7.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{APT}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-3.6(+), 14.3(+), 20.7(-), 32.5(-), 49.5(+), 58.9(+), 72.8(+), 123.4$ $(+), 134.9(+)$.

According to the silylation of 5, a solution of alcohol $12(269 \mathrm{mg}, 1.25 \mathrm{mmol}), \mathrm{TBSCl}$ ($226 \mathrm{mg}, 1.50 \mathrm{mmol}$), and imidazole ($171 \mathrm{mg}, 2.51 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was stirred at rt for 2 h and diluted with saturated NaHCO_{3}. The product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and purified by chromatography on silica gel to afford the corresponding TBS ether (399 mg , 97\%): liquid; $R_{\mathrm{f}} 0.79$ (hexane/EtOAc 8:1); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.06(\mathrm{~s}, 9 \mathrm{H}$), $0.07(\mathrm{~s}, 3 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.96(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.97-2.13(\mathrm{~m}, 3 \mathrm{H})$, $2.20-2.39(\mathrm{~m}, 2 \mathrm{H}), 2.79(\mathrm{dd}, J=6.3,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{q}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{dt}, J=$ $10.5,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{dt}, J=10.5,7.2 \mathrm{~Hz}, 1 \mathrm{H})$.

According to the conversion of the TBS ether of 9 to nitrile $\mathbf{1 0}$, a solution of $\mathrm{Et}_{2} \mathrm{AlCN}$ (0.70 M in toluene, $2.60 \mathrm{~mL}, 1.82 \mathrm{mmol}$) was added to a solution of the above epoxide (399 mg, 1.21 mmol$)$ in toluene $(12 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After 2 h at $\mathrm{rt}, \mathrm{H}_{2} \mathrm{O}(0.30 \mathrm{~mL}, 17 \mathrm{mmol})$ was added dropwise. The resulting mixture was stirred for 30 min and $\mathrm{NaF}(0.80 \mathrm{~g}, 19$ mmol) was added to the mixture, which was further stirred at rt for 30 min . The resulting mixture was filtered through a pad of Celite and the product was purified by chromatography on silica gel (hexane/EtOAc) to give cyanide $\mathbf{1 0}$ (270 mg, 84\%). The ${ }^{1} \mathrm{H}$ NMR spectrum and R_{f} value on TLC were consistent with those obtained from epoxide 9 .
(1E,5Z)-9-[(tert-Butyldimethylsilyl)oxy]-1-(trimethylsilyl)nona-1,5-dien-3-ol
(rac-19). Reduction of ester $6(2.18 \mathrm{~g}, 6.08 \mathrm{mmol})$ with DIBAL (1.03 M in hexane, 6.5 mL , $6.7 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(75 \mathrm{~mL})$ was carried out under similar conditions mentioned above ($78{ }^{\circ} \mathrm{C}, 1.5 \mathrm{~h}$ to give aldehyde $7(1.56 \mathrm{~g}): R_{\mathrm{f}} 0.33$ (hexane/EtOAc $15: 1$). This aldehyde was used for the next reaction without further purification.

To an ice-cold suspension of the phosphonium salt $\mathbf{1 6}(8.22 \mathrm{~g}, 11.7 \mathrm{mmol})$ in THF (80 mL) was added NaHMDS (1.0 M in THF, $8.7 \mathrm{~mL}, 8.7 \mathrm{mmol}$). The resulting yellow mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h , and cooled to $-90^{\circ} \mathrm{C}$. A solution of the above aldehyde in THF (20 mL) was added to the mixture dropwise, and then the reaction temperature was allowed to raise to $0{ }^{\circ} \mathrm{C}$ gradually over 14 h before addition of saturated NaHCO_{3}. The product was extracted with EtOAc and semi-purified by chromatography on silica gel (hexane/EtOAc) for the next reaction: liquid; $R_{\mathrm{f}} 0.74$ (hexane/EtOAc 20:1); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $0.01(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 1.04$ (s, 9 H), 1.59 (quint., $J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 2.12(\mathrm{dt}, J=8.0,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.21(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.65(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H})$, $4.05(\mathrm{q}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.30-5.46(\mathrm{~m}, 2 \mathrm{H}), 5.76(\mathrm{~d}, J=18.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{dd}, J=18.8$, $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.44(\mathrm{~m}, 6 \mathrm{H}), 7.66(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 4 \mathrm{H})$.

An ice-cold solution of the above olefin in THF (50 mL) was mixed with TBAF (1.0 M in THF, $11.6 \mathrm{~mL}, 11.6 \mathrm{mmol}$). The solution was stirred at rt for 4 h and diluted with saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The product was extracted with EtOAc and purified by chromatography on silica gel (hexane/EtOAc) to afford diol $18(1.26 \mathrm{~g}, 91 \%$ from ester $\mathbf{6})$: liquid; $R_{\mathrm{f}} 0.17$ (hexane/EtOAc 2:1); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.07(\mathrm{~s}, 9 \mathrm{H}), 1.56-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.87$ (br s, 2 H), 2.10-2.40(m, 4 H$), 3.66(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.13-4.20(\mathrm{~m}, 1 \mathrm{H}), 5.45(\mathrm{dt}, J=$ $10.8,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.56(\mathrm{dt}, J=10.8,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{dd}, J=18.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.08$ $(\mathrm{dd}, J=18.7,5.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{APT} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-1.3(+), 23.5(-), 31.9(-)$, $34.8(-), 61.5(-), 73.7(+), 125.7(+), 129.3(+), 132.2(+), 147.9(+)$.

A solution of diol $18(1.26 \mathrm{~g}, 5.52 \mathrm{mmol})$, imidazole ($471 \mathrm{mg}, 6.92 \mathrm{mmol}$), and TBSCl ($915 \mathrm{mg}, 6.07 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(80 \mathrm{~mL}\right.$) was stirred at $0^{\circ} \mathrm{C}$ for 3.5 h and diluted with saturated NaHCO_{3}. The resulting mixture was extracted with EtOAc three times. The combined extracts were dried over MgSO_{4} and concentrated. The residue was purified by chromatography on silica gel (hexane/EtOAc) to give silyl ether rac-19 (1.58 g, 84\%): liquid; $R_{\mathrm{f}} 0.60$ (hexane/EtOAc 10:1); IR (neat) 3351, 1620, 1249, 1101, $775 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.05(\mathrm{~s}, 6 \mathrm{H}), 0.07(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 1.57(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H})$, $1.77(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{q}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.62(\mathrm{t}, J=6.4$ $\mathrm{Hz}, 2 \mathrm{H}), 4.09-4.17(\mathrm{~m}, 1 \mathrm{H}), 5.42(\mathrm{dt}, J=11.0,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.57$ (dt, $J=11.0,7.1 \mathrm{~Hz}, 1$ H), $5.88(\mathrm{dd}, J=18.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{dd}, J=18.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{APT}$ NMR $(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-5.2(+),-1.2(+), 18.4(-), 23.7(-), 26.0(+), 32.6(-), 35.0(-), 62.4(-)$, $73.8(+), 125.2(+), 129.2(+), 132.6(+), 148.0(+) ;$ HRMS $\left(\mathrm{FAB}^{+}\right)$calcd for $\mathrm{C}_{18} \mathrm{H}_{39} \mathrm{O}_{2} \mathrm{Si}_{2}$ $\left[(\mathrm{M}+\mathrm{H})^{+}\right] 343.2489$, found 343.2484.

(S,Z)-7-[(tert-Butyldimethylsilyl)oxy]-1-[(2S,3S)-3-(trimethylsilyl)oxiran-2-yl]hept-

3-en-1-ol (20) and

($R, 1 E, 5 Z$)-9-[(tert-butyldimethylsilyl)oxy]-1-(trimethylsilyl)nona-1,5-dien-3-ol [(R)-19].

According to the epoxidation of rac-8 to epoxide 9, allylic alcohol rac-19 (1.58 g, 4.61 mmol) was subjected to asymmetric epoxidation using $\mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4}(1.40 \mathrm{~mL}, 4.73 \mathrm{mmol})$, L-(+)-DIPT ($1.20 \mathrm{~mL}, 5.73 \mathrm{mmol}$), and t - $\mathrm{BuOOH}(1.24 \mathrm{~mL}, 3.07 \mathrm{M}, 4.59 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(16 \mathrm{~mL})$ at $-18^{\circ} \mathrm{C}$ for 6 h . The reaction was quenched by adding $\mathrm{Me}_{2} \mathrm{~S}(1.0 \mathrm{~mL}, 17 \mathrm{mmol})$ and the solution was stirred at $-18{ }^{\circ} \mathrm{C}$ overnight. To this solution were added successively $\mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{~mL}, 56 \mathrm{mmol}), \mathrm{NaF}(3.8 \mathrm{~g}, 90 \mathrm{mmol})$, and Celite (5.0 g). The resulting mixture was vigorously stirred at rt for 1 h , and filtered through a pad of Celite. The filtrate was concentrated and the residue was purified by chromatography on silica gel (hexane/EtOAc)
to afford epoxy alcohol 20 ($719 \mathrm{mg}, 44 \%$) and allylic alcohol (R) - $\mathbf{1 9}$ ($777 \mathrm{mg}, 49 \%$).
Enantiomeric excess of the epoxy alcohol 20 and the allylic alcohol (R)-19 was determined to be 98% and $>99 \%$ by ${ }^{1} \mathrm{H}$ NMR spectroscopy of the derived MTPA esters. Epoxy alcohol 20: liquid; $R_{\mathrm{f}} 0.43$ (hexane/EtOAc 4:1); $[\alpha]_{\mathrm{D}}{ }^{21}+24\left(c 1.01, \mathrm{CHCl}_{3}\right.$); IR (neat) 3447, 1251, $1102,839 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.04(\mathrm{~s}, 6 \mathrm{H}), \delta 0.06(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H})$, 1.57 (quint., $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.07(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.08-2.20(\mathrm{~m}, 2 \mathrm{H}), 2.31-2.40(\mathrm{~m}$, $2 \mathrm{H}), 2.36(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{t}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.77-3.85$ $(\mathrm{m}, 1 \mathrm{H}), 5.46(\mathrm{dt}, J=10.6,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{dt}, J=10.6,7.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{APT}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-5.2(+),-3.6(+), 18.4(-), 23.7(-), 26.0(+), 31.8(-), 32.6(-), 47.8$ $(+), 58.1(+), 62.5(-), 69.5(+), 124.6(+), 132.5(+) ;$ HRMS $\left(\mathrm{FAB}^{+}\right)$calcd for $\mathrm{C}_{18} \mathrm{H}_{39} \mathrm{O}_{3} \mathrm{Si}_{2}$ $\left[(\mathrm{M}+\mathrm{H})^{+}\right]$359.2438, found 359.2438. Allylic alcohol $(R)-19:[\alpha]_{\mathrm{D}}{ }^{20}+8\left(c 1.00, \mathrm{CHCl}_{3}\right)$.

(S,2E,6Z)-4,10-Bis[(tert-butyldimethylsilyl)oxy]deca-2,6-dienenitrile (22). A

 solution of epoxy alcohol $\mathbf{2 0}(719 \mathrm{mg}, 2.01 \mathrm{mmol}), 2,6-l u t i d i n e ~(0.64 \mathrm{~mL}, 5.5 \mathrm{mmol})$, and $\operatorname{TBSOTf}(1.05 \mathrm{~mL}, 4.48 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was stirred at rt for 3 h and diluted with saturated NaHCO_{3}. The resulting mixture was extracted with EtOAc three times. The combined extracts were dried over MgSO_{4} and concentrated. The residue was semi-purified by chromatography on silica gel (hexane/EtOAc) to give silyl ether 21, which was used for the next reaction without further purification: liquid; $R_{\mathrm{f}} 0.61$ (hexane/EtOAc 20:1); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 6 \mathrm{H}), 0.07(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~s}$, $9 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 1.58$ (quint., $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.06-2.16(\mathrm{~m}, 2 \mathrm{H}), 2.19(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1$ H), $2.36(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.75(\mathrm{dd}, J=5.5,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{q}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.61$ $(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.44-5.54(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{APT}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-5.2(+),-$ $4.6(+),-4.3(+),-3.5(+), 18.2(-), 18.4(-), 23.8(-), 25.9(+), 26.1(+), 32.8(-), 33.9(-)$, $49.8(+), 58.5(+), 62.7(-), 73.3(+), 125.3(+), 131.5(+)$.According to the conversion of the TBS ether of 9 to nitrile 10, a solution of $\mathrm{Et}_{2} \mathrm{AlCN}$ (0.70 M in toluene, $7.2 \mathrm{~mL}, 5.0 \mathrm{mmol}$) was added to a solution of the above epoxide in toluene (20 mL) at $0{ }^{\circ} \mathrm{C}$. After 2 h at $0^{\circ} \mathrm{C}, \mathrm{H}_{2} \mathrm{O}(0.40 \mathrm{~mL}, 22 \mathrm{mmol}), \mathrm{NaF}(840 \mathrm{mg}, 20$ $\mathrm{mmol})$, and Celite $(1.0 \mathrm{~g})$ were added to the solution. The resulting mixture was filtered through a pad of Celite and the filtrate was concentrated. The residue was purified by chromatography on silica gel (hexane/EtOAc) to give nitrile 22 ($754 \mathrm{mg}, 92 \%$ from epoxy alcohol 20): liquid; $R_{\mathrm{f}} 0.52$ (hexane/EtOAc 10:1); $[\alpha]_{\mathrm{D}}{ }^{21}+21\left(c 1.12, \mathrm{CHCl}_{3}\right.$); IR (neat) 2226, 1255, 1100, 837, $777 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.03(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H})$, $0.88(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 1.54$ (quint., $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.01-2.10(\mathrm{~m}, 2 \mathrm{H}), 2.18-2.37(\mathrm{~m}$, $2 \mathrm{H}), 3.59(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.26-4.33(\mathrm{~m}, 1 \mathrm{H}), 5.32(\mathrm{dt}, J=11.0,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{dt}$, $J=11.0,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.60(\mathrm{dd}, J=16.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{dd}, J=16.2,3.6 \mathrm{~Hz}, 1 \mathrm{H})$;
${ }^{13} \mathrm{C}-\mathrm{APT}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-5.3(+),-4.93(+),-4.85(+), 18.1(-), 18.3(-), 23.7$
$(-), 25.7(+), 25.9(-), 32.5(-), 35.0(+), 62.2(-), 71.4(+), 98.5(+), 117.4(-), 123.6(+)$, $132.8(+), 156.8(+) ;$ HRMS $\left(\mathrm{FAB}^{+}\right)$calcd for $\mathrm{C}_{22} \mathrm{H}_{42} \mathrm{NO}_{2} \mathrm{Si}_{2}\left[(\mathrm{M}-\mathrm{H})^{+}\right] 408.2754$, found 408.2766.
(S,2E,6Z)-4,10-Bis[(tert-butyldimethylsilyl)oxy]deca-2,6-dienal (23). According to the reduction of nitrile $\mathbf{1 0}$ to aldehyde 11, DIBAL (1.02 M in hexane, $0.20 \mathrm{~mL}, 0.204$ mmol) was added to a solution of nitrile $22(63 \mathrm{mg}, 0.154 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at $70^{\circ} \mathrm{C}$ dropwise. The solution was stirred at $-70^{\circ} \mathrm{C}$ for 1 h and excess hydride was quenched by adding $i-\operatorname{PrOH}(0.10 \mathrm{~mL}, 1.30 \mathrm{mmol})$. The solution was warmed to $0^{\circ} \mathrm{C}$ and 1 NHCl was added until the mixture became slightly acidic. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ twice. The combined extracts were washed with saturated NaHCO_{3} and then with brine, dried over MgSO_{4}, and concentrated. The residue was purified by chromatography on silica gel (hexane/EtOAc) to give aldehyde 23 ($52 \mathrm{mg}, 82 \%$): liquid; $R_{\mathrm{f}} 0.50$
(hexane/EtOAc 10:1); $[\alpha]_{\mathrm{D}}{ }^{21}+31\left(c\right.$ 1.06, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.04(\mathrm{~s}, 9$ H) $0.08(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 1.55$ (quint., $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.08(\mathrm{q}, J=6.9$ Hz, 2 H), 2.28-2.43 (m, 2 H), $3.60(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.43$ (ddt, $J=6.9,1.6,4.4 \mathrm{~Hz}, 1 \mathrm{H})$, $5.39(\mathrm{dt}, J=10.8,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{dt}, J=10.8,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{ddd}, J=15.4,8.0,1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.85(\mathrm{dd}, J=15.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 9.56(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{APT}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-5.2(+),-4.8(+),-4.7(+), 18.2(-), 18.4(-), 23.9(-), 25.8(+), 26.0(+)$, $32.7(-), 35.3(-), 62.5(-), 71.7(+), 124.2(+), 130.9(+), 132.6(+), 159.7(+), 193.7(+)$; HRMS (FAB^{+}) calcd for $\mathrm{C}_{22} \mathrm{H}_{45} \mathrm{O}_{3} \mathrm{Si}_{2}\left[(\mathrm{M}+\mathrm{H})^{+}\right] 413.2907$, found 413.2903.
(S,3Z,5E,9Z)-7-[(tert-Butyldimethylsilyl)oxy]dodeca-3,5,9-trien-1-ol (25). To an ice-cold suspension of phosphonium salt $24(1.05 \mathrm{~g}, 2.04 \mathrm{mmol})$ in THF (5 mL) was added NaHMDS (1.0 M in THF, $1.50 \mathrm{~mL}, 1.50 \mathrm{mmol}$). The resulting yellow mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h and cooled to $-70^{\circ} \mathrm{C}$. A solution of aldehyde $\mathbf{1 1}(364 \mathrm{mg}, 1.36 \mathrm{mmol})$ in THF (1 mL) was added to the mixture. The solution was stirred at $-70^{\circ} \mathrm{C}$ for 8 h and poured into saturated $\mathrm{NH}_{4} \mathrm{Cl}$ with vigorous stirring. The product was extracted with hexane three times and semi-purified by chromatography on silica gel (hexane/EtOAc): liquid; R_{f} 0.77 (hexane/EtOAc 10:1); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.04$ (s, 3 H), 0.05 (s, 9 H), 0.89 (s, 9 H), $0.90(\mathrm{~s}, 9 \mathrm{H}), 0.95(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.03$ (quint., $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.14-2.35(\mathrm{~m}$, $2 \mathrm{H}), 2.40(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.62(\mathrm{dt}, J=8.7,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.16$ (quint., $J=6.2 \mathrm{~Hz}, 1 \mathrm{H}$), $5.26-5.53(\mathrm{~m}, 3 \mathrm{H}), 5.66(\mathrm{dd}, J=15.0,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{t}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{dd}, J$ $=15.0,11.0 \mathrm{~Hz}, 1 \mathrm{H})$.

A solution of the above olefin and PPTS ($376 \mathrm{mg}, 1.50 \mathrm{mmol}$) in $\mathrm{MeOH}(5 \mathrm{~mL})$ was stirred at rt for 3 h and diluted with saturated NaHCO_{3}. The resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The combined extracts were dried over MgSO_{4} and concentrated to give a residue, which was purified by chromatography on silica gel (hexane/EtOAc) to
afford alcohol 25 (325 mg , 77\% from aldehyde 11): liquid; $R_{\mathrm{f}} 0.28$ (hexane/EtOAc 10:1); $[\alpha]_{\mathrm{D}}{ }^{20}+17\left(c 0.70, \mathrm{CHCl}_{3}\right) ;$ IR (neat) $3343,1255,836,776 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.95(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.33(\mathrm{t}, J=6.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.03$ (quint., $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.15-2.39(\mathrm{~m}, 2 \mathrm{H}), 2.43-2.50(\mathrm{~m}, 2 \mathrm{H}), 3.68(\mathrm{q}, J$ $=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.18(\mathrm{q}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.30-5.50(\mathrm{~m}, 3 \mathrm{H}), 5.70(\mathrm{dd}, J=15.2,6.2 \mathrm{~Hz}, 1$ H), $6.13(\mathrm{t}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{dd}, J=15.2,11.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-$ APT NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-4.7(+),-4.4(+), 14.3(+), 18.3(-), 20.8(-), 25.9(+), 31.3(-), 36.3(-), 62.3(-)$, $73.1(+), 124.2(+), 124.6(+), 126.8(+), 131.0(+), 133.6(+), 137.6(+) ;$ HRMS (FAB $\left.{ }^{+}\right)$ calcd for $\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{SiNa}\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$333.2226, found 333.2231.

tert-Butyl $[\{(S, 3 Z, 7 E, 9 Z)$-12-iodododeca-3,7,9-trien-6-yl\}oxy]dimethylsilane (26).

To a solution of alcohol $\mathbf{2 5}(219 \mathrm{mg}, 0.705 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ were added PPh_{3} ($271 \mathrm{mg}, 1.03 \mathrm{mmol}$), imidazole ($96 \mathrm{mg}, 1.4 \mathrm{mmol}$), and $\mathrm{I}_{2}(272 \mathrm{mg}, 1.07 \mathrm{mmol})$. The mixture was stirred at rt for 18 h and diluted with aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. The resulting mixture was extracted with EtOAc three times. The combined extracts were washed with brine, dried over MgSO_{4}, and concentrated. The residue was purified by chromatography on silica gel (hexane/EtOAc) to give iodide 26 ($253 \mathrm{mg}, 85 \%$): liquid; $R_{\mathrm{f}} 0.83$ (hexane/EtOAc 10:3); $[\alpha]_{\mathrm{D}}{ }^{20}+22\left(c 0.46, \mathrm{CHCl}_{3}\right) ;$ IR (neat) $1254,1169,836,776 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.95(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 2.03$ (quint., J $=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.15-2.34(\mathrm{~m}, 2 \mathrm{H}), 2.75(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.15(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.18$ $(\mathrm{q}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{dt}, J=11.1,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.45(\mathrm{dt}, J=11.1,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.73$ (dd, $J=15.1,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{t}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{dd}, J=15.1,11.1 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}-\mathrm{APT}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-4.6(+),-4.4(+), 5.0(-), 14.3(+), 18.4(-), 20.8(-)$, $26.0(+), 32.0(-), 36.3(-), 72.9(+), 123.9(+), 124.6(+), 129.0(+), 130.3(+), 133.7(+)$, $138.2(+)$; $\mathrm{HRMS}\left(\mathrm{EI}^{+}\right)$calcd for $\mathrm{C}_{18} \mathrm{H}_{33} \mathrm{OSiI}\left[\mathrm{M}^{+}\right]$420.1345, found 420.1352.
(4Z,7S,8E, 10Z,13Z,15E,17S,19Z)-7,17-Bis[(tert-butyldimethylsilyl)oxy]docosa-4,8, 10,13,15,19-hexaen-1-ol (29). A mixture of iodide 26 ($253 \mathrm{mg}, 0.602 \mathrm{mmol}$) and $\mathrm{PPh}_{3}(235$ $\mathrm{mg}, 0.896 \mathrm{mmol}$) in $\mathrm{MeCN}(15 \mathrm{~mL})$ was heated under reflux for 18 h , cooled to rt , and concentrated. The residue was washed with hexane to give phosphonium salt 27: liquid; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.07(\mathrm{~s}, 6 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 1.01(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.01-2.16$ (m, 2 H), 2.19-2.37(m, 2 H), 2.60-2.76(m, 2 H), 3.83-4.22(m, 3H), $5.36(\mathrm{dt}, J=11.0$, $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{dt}, J=11.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.66-5.81(\mathrm{~m}, 2 \mathrm{H}), 6.02(\mathrm{t}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.16(\mathrm{dd}, J=14.4,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.74-7.83(\mathrm{~m}, 6 \mathrm{H}), 7.84-7.98(\mathrm{~m}, 6 \mathrm{H})$. This product was used for the next reaction without further purification.

In addition, phosphonium salt $\mathbf{2 7}$ was synthesized again from alcohol $\mathbf{2 5}$ to estimate yield of 27. Thus, iodide $\mathbf{2 6}$ derived from alcohol $\mathbf{2 5}(151 \mathrm{mg}, 0.486 \mathrm{mmol})$ with $\mathrm{I}_{2}(149 \mathrm{mg}$, $0.587 \mathrm{mmol}), \mathrm{PPh}_{3}(154 \mathrm{mg}, 0.587 \mathrm{mmol})$, and imidazole ($40 \mathrm{mg}, 0.588 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 mL), was mixed with $\mathrm{PPh}_{3}(167 \mathrm{mg}, 0.637 \mathrm{mmol})$ in $\mathrm{MeCN}(5 \mathrm{~mL})$ to afford 27 (302 mg) in 91% yield from alcohol 25.

According to the Wittig reaction of aldehyde 7 with 16, a solution of aldehyde 23 (142 $\mathrm{mg}, 0.344 \mathrm{mmol})$ in THF $(1 \mathrm{~mL})$ was added at $-90^{\circ} \mathrm{C}$ to the ylide in THF $(4 \mathrm{~mL})$ generated from the above phosphonium salt and NaHMDS (1.0 M in THF, $0.45 \mathrm{~mL}, 0.45 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$ for 1 h . The mixture was warmed to $0{ }^{\circ} \mathrm{C}$ over 8 h and diluted with saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The product was extracted with EtOAc and semi-purified by passing through a silica gel column (hexane/EtOAc) for the next reaction without further purification: liquid; $R_{\mathrm{f}} 0.80$ (hexane/EtOAc 10:1); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.04(\mathrm{~s}, 12 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H}), 0.89(\mathrm{~s}$, $9 \mathrm{H}), 0.90(\mathrm{~s}, 18 \mathrm{H}), 0.97(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.95-2.12(\mathrm{~m}, 4 \mathrm{H}), 2.16-2.36(\mathrm{~m}, 4 \mathrm{H})$, 2.90-3.09 (m, 2 H), $3.59(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.12-4.25(\mathrm{~m}, 2 \mathrm{H}), 5.26-5.51(\mathrm{~m}, 6 \mathrm{H})$, $5.61-5.73(\mathrm{~m}, 2 \mathrm{H}), 6.00(\mathrm{t}, J=10.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.45(\mathrm{dd}, J=15.0,11.2 \mathrm{~Hz}, 2 \mathrm{H})$.

To an ice-cold solution of the above olefin in $\mathrm{MeOH}(5 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added PPTS ($87 \mathrm{mg}, 0.35 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The solution was stirred rt for 8 h and diluted with saturated NaHCO_{3}. The resulting mixture was extracted with EtOAc three times. The combined extracts were dried over MgSO_{4} and concentrated to give a residue, which was purified by chromatography on silica gel (hexane/EtOAc) to give alcohol 29 ($104 \mathrm{mg}, 53 \%$ from aldehyde 23): liquid; $R_{\mathrm{f}} 0.33$ (hexane/EtOAc 3:1); $[\alpha]_{\mathrm{D}}{ }^{21}+25\left(c 0.94, \mathrm{CHCl}_{3}\right)$; IR (neat) $3352,1255,1070,836,776 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.04(\mathrm{~s}, 6 \mathrm{H}), 0.06$ (s, 6 H), $0.90(\mathrm{~s}, 18 \mathrm{H}), 0.95(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.62$ (quint., $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.96-2.18$ (m, 5 H$), 2.18-2.40(\mathrm{~m}, 4 \mathrm{H}), 3.05(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.58-3.72(\mathrm{~m}, 2 \mathrm{H}), 4.20$ (quint., $J=$ $6.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.28-5.54(\mathrm{~m}, 6 \mathrm{H}), 5.63-5.74(\mathrm{~m}, 2 \mathrm{H}), 6.00(\mathrm{t}, J=11.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.46(\mathrm{dd}, J$ $=15.3,11.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{APT} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-4.6(+),-4.3(+), 14.3(+), 18.4$ $(-), 20.8(-), 23.8(-), 26.0(+), 26.5(-), 32.5(-), 36.4(-), 36.5(-), 62.5(-), 73.07(+)$, $73.13(+), 124.2(+), 124.3(+), 124.7(+), 126.3(+), 128.5(+), 128.6(+), 129.0(+), 129.2$ $(+), 130.9(+), 133.6(+), 137.1(+), 137.2(+)$.
(4Z,7S,8E, 10Z,13Z,15E,17S,19Z)-7,17-Bis[(tert-butyldimethylsilyl)oxy]docosa-4,8, $\mathbf{1 0 , 1 3 , 1 5 , 1 9 - h e x a e n o i c ~ a c i d ~ (3 0) . ~ A ~ s o l u t i o n ~ o f ~ a l c o h o l ~} 29(46 \mathrm{mg}, 0.080 \mathrm{mmol})$, PCC (26 $\mathrm{mg}, 0.12 \mathrm{mmol})$, and Celite $(50 \mathrm{mg})$ were stirred at rt for 2 h and diluted with $\mathrm{Et}_{2} \mathrm{O}$. The resulting mixture was filtered through a pad of silica gel. The filtrate was concentrated to give the corresponding aldehyde, which was used for the next reaction without further purification: liquid; $R_{\mathrm{f}} 0.51$ (hexane/EtOAc 10:3); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.036$ (s, $3 \mathrm{H}), 0.040(\mathrm{~s}, 3 \mathrm{H}), 0.051(\mathrm{~s}, 3 \mathrm{H}), 0.057(\mathrm{~s}, 3 \mathrm{H}), 0.896(\mathrm{~s}, 9 \mathrm{H}), 0.901(\mathrm{~s}, 9 \mathrm{H}), 0.95(\mathrm{t}, \mathrm{J}=$ $7.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.03$ (quint., $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.20-2.40(\mathrm{~m}, 6 \mathrm{H}), 2.48(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H})$, $3.05(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.20$ (quint., $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}$), $5.28-5.52(\mathrm{~m}, 6 \mathrm{H}), 5.67(\mathrm{dt}, J=$ $15.1,6.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.99(\mathrm{t}, J=10.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.45(\mathrm{dd}, J=15.1,10.8 \mathrm{~Hz}, 2 \mathrm{H}), 9.76$ (t, J
$=1.8 \mathrm{~Hz}, 1 \mathrm{H})$.
A mixture of the above aldehyde, 2-methyl-2-butene ($0.34 \mathrm{~mL}, 3.2 \mathrm{mmol}$), NaClO_{2} (79\% purity, $14 \mathrm{mg}, 0.12 \mathrm{mmol}$) in McIlvaine's phosphate buffer ($\mathrm{pH} 5.0,1.4 \mathrm{~mL}$) and $t-\mathrm{BuOH}(1.4 \mathrm{~mL})$ was stirred at rt for 1 h and diluted with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ three times. The combined extracts were washed with brine, dried over MgSO_{4}. The resulting mixture was filtered through a pad of silica gel to give acid $\mathbf{3 0}$ (39 $\mathrm{mg}, 81 \%$ from alcohol 29): liquid; $R_{\mathrm{f}} 0.17$ (hexane/EtOAc 10:3); $[\alpha]_{\mathrm{D}}{ }^{21}+21(c 0.89$, CHCl_{3}); IR (neat) $1713,1255,1072,836 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.036(\mathrm{~s}, 3$ H), $0.042(\mathrm{~s}, 3 \mathrm{H}), 0.052(\mathrm{~s}, 3 \mathrm{H}), 0.059(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.95(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 3 \mathrm{H}$), 2.03 (quint., $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$), 2.16-2.44 (m, 8 H), 3.05 (t, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 4.19 (quint., $J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.28-5.54(\mathrm{~m}, 6 \mathrm{H}), 5.67(\mathrm{dt}, J=15.1,5.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.99(\mathrm{t}, J=$ $11.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.46(\mathrm{dd}, J=15.1,11.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{APT}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-4.6$ $(+),-4.3(+), 14.3(+), 18.3(-), 20.8(-), 22.8(-), 26.0(+), 26.5(-), 33.8(-), 36.4(-), 72.9$ $(+), 73.1(+), 124.2(+), 124.4(+), 124.7(+), 127.3(+), 128.5(+), 128.6(+), 129.0(+)$, $129.3(+), 133.6(+), 136.9(+), 137.2(+), 177.7(-)$; HRMS $\left(\mathrm{FAB}^{-}\right)$calcd for $\mathrm{C}_{34} \mathrm{H}_{59} \mathrm{O}_{4} \mathrm{Si}_{2}$ $\left[(\mathrm{M}-\mathrm{H})^{-}\right] 587.3952$, found 587.3976.

Methyl

(4Z,7S, $8 E, 10 Z, 13 Z, 15 E, 17 S, 19 Z)-7,17$-dihydroxydocosa-4,8,10,13,15,19-hexaenoate (31). To an ice-cold solution of acid $\mathbf{3 0}(39 \mathrm{mg}, 0.066 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{~mL})$ was added an ethereal solution of $\mathrm{CH}_{2} \mathrm{~N}_{2}(3 \mathrm{~mL})$. After 5 min of stirring at $0^{\circ} \mathrm{C}$, the mixture was concentrated. The residue was passed through a short column of silica gel (hexane/EtOAc) to give the corresponding methyl ester, which was used for the next reaction without further purification: liquid; $R_{\mathrm{f}} 0.67$ (hexane/EtOAc 10:3); ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.036$ (s, $3 \mathrm{H}), 0.040(\mathrm{~s}, 3 \mathrm{H}), 0.052(\mathrm{~s}, 3 \mathrm{H}), 0.057(\mathrm{~s}, 3 \mathrm{H}), 0.897(\mathrm{~s}, 9 \mathrm{H}), 0.901$ (s, 9 H$), 0.95$ (t, $J=$
$7.3 \mathrm{~Hz}, 3 \mathrm{H}$), 2.03 (quint., $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$), 2.17-2.38(m, 8 H$), 3.05(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $3.66(\mathrm{~s}, 3 \mathrm{H}), 4.19$ (quint., $J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.27-5.52(\mathrm{~m}, 6 \mathrm{H}), 5.67(\mathrm{dt}, J=15.3,5.5 \mathrm{~Hz}$, $2 \mathrm{H}), 5.99(\mathrm{t}, J=11.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.45(\mathrm{dd}, J=15.3,11.1 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{APT}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-4.6(+),-4.3(+), 14.3(+), 18.3(-), 20.8(-), 23.1(-), 26.0(+), 26.5(-), 29.8(-)$, $34.1(-), 36.4(-), 51.6(+), 72.9(+), 73.1(+), 124.2(+), 124.4(+), 124.7(+), 127.1(+)$, $128.5(+), 128.6(+), 129.0(+), 129.2(+), 129.3(+), 133.6(+), 136.9(+), 137.2(+), 173.7$ (-); HRMS $\left(\mathrm{FAB}^{+}\right)$calcd for $\mathrm{C}_{35} \mathrm{H}_{62} \mathrm{O}_{4} \mathrm{Si}_{2} \mathrm{Na}\left[(\mathrm{M}+\mathrm{Na})^{+}\right] 625.4084$, found 625.4076 .

A mixture of the above methyl ester and TBAF (1.0 M in THF, $0.81 \mathrm{~mL}, 0.81 \mathrm{mmol}$) in THF (0.5 mL) was stirred at rt for 1.5 h and diluted with McIlvaine's phosphate buffer (pH 5.0, 5 mL). The resulting mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ three times. The combined extracts were dried over MgSO_{4} and concentrated to give a residue, which was purified by chromatography on silica gel (hexane/EtOAc) to give diol 31 ($11 \mathrm{mg}, 44 \%$ from acid 30): liquid; $R_{\mathrm{f}} 0.10$ (hexane/EtOAc 2:1); $[\alpha]_{\mathrm{D}}{ }^{19}+6\left(c 0.53, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 0.96(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 2.03$ (quint., $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 2.26-2.48(m, 8 H), $1.8-2.5$ (br s, $2 \mathrm{H}), 3.09(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), $3.67(\mathrm{~s}, 3 \mathrm{H}), 4.24$ (quint., $J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.28-5.62(\mathrm{~m}, 6$ H), $5.73(\mathrm{dt}, J=15.1,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.01(\mathrm{t}, J=11.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.59(\mathrm{dd}, J=15.1,11.0 \mathrm{~Hz}, 2$ H); ${ }^{13} \mathrm{C}-\mathrm{APT}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.3(+), 20.8(-), 22.9(-), 26.7(-), 33.8(-), 35.3$ $(-), 35.4(-), 51.8(+), 71.7(+), 71.9(+), 123.7(+), 125.3(+), 126.4(+), 128.29(+), 128.32$ $(+), 129.6(+), 131.0(+), 135.4(+), 136.00(+), 136.03(+), 173.8(-)$.

Resolvin D5 (4). To a solution of alcohol 31 ($10 \mathrm{mg}, 0.029 \mathrm{mmol}$) in MeOH (0.5 mL) and THF (0.5 mL) was added $1 \mathrm{~N} \mathrm{LiOH}(0.30 \mathrm{~mL}, 0.30 \mathrm{mmol})$. The mixture was stirred at rt for 1.5 h and diluted with McIlvaine's phosphate buffer ($\mathrm{pH} 5.0,10 \mathrm{~mL}$). The resulting mixture was extracted with EtOAc three times. The combined extracts were dried over MgSO_{4} and concentrated. The residue was purified by chromatography on silica gel
($i-\mathrm{PrOH} / \mathrm{Et}_{2} \mathrm{O}$ to give resolvin $\mathrm{D} 5(4)(4.3 \mathrm{mg}, 45 \%)$: liquid; $R_{\mathrm{f}} 0.08$ (hexane/EtOAc 1:1); $[\alpha]_{\mathrm{D}}{ }^{20}+18\left(c 0.22, \mathrm{CHCl}_{3}\right)$; IR (neat) $3366,1715,1261,1036 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.96(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 2.06$ (quint., $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), $2.28-2.48(\mathrm{~m}, 8 \mathrm{H}), 1.8-$ 2.6 (br s, 3 H$), 2.92-3.24(\mathrm{~m}, 2 \mathrm{H}), 4.22-4.34(\mathrm{~m}, 2 \mathrm{H}), 5.28-5.62(\mathrm{~m}, 6 \mathrm{H}), 5.74(\mathrm{dm}, J=$ $15.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.95-6.08(\mathrm{~m}, 2 \mathrm{H}), 6.54-6.74(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) δ $0.94(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 2.04$ (quint., $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 2.21-2.36(m, 8 H), 1.9-2.4 (br s, 3 H), $3.07(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.12(\mathrm{q}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.28-5.53(\mathrm{~m}, 6 \mathrm{H}), 5.72(\mathrm{dd}, J=$ $15.0,6.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.01(\mathrm{t}, J=11.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.55(\mathrm{dd}, J=15.0,11.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{APT}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.3(+), 20.8(-), 22.8(-), 26.7(-), 33.5(-), 35.1(-), 35.3(-)$, $71.6(+), 72.0(+), 123.7(+), 125.0(+), 125.5(+), 126.6(+), 127.9(+), 128.5(+), 129.2(+)$, $129.7(+), 130.9(+), 135.4(+), 135.6(+), 136.0(+), 177.0(-)$; HRMS (FAB $\left.{ }^{-}\right)$calcd for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{O}_{4}\left[(\mathrm{M}-\mathrm{H})^{-}\right]$359.2222, found 359.2217 . The ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) spectrum was consistent with that reported. ${ }^{6}$

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: xxxxxxx.

$$
{ }^{1} \mathrm{H},{ }^{13} \mathrm{C} \text { NMR spectra (PDF) }
$$

AUTHOR INFORMATION

Corresponding Author
*E-mail: ykobayas@bio.titech.ac.jp.
Notes

The authors declare no competing fi nancial interest.

ACKNOWLEDGMENTS

This work was supported by JSPS KAKENHI Grant Number JP15H05904 and Kobayashi International Scholarship.

REFERENCES

(1) (a) Colas, R. A.; Shinohara, M.; Dalli, J.; Chiang, N.; Serhan, C. N. Am. J. Physiol. Cell Physiol. 2014, 307, C39-C54. (b) Serhan, C. N. Nature 2014, 510, 92-101. (c) Serhan, C. N.; Chiang, N. Curr. Opin. Pharmacol. 2013, 13, 632-640. (d) Serhan, C. N.; Arita, M.; Hong, S.; Gotlinger, K. Lipids 2004, 39, 1125-1132.
(2) Hong, S.; Gronert, K.; Devchand, P. R.; Moussignac, R.-L.; Serhan, C. N. J. Biol. Chem. 2003, 278, 14677-14687.
(3) (a) Hong, S.; Tjonahen, E.; Morgan, E. L.; Lu, Y.; Serhan, C. N.; Rowley, A. F. Prostaglandins Other Lipid Mediat. 2005, 78, 107-116. (b) Giera, M.; Ioan-Facsinay, A.; Toes, R.; Gao, F.; Dalli, J.; Deelder, A. M.; Serhan, C. N. ; Mayboroda, O. A. Biochim. Biophys. Acta 2012, 1821, 1415-1424. (c) Miyahara, T.; Runge, S.; Chatterjee, A.; Chen, M.; Mottola, G.; Fitzgerald, J. M.; Serhan, C. N.; Conte, M. S. FASEB J. 2016, 27, 22202232. (d) Dalli, J.; Kraft, B. D.; Colas, R. A.; Shinohara, M.; Fredenburgh, L. E.; Hess, D. R.; Chiang, N.; Welty-Wolf, K.; Choi, A. M.; Piantadosi, A. A.; Serhan, C. N. Am. J. Respir. Cell Mol. Biol. 2015, 53, 314-325.
(4) Chiang, N.; Fredman, G.; Bäckhed, F.; Oh, S. F.; Vickery, T.; Schmidt, B. A.; Serhan, C. N. Nature 2012, 484, 524-529.
(5) (a) Butovich, I. A.; Lukyanova, S. M.; Bachmann, C. J. Lipid Res. 2006, 47, 2462-
2474. (b) Butovich, I. A.; Hamberg, M.; Rådmark, O. Lipis 2005, 40, 249-257.
(6) Rodríguez, A. R.; Spur, B. W. Tetrahedron Lett. 2005, 46, 3623-3627.
(7) Ogawa, N.; Kobayashi, Y. Tetrahedron Lett. 2009, 50, 6079-6082.
(8) (a) Gao, Y.; Klunder, J. M.; Hanson, R. M.; Ko, S. Y.; Masamune, H.; Sharpless, K. B. J. Am. Chem. Soc. 1987, 109, 5765-5780. (b) Kitano, Y.; Matsumoto, T.; Sato, F. Tetrahedron 1988, 44, 4073-4086.
(9) Kobayashi, Y.; Yoshida, S.; Nakayama, Y. Eur. J. Org. Chem. 2001, 1873-1881.
(10) Silylation with TBSCl and imidazole suffered from the formation of the corresponding chorohydrin in varying yields.
(11) (a) Jeffery, T.; Gueugnut, S.; Linstrumelle, G. Tetrahedron Lett. 1992, 33, 57575760. (b) Caruso, T.; Spinella, A. Tetrahedron 2003, 59, 7787-7790.
(12) The propargylic CH_{2} signals at $\delta 2.3-2.9 \mathrm{ppm}$ was less than expected 4 H .
(13) Alkylation of the EE ether of $\mathbf{1 3}$ with EtBr under similar conditions (BuLi, HMPA/THF, $-70{ }^{\circ} \mathrm{C}$ to rt , overnight) followed by hydrolysis of the EE moiety by aqueous HCl gave the alkylation product in $74-78 \%$ yields. In addiiton, hydrogenation gave rac-8 as well.
(14) Since enough quantity of $\mathbf{2 2}$ was obtained from $\mathbf{2 0},(R) \mathbf{- 1 9}$ was not converted to 22.

