ORGANOMETALLICS

Copper-Catalyzed Hydroboration of Carbon Dioxide

Ryo Shintani* and Kyoko Nozaki*

Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

Supporting Information

ABSTRACT: A copper/N-heterocyclic carbene catalyzed hydroboration of carbon dioxide has been developed to give a formic acid derivative selectively under mild conditions. Investigations directed toward understanding the catalytic

cycle of this process have been carried out, and the hydroboration product can be directly used as a formylation reagent for various amines.

arbon dioxide, the most oxidized and stable form of carbon, is an abundant and inexpensive carbon source,¹ and catalytic reduction of carbon dioxide with hydrogen or hydrides is one of attractive way to utilize it.^{1a-g} Among the various approaches to this end, nickel-2 and rutheniumcatalyzed³ hydroboration of CO₂ has been recently reported, in addition to the more widely explored catalytic hydrogenation^{1c} and hydrosilylation⁴ reactions. In contrast to many examples using hydrogen^{1c,5} or hydrosilanes^{4a-d,6} as the reductant that could give formic acid derivatives as the reduced form of CO₂, both of these hydroboration reactions provide methoxyboranes as the end product by 3-fold reduction of CO2, but catalytic and selective formation of formic acid equivalents by using hydroboranes has not been reported as far as we are aware. In this context, herein we describe the development of a copper/N-heterocyclic carbene (NHC) complex catalyzed hydroboration of CO2 to give a formic acid derivative as the product.

RESULTS AND DISCUSSION

Because copper/NHC complexes are reported to be effective catalysts for carboxylation of various carbon nucleophiles by using CO_{2} ,⁷ we initially employed $Cu(O-t-Bu)(IPr)^8$ as a catalyst for the reaction of pinacolborane with CO₂. After some investigation, we successfully found a set of conditions that can selectively provide formic acid by hydroboration of CO₂ followed by protonolysis. Thus, Cu(O-t-Bu)(IPr) (10 mol %) catalyzed a reaction of pinacolborane with CO_2 (1 atm) in THF under mild conditions to give formic acid in 85% yield after acidic workup (Table 1, entry 1). It is worth noting that this reaction proceeds without using a metal alkoxide base, which is usually required for related carboxylation reactions of carbon nucleophiles.^{7a-d} The reaction could also be conducted with 5 mol % of the catalyst (entry 2) or in other solvents such as benzene (entry 3). In comparison, the reaction did not proceed by using catecholborane instead of pinacolborane (entry 4). The related Cu(O-t-Bu)(IMes)^{7e} showed somewhat lower catalytic activity (entry 5), and CuCl(IPr)⁹ was almost inactive for the present hydroboration reaction (entry 6). We have also confirmed that the reaction does not proceed in the absence of

Table 1. Copper-Catalyzed Hydroboration of CO₂

	Cu-catalyst	HClaq O	
	H-B(pill) + CO ₂ 35 °C, 24 h	н	ЭН
	1 atm		
entry	Cu catalyst (amt (mol %))	solvent	yield $(\%)^a$
1	Cu(O- <i>t</i> -Bu)(IPr) (10)	THF	85
2	Cu(O-t-Bu)(IPr) (5)	THF	72
3^b	Cu(O- <i>t</i> -Bu)(IPr) (10)	benzene	57
4 ^{<i>c</i>}	Cu(O- <i>t</i> -Bu)(IPr) (10)	THF	<2
5	Cu(O- <i>t</i> -Bu)(IMes) (10)	THF	32
6	CuCl(IPr) (10)	THF	3
7	none	THF	<2
8	$Cu(OAc)_2 \cdot H_2O/dppbz^d (10/15)$	THF	38
9	IPr (10)	THF	35

^{*a*}Determined by ¹H NMR against an internal standard (MeNO₂). ^{*b*}The reaction was quenched with HCl in diethyl ether. ^{*c*}Catecholborane was used instead of pinacolborane. ^{*d*}dppbz = 1,2-bis-(diphenylphosphino)benzene.

any catalyst (entry 7). The use of $Cu(OAc)_2$ ·H₂O/dppbz, which was reported to be a highly active catalyst for the hydrosilylation of CO₂,^{4b} resulted in a significantly lower yield (entry 8), and the reaction using IPr as an organocatalyst, which is also known to be highly effective for the reaction of CO₂ with hydrosilanes,^{4e,10} turned out to be much inferior to the reaction catalyzed by Cu(O-*t*-Bu)(IPr) (entry 9).

A series of stoichiometric reactions were carried out to gain some insight into the catalytic cycle for the present hydroboration of CO₂. The reaction of Cu(O-*t*-Bu)(IPr) (¹H NMR spectrum shown in Figure 1a) with pinacolborane (1.0 equiv) in benzene- d_6 at room temperature under argon instantly produced CuH(IPr)¹¹ along with generation of (*t*-BuO)B(pin) (Figure 1b). This copper hydride is known to be thermally unstable in solution,⁸ and it indeed started to decompose within 1 h. Successive treatment of CuH(IPr) generated in situ with CO₂ (1 atm) cleanly afforded a new species that corresponds to Cu(O₂CH)(IPr) (Figure 1c).^{4b,12} Although

```
Received: March 2, 2013
Published: April 3, 2013
```


Figure 1. ¹H NMR spectra in benzene- d_6 of (a) Cu(O-t-Bu)(IPr), (b) CuH(IPr) and (t-BuO)B(pin) obtained from Cu(O-t-Bu)(IPr) + HB(pin), and (c) Cu(O₂CH)(IPr) obtained from CuH(IPr) + CO₂.

we expected regeneration of CuH(IPr) by the reaction of this copper formate with pinacolborane in the absence of CO_2 .¹³ we were unable to observe the formation of CuH(IPr) by the addition of pinacolborane (1.0 equiv, and then excess) to a solution of Cu(O₂CH)(IPr) in benzene- d_6 under argon. Instead, the majority of this formate complex stayed intact for a while and then gradually decomposed. In order to obtain more information, we independently synthesized Cu(O₂CH)-(IPr) by the reaction of CuCl(IPr) and Ag(O₂CH) and used it as a catalyst for the present hydroboration of CO₂. As shown in eq 1, this copper complex displayed a catalytic activity similar to that of Cu(O-*t*-Bu)(IPr), giving formic acid in high yield after acidic workup.

On the basis of these experiments, a proposed catalytic cycle for Cu(O-t-Bu)(IPr)-catalyzed hydroboration of CO_2 is illustrated in Scheme 1. Thus, the reaction of Cu(O-t-Bu)(IPr)with pinacolborane generates CuH(IPr), which smoothly undergoes insertion of CO_2 to give $Cu(O_2CH)(IPr)$. The subsequent turnover-limiting reaction of this species with pinacolborane provides a boron formate as the product along with regeneration of the copper hydride. Although we could not directly observe this elemental step under stoichiometric conditions, considering the result using $Cu(O_2CH)(IPr)$ as the catalyst (eq 1), we currently believe this process does occur

Scheme 1. Proposed Catalytic Cycle for the Copper-Catalyzed Hydroboration of CO_2^a

during catalysis under CO_2 .¹⁴ The primary hydroboration product $HCO_2B(pin)$ (¹¹B NMR (THF) δ 21.0 ppm (s))¹⁵ becomes formic acid by treatment with aqueous HCl at the end of the reaction.

We have also found that $HCO_2B(pin)$ produced in the present catalysis can be directly used as a formylation reagent for various amines, as shown in Table 2.¹⁶ For example, treatment of *p*-anisidine (1a) in the presence of Et₃N with a solution of $HCO_2B(pin)$ after the catalytic hydroboration of CO_2 cleanly afforded the corresponding formamide 2a in 84% isolated yield (entry 1). Secondary aniline 1b as well as cyclic amine 1c also gave formamides 2 in high yield (81–86% yields; entries 2 and 3). In addition, primary alkylamines 1d–f could also be used with high efficiency, regardless of their steric properties (81–98% yields; entries 4–6), and secondary alkylamine 1g was converted to formamide 2g in high yield as well (90% yield; entry 7). It is worth noting that the hydroboration–fomylation sequence can also be conducted

Table 2. N-Formylation of Amines 1 via Copper-Catalyzed Hydroboration of CO₂

H−B(pir (2.0 equi	$\begin{array}{r} \text{Cu}(Ot-\text{Bu})(\text{Pr})\\ (10 \text{ mol }\%)\\ \text{THF}\\ \text{v}) 1 \text{ atm} 35 \ ^\circ\text{C}, 24 \text{ h} \end{array}$	HNR ¹ R ² (1) Et ₃ N (1.5 equiv) THF, 65 °C, 45 h	0 H NR ¹ R ² 2
entry	$HNR^{1}R^{2}\left(1\right)$	product	yield $(\%)^a$
1	H ₂ N-OMe (1a)	2a	84
2^b	Me HN (1b) Ph	2b	81
3 ^b	$\bigvee_{\substack{N \\ H}} (1c)$	2c	86
4	H_2N^{Ph} (1d)	2d	98
5	Me H₂N Ph (1e)	2e	89
6	H ₂ N (1f)	2f	81
7	$HN \underbrace{Ph}_{Ph} (\mathbf{1g})$	2g	90

^{*a*}Isolated yield. ^{*b*}The formylation reaction was conducted at 80 °C.

without pregeneration of $HCO_2B(pin)$, as exemplified in eq 2. Thus, the reaction of pinacolborane with CO_2 in the presence of *p*-anisidine (1a) provides formamide 2a in 71% yield.¹⁷

H-B(pin)	+	CO.	+	H _o NAr	Cu(Ot-Bu)(IPr) (10 mol %)	0 ▶ ∥	(2)
n D(pin)	·	002		112101	THE		(-)
(3.0 equiv)		1 atm		1a	65 °C, 45 h	2a	
			(Ar =	= 4-MeOC	; ₆ Н ₄)	71% yield	

CONCLUSIONS

In summary, we have developed a copper/N-heterocyclic carbene-catalyzed hydroboration of carbon dioxide under mild conditions to give a formic acid derivative selectively for the first time. We have also carried out investigations to gain insights into the catalytic cycle of this process and utilized the hydroboration product as a formylation reagent for various amines as well. Future studies will be directed toward the development of more active catalyst systems for reductive utilization of carbon dioxide.

ASSOCIATED CONTENT

S Supporting Information

Text and figures giving experimental procedures and compound characterization data. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: shintani@chembio.t.u-tokyo.ac.jp (R.S.); nozaki@ chembio.t.u-tokyo.ac.jp (K.N.).

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Support has been provided in part by the Funding Program for Next Generation World-Leading Researchers, Green Innovation and the Global COE Program "Chemistry Innovation through Cooperation of Science and Engineering" from MEXT of Japan.

REFERENCES

(1) For selected recent reviews on chemical utilization of CO₂: (a) Omae, I. Coord. Chem. Rev. 2012, 256, 1384. (b) Cokoja, M.; Bruckmeier, C.; Rieger, B.; Herrmann, W. A.; Kühn, F. E. Angew. Chem., Int. Ed. 2011, 50, 8510. (c) Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev. 2011, 40, 3703. (d) Quadrelli, E. A.; Centi, G.; Duplan, J.-L.; Perathoner, S. ChemSusChem 2011, 4, 1194. (e) Riduan, S. N.; Zhang, Y. Dalton Trans. 2010, 39, 3347. (f) Aresta, M.; Dibenedetto, A. Dalton Trans. 2007, 2975. (g) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365. (h) Tsuji, Y.; Fujihara, T. Chem. Commun. 2012, 48, 9956. (i) Kember, M. R.; Buchard, A.; Williams, C. K. Chem. Commun. 2011, 47, 141.

(2) (a) Chakraborty, S.; Zhang, J.; Krause, J. A.; Guan, H. J. Am. Chem. Soc. 2010, 132, 8872. (b) Chakraborty, S.; Patel, Y. J.; Krause, J. A.; Guan, H. Polyhedron 2012, 32, 30. (c) Chakraborty, S.; Zhang, J.; Patel, Y. J.; Krause, J. A.; Guan, H. Inorg. Chem. 2013, 52, 37.
(3) Bontemps, S.; Vendier, L.; Sabo-Etienne, S. Angew. Chem., Int, Ed.

(3) Bontemps, S.; Vendier, L.; Sabo-Edienne, S. Angew. Chem., Int, Ed. 2012, 51, 1671.

(4) For selected recent examples: (a) Deglmann, P.; Ember, E.; Hofmann, P.; Pitter, S.; Walter, O. Chem. Eur. J. 2007, 13, 2864.
(b) Motokura, K.; Kashiwame, D.; Miyaji, A.; Baba, T. Org. Lett. 2012, 14, 2642. (c) Sattler, W.; Parkin, G. J. Am. Chem. Soc. 2012, 134, 17462. (d) Itagaki, S.; Yamaguchi, K.; Mizuno, N. J. Mol. Catal. A: Chem. 2013, 366, 347. (e) Riduan, S. N.; Zhang, Y.; Ying, J. Y. Angew. Chem., Int. Ed. 2009, 48, 3322. (f) Huang, F.; Lu, G.; Zhao, L.; Li, H.; Wang, Z.-X. J. Am. Chem. Soc. 2010, 132, 12388. (g) Matsuo, T.; Kawaguchi, H. J. Am. Chem. Soc. 2006, 128, 12362. (h) Berkefeld, A.; Piers, W. E.; Parvez, M. J. Am. Chem. Soc. 2010, 132, 10660. (i) Park, S.; Bézier, D.; Brookhart, M. J. Am. Chem. Soc. 2012, 134, 11404.

(5) For selected examples: (a) Tsai, J.-C.; Nicholas, K. M. J. Am. Chem. Soc. 1992, 114, 5117. (b) Jessop, P. G.; Ikariya, T.; Noyori, R. Nature 1994, 368, 231. (c) Munshi, P.; Main, A. D.; Linehan, J. C.; Tai, C.-C.; Jessop, P. G. J. Am. Chem. Soc. 2002, 124, 7963. (d) Himeda, Y.; Onozawa-Komatsuzaki, N.; Sugihara, H.; Kasuga, K. J. Am. Chem. Soc. 2005, 127, 13118. (e) Zhang, Z.; Xie, Y.; Li, W.; Hu, S.; Song, J.; Jiang, T.; Han, B. Angew. Chem., Int. Ed. 2008, 47, 1127. (f) Tanaka, R.; Yamashita, M.; Nozaki, K. J. Am. Chem. Soc. 2009, 131, 14168. (g) Schaub, T.; Paciello, R. A. Angew. Chem., Int. Ed. 2011, 50, 7278. (h) Langer, R.; Diskin-Posner, Y.; Leitus, G.; Shimon, L. J. W.; Ben-David, Y.; Milstein, D. Angew. Chem., Int. Ed. 2011, 50, 9948. (i) Preti, D.; Resta, C.; Squarcialupi, S.; Fachinetti, G. Angew. Chem., Int. Ed. 2011, 50, 12551. (j) Wesselbaum, S.; Hintermair, U.; Leitner, W. Angew. Chem., Int. Ed. 2012, 51, 8585.

(6) For early examples: (a) Süss-Fink, G.; Reiner, J. J. Organomet. Chem. 1981, 221, C36. (b) Koinuma, H.; Kawakami, F.; Kato, H.; Hirai, H. J. Chem. Soc., Chem. Commun. 1981, 213.

(7) (a) Ohishi, T.; Nishiura, M.; Hou, Z. Angew. Chem., Int. Ed. 2008, 47, 5792. (b) Zhang, L.; Cheng, J.; Ohishi, T.; Hou, Z. Angew. Chem., Int. Ed. 2010, 49, 8670. (c) Ohishi, T.; Zhang, L.; Nishiura, M.; Hou, Z. Angew. Chem., Int. Ed. 2011, 50, 8114. See also: (d) Zhang, L.; Cheng, J.; Carry, B.; Hou, Z. J. Am. Chem. Soc. 2012, 134, 14314. (e) Fujihara, T.; Xu, T.; Semba, K.; Terao, J.; Tsuji, Y. Angew. Chem., Int. Ed. 2011, 50, 523. (f) Fujihara, T.; Tani, Y.; Semba, K.; Terao, J.; Tsuji, Y. Angew. Chem., Int. Ed. 2012, 51, 11487.

(8) Mankad, N. P.; Laitar, D. S.; Sadighi, J. P. Organometallics 2004, 23, 3369.

(9) Jurkauskas, V.; Sadighi, J. P.; Buchwald, S. L. Org. Lett. 2003, 5, 2417.

Organometallics

(10) Jacquet, O.; Das Neves Gomes, C.; Ephritikhine, M.; Cantat, T. J. Am. Chem. Soc. **2012**, 134, 2934.

(11) This complex is reported to be a dimeric species.⁸ See also ref 7e.

(12) Stoichiometric reactions of copper tetrahydroborate complexes with CO₂ giving copper formates have been reported. For examples, see: (a) La Monica, G.; Ardizzoia, G. A.; Cariati, F.; Cenini, S.; Pizzotti, M. *Inorg. Chem.* **1985**, *24*, 3920. (b) Pandey, K. K.; Garg, K. H.; Tiwari, S. K. *Polyhedron* **1992**, *11*, 947.

(13) A related stoichiometric reaction using a nickel formate complex has been reported. 2b

(14) We do not have a solid explanation for the reactivity differences of the $Cu(O_2CH)(IPr)$ intermediate with pinacolborane in the absence and presence of CO_2 . It might be possible that the transient generation of relatively unstable CuH(IPr) is facilitated in the presence of CO_2 by driving the reaction to the subsequent step toward regeneration of $Cu(O_2CH)(IPr)$.

(15) Isolation of $HCO_2B(pin)$ has not been successful. See also ref 2b.

(16) For related formylation of amines using hydrosilanes and CO₂, see: (a) Das Neves Gomes, C.; Jacquet, O.; Villiers, C.; Thuéry, P.; Ephritikhine, M.; Cantat, T. *Angew. Chem., Int. Ed.* **2012**, *51*, 187. (b) Reference 4d. (c) Reference 10.

(17) No formylation reaction was observed in the absence of pinacolborane.