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A B S T R A C T   

Herein, the optical properties of thiophene-functionalized quadrupolar carbo-benzenes and a benzenic parent, of 
generic structure Th–C–––C–[core]–C–––C–Th, Th = R2C4HS, are comparatively investigated. Beyond the previ
ously unknown dioctylthienylethynylbenzene (core = p-C6H4, R = nOct), two bis-dialkylthienylethynyl-carbo- 
benzenes (core = C18Ph4, R = nOct, nBu) are envisaged for the unique "carbo-aromatic" character of the C18 
macrocycle. The three targets were synthesized from the corresponding ethynylthiophenes in 47, 20 and 10% 
yield, respectively, then characterized by classical methods such as NMR spectroscopy, and X-ray crystallography 
for one of the carbo-benzenes. Regarding linear and nonlinear optical properties, our results show that the carbo- 
merization induces a significant shift to lower energies of the one-photon electronic excitations accompanied by 
an 8-fold increase of the molar extinction coefficient compared to the parent molecule. Intriguingly, these ex
citations lead to a broad band of photoluminescence comprising decay transitions of the type S1 → S0 but also of 
the type S2 → S0. This phenomenon of emission from higher excited states, which is contrary to Kasha’s rule, is 
assigned to - or revealed by - a reduction of the internal conversion efficiency between S2 and S1. Two-photon 
induced transitions are also enhanced, the two-photon absorption cross-section (σ2PA) being in average five 
times larger for the carbo-benzenes than for their benzene parent in the wavelength range 650–950 nm, with a 
maximum of σ2PA = 1430 GM (1 GM = 10− 50 cm4 s/photon). Beyond a moderate nonlinearity, this comparative 
study provides quantitative insights about the way carbo-merization or insertion of a π-conjugated macrocycle 
between chromophoric functions (here thiophene rings) can tune optical properties of organic molecules. The 
optical properties of the bis-dialkylthienylethynyl-carbo-benzenes are also discussed in regard of recent reports 
on organic chromophores based on other types of π-conjugated macrocyclic cores.   

1. Introduction 

During the last three decades, π-conjugated organic molecules and 
polymers have emerged as functional materials for diverse applications 
in the fields of optoelectronics and photonics [1a,1b, 1c]. Typically, the 
optical and electronic properties of these materials are tailored by 

designing molecular architectures with effective π-conjugated back
bones, appropriate donor (D) and acceptor (A) electroactive sub
stituents, and auxiliary functions. Classically, the π-conjugation in 
molecules and polymers is brought by combination of unsaturated linear 
chains and/or small carbo- or hetero-cycles. Recently, a special type of 
π-conjugated backbone based on shape-persistent macrocyclic 
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architectures have gained significant attention for two-photon absorp
tion (2 PA) or other nonlinear optical effects [2a,2b, 2c,2d], optoelec
tronics [3a,3b, 3c], near-infrared luminescence [4a,4b], sensing of 
anions [5], photodynamic therapy [6], redox- or photo-responsive 
switches [7a,7b] and liquid crystallinity [8]. In such compounds, the 
number of π-electrons varies with the size of the macrocycle and in some 
cases intriguing electronic and optical properties are achieved even 
without the use of electroactive substituents [9]. Over the years, various 
π-conjugated macrocyclic architectures have been investigated, 
including macrocyclic annulenes [10], cyclic oligophenylenes and 
belt-shaped paraphenylenes [11a,11b, 11c], macrocyclic 
oligophenylene-ethynylenes [12a,12b, 12c], porphyrins and expanded 
porphyrins [13a,13b, 13c], and cyclic oligothiophenes [14]. More 
recently, novel macrocyclic architectures exhibiting 
aggregation-induced emission (AIE) properties have been designed [15]. 
Oligofuran-based macrocycles [16], polyradicaloids [17], hexagonal 
ring carbo-mers of benzene [18] and many others have been also 
considered. 

The term carbo-mer designates "carbon enriched" molecules formally 
generated by systematic insertion of C2 units into each (or a selected 
part) of the covalent bonds of a representative Lewis structure of any 
parent molecule [19]. At the Lewis-Gillespie level of representation, the 
carbo-merization process preserves the topology, symmetry, shape and 
π-electronic resonance of the parent molecule, while its bonding size is 
approximately expanded by a factor of three. Ring carbo-mers of ben
zene, simply called "carbo-benzenes", constitute the most exemplified 
series of carbo-mers [20a,20b, 20c,20d], and have been studied both 
theoretically, in particular for their aromaticity [21a,21b, 21c,21d,21e], 
and experimentally, e. g. for redox [18,22], conductive [23], and 
mesogenic properties [24]. It was also demonstrated that carbo-
benzenes exhibit unique chromophoric [18,25a,25b,25c] and nonlinear 
optical properties. In particular, the two-photon absorption (2 PA) by 
the quadrupolar representatives (p-difluorenyl)tetraphenyl-carbo-
benzene 1a and (p-difluorenylethynyl)tetraphenyl-carbo-benzene 1b 
(Fig. 1) was recently evaluated, with a 2 PA cross-section σ2PA = 656 GM 
at 800 nm for 1b [26]. This first attempt to assess the optical response of 
carbo-benzenes at infrared wavelengths showed their relevance as 
nonlinear materials. In this context, the understanding of the 

structure-optical properties relationships in carbo-mer series is still 
limited and awaits further investigation. 

In this work, the effects of carbo-merization are evaluated through 
the comparison of the optical properties of the quadrupolar carbo-ben
zenes 2a,b with those of the benzenic parent molecule 2P, in which the 
central C18 macrocycle is replaced by a C6 benzene ring (Fig. 1). In these 
molecules, the thienyl substituents, largely used in the design of 2 PA 
chromophores, behave as electronic donors that are anchored to the C18 
macrocycle through an acetylenic linker. Dialkylthienylethynyl sub
stituents were selected for two reasons: i) two alkyl chains are attached 
to the thiophene ring with the view of enhancing the solubility of the 
targeted carbo-benzenes 2a,b to allow sufficiently high concentrations 
for the measurement of σ2PA by the Z-scan technique (ca 10− 3 - 10− 2 mol 
L− 1), and ii) the ethynyl linkers serve to both facilitate the synthesis key 
step, and increase the length of the π-conjugated system, thus a priori 
favoring high 2 PA efficiency, as previously evidenced by the compari
son between 1a and 1b (Fig. 1). The linear photophysical properties 
(UV–vis absorption, emission, excitation) and nonlinear optical prop
erties (2 PA) of the core-carbo-mers 2a and 2P are here reported in 
detail. 

2. Results and discussion 

2.1. Synthesis 

The synthesis of the bis-dialkylthiophenylethynyl-carbo-benzenes 
2a,b required the preparation of known key precursors, namely the [6] 
pericyclynedione 3 [27a,27b, 27c], a classical intermediate in the syn
thesis of most quadrupolar carbo-benzenes [20], and the dialkylth
ienylacetylenes 4a,b. 

Though a synthesis of 4b was previously published [28], 4a and 4b 
were not prepared following exactly the reported methodology. First, 
the described nickel-catalyzed Kumada coupling of commercial 3, 
4-dibromothiophene with octyl- or butyl-magnesium bromide led to 
mixtures of dialkylthiophenes 5a,b and monoalkylthiophenes 5a′,b′ in a 
95:5 ratio (Scheme 1). In both cases, the separation of the two products 
by silica gel column chromatography appeared problematic because of 
their similar low polarity. The direct formylation of the mixtures 5a,b 

Fig. 1. Quadrupolar carbo-benzenes 1a and 1b previously studied [26] for their 2 PA properties (top); bis-dithientlethynyl-carbo-benzenes 2a,b and parent molecule 
2P considered in this work (bottom). 
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and 5a′,b′ leading to inseparable mixtures of aldehydes 6a,b and 6a′,b′, 
the preparation of more polar intermediates was envisioned with the 
view to facilitating removal of the monoalkyl-thiophene contaminants. 
The mixtures of 5a,b and 5a′,b′ were thus treated with one equivalent of 
n-butyllithium, followed by addition of paraformaldehyde, to give 
mixtures of the alcohols 7a,b and 7a′,b′ which could then be separated 
by silica gel column chromatography. The pure alcohols 7a and 7b, 
isolated with 83% and 95% yield, respectively, were then oxidized by 
treatment with MnO2 to give the corresponding aldehydes 6a and 6b 

almost quantitatively. Finally, the aldehydes were converted to the 
terminal alkynes 4a and 4b by a Corey-Fuchs reaction, in two steps via 
the dibrominated intermediates 8a,b [29]. 

The carbo-benzenes 2a,b were then prepared from 3 and 4a,b by 
using the classical two-step process developed for the synthesis of other 
quadrupolar carbo-benzenes [20]. First, two equivalents of the lithium 
dialkylthienylacetylide of 4a or 4b, deprotonated with n-butyllithium, 
were added to the diketone 3, leading to the pericyclynediols 9a,b 
bearing the two thienylethynyl substituents. The last reductive 

Scheme 1. Synthesis of the dialkylthinylethynylacetylenes 4a,b.  

Scheme 2. Two-step synthesis of the carbo-benzenes 2a,b from the known [6]pericyclynedione 3.  
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aromatization step was performed with SnCl2 alone to avoid the 
reduction and hydrochlorination of the exocyclic triple bonds, affording 
the carbo-benzenes 2a and 2b in 35% and 20% yield respectively 
(Scheme 2). In the presence of SnCl2 and HCl, an inseparable mixture of 
chromophoric products was formed from 9a, among which 2a′ could be 
identified by X-ray diffraction analysis (see SI, Figure S1). Such a 
hydrochlorination side-reaction was previously observed for [6]peri
cyclynediols bearing indolylethynyl donor groups, and its occurrence 
here with donor thienylethynyl groups is thus consistent [25c]. The 
unexpected reduction of the other triple bond to a trans-substituted 
double bond can be compared to a previously reported SnCl2-mediated 
reduction of a spC-spC bond of a carbo-meric C18 ring to a trans-CH––CH 
bond [18]. 

The carbo-chromophores 2a,b were isolated as violet solids, soluble 
in most of the conventional organic solvents while giving intense violet 
solutions. 2a was characterized by NMR and UV–vis spectroscopy, and 
by mass spectrometry. Its structure was also determined by X-ray 
diffraction analysis of a single crystal deposited upon slow evaporation 
of a dichloromethane solution at room temperature (Fig. 2 and Section 
2.2) [30]. 

The parent molecule 2P was prepared by a Sonogashira coupling of 
two equivalents of 4a with diiodobenzene, and isolated with 47% yield 
(Scheme 3). 

2.2. X-ray crystallography 

In the X-ray crystal structure of 2a [30], the macrocycle is quasi 
planar, the maximum deviation from planarity being of 0.02 Å, with 
almost coplanar phenyl substituents (maximal torsion angle of 12.9◦). 
The shape of the C18 ring is however quite distorted from a regular 
hexagon, the three sp2C … sp2C diagonal distances varying from 7.69 to 
7.87 and 8.33 Å, while the internal bond angles vary from 116.9 to 
121.8◦, with two concave PhC…C⋯C⋯C(C2Th) edges. 

In the crystal packing, the molecules of 2a are shifted one from the 
other, but the mean planes of two successive macrocycles are parallel, 
albeit without normal overlapping between them. The distance between 
the mean planes of two successive molecules is of 3.26 Å. As one of the 
octyl groups is bent, some H atoms of the chain point towards the center 
of the closest carbo-benzene ring, the shortest distance measured be
tween the centroid of the C18 ring and a H atom of the octyl chain being 
of 2.21 Å. 

2.3. Electrochemistry 

The electrochemical properties of the carbo-benzene 2b were inves
tigated by square-wave (SWV) and cyclic voltammetry (CV; Table 1). 
Four reduction and three oxidation waves were observed by SWV, the 
two first reductions at – 0.62 and – 1.02 V/SCE being reversible. 

The first reduction is observed at a quite low potential (in absolute 
value), which is consistent with the extended π-conjugated system of 2b 
a priori associated with a low LUMO level, and similar to the corre
sponding potential previously reported for 1b (see Fig. 1) [26]. 

The first oxidation, observed at 1.13 V/SCE, is a non-reversible 
process, as observed for 1b, which is first oxidized irreversibly at 
1.17 V/SCE. 

2.4. Optical properties 

2.4.1. Linear optical properties 
Effects of carbo-merization on optical properties can be evaluated by 

comparing the photoinduced electronic transitions of 2P and 2a (Fig. 3). 
While 2P exhibits an ordinary absorption band with a peak at 350 nm 
assigned to a π→ π* transition, 2a presents the characteristic features of 
carbo-benzenes [18], with a sharp and intense band, in this case at 495 
nm (for the simplicity of discussion this main band is denoted as M in 
Fig. 3), a shoulder at 542 nm, and a secondary band with a peak at 608 
nm (denoted as S band). The effect of dioctylthienylethynyl substitution 
at the para positions of the C18 macrocycle (C1 and C10 positions in 2a) 
is clearly distinguishable by comparison with the absorption spectrum of 
the previously reported para-dialkyl-substituted analogue 1c (Supple
mentary Information, Figure S2) with a much shorter π-conjugation 
extent [31]. The overall effect of substitution of the carbo-benzene ring 
with thiophenylethynyl units produces a bathochromic shift of ca 50 nm 
of both M and S bands as compared to 1c accompanied by a moderate 
spectral broadening of the M band and vanishing of minor peaks be
tween the M and S bands. The peak of maximum absorption for 2a is 
practically at the same wavelength (495 nm) as the one observed for the 
fluorenylethynyl-substituted carbo-benzene 1b [26] but with a ca 30% 
reduction of the molar extinction coefficient ε. Nevertheless, ε increases 
from 2.8 × 104 M− 1 cm− 1 in 2P to 2.25 × 105 M− 1 cm− 1 in 2a due to the 
expansion of the π-conjugation. For organic molecules in general, the 
magnitude of ε is a signature of their polarizability at optical fre
quencies, which correlates with the degree of π-conjugation within the 
backbone and with substituents. For reference, Table 2 presents the 

Fig. 2. Molecular view of the X-ray crystal structure of 2a (H atoms were omitted for clarity). See note [30], CCDC 2027203.  
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optical properties and the molecular structure of some representative 
π-conjugated macrocycles. In these examples the number of π-electrons 
(m) in a conjugated circuit inscribed in the corresponding macrocycle 
varies from 18 to 180, producing molar extinction coefficients in the 
range 0.2–6.39 × 105 M− 1 cm− 1. In spite of a relatively low out-of-plane 
πz-electron count m = 18 (unconjugated with the 12 in-plane πxy elec
trons of the 6 spC-spC bonds), the ε values of carbo-benzenes are thus 
among the largest. According to the parity of m/2, the macrocycles of 
Table 2 can be qualitatively identified as aromatic vs antiaromatic using 
the well-known m = 4n + 2 vs 4n Hückel rule. 

It should be noted that characteristic features of the absorption 
spectra of carbo-benzenes, i.e., a sharp and intense M band followed by a 
secondary S band of weaker intensity, are not observed in other families 
of π-conjugated macrocycles (as those exemplified in Table 2) since they 
generally exhibit broad and structureless absorptions, except in the 
porphyrinoids whose spectra present the well-known Soret (B Band) and 
Q bands [(13a–c),45]. The main band of the absorption spectra of 
substituted C2-symmetrical carbo-benzenes was previously interpreted 
[26] as additive and subtractive combinations of excitations from the 
two highest occupied molecular orbitals (HOMO-1, HOMO) to the two 
lowest unoccupied molecular orbitals (LUMO, LUMO+1), as schemati
cally shown in Fig. 4. This approach invokes the Gouterman four-orbital 
model developed to explain the origin of the Soret and Q bands in the 
absorption spectra of porphyrins [45]. 

Fig. 3 presents the photoluminescence (PL) spectra of 2P and 2a 
under excitation at their main absorptions, 350 and 497 nm, respec
tively. The PL spectrum of the parent molecule 2P exhibits a band with a 
relatively small Stokes shift of 36 nm and noticeable vibronic structure. 
In the case of the carbo-benzene 2a, the broad PL band is distorted due to 
absorption inner effects from the S band. Inner filter effects occurred 
inevitably in all the PL measurements of 2a given its high ε and poor 
emission properties. Nevertheless, PL characterization of 2a is worth
while since it can provide information on the excited states that lead to 
radiative decays in carbo-benzenes. For example, radiative decays occur 
not only at longer wavelengths (lower energies) than the low-lying band 
S, but also at shorter wavelengths (higher energies). The matching be
tween the PL excitation spectra and the absorption spectrum shown in 

Fig. 3b clearly indicates that the electronic transitions corresponding to 
the M and S bands contribute to the PL emission. Furthermore, signifi
cant PL still occurs at wavelengths with small shifts with respect to the 
excitation, suggesting small geometric changes between the excited and 
ground states. This is not surprising as we consider the planar and quite 
rigid monocyclic carbo-benzene ring, identified previously as both aro
matic and flexible (“carbo-aromatic") [20c]. Small Stokes shifts are also 
observed in other planar conjugated systems such as the more rigid 
pentacyclic porphyrins and expanded porphyrins with residual 

Scheme 3. Synthesis of the parent molecule 2P of 2a.  

Table 1 
SWV and CV data for the carbo-benzene 2b.  

Reduction Oxidation 

E1/2
a,b (ΔEp) RIpc Ep

redd Ep
oxd 

- 0.62 (69) 0.99 - 1.52 1.13 
- 1.02 (59) 0.76 - 1.74 1.75    

1.89  

a Measurements performed at room temperature in DCM; supporting elec
trolyte: [nBu4N][PF6] (0.1 M); working electrode: Pt; reference electrode: 
saturated calomel electrode (SCE; 0.242 V versus the hydrogen electrode); scan 
rate: 0.2 V s− 1, unless otherwise noted. 

b Half-wave potential, E1/2 = (Ep
red + Ep

ox)/2, in V/SCE. 
c Peak current ratio RIp = | Ipox/Ipred |. 
d Ep values measured from CV in V/SCE. 

Fig. 3. Absorption, PL (with excitation wavelength λexc) and excitation spectra 
(with detection of PL at the wavelength λdet) obtained for a) 2P and b) 2a in 
THF solutions prepared at 8.43 × 10− 5 M. 
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flexibility [44]. Unexpectedly, the observation that PL can occur directly 
from the excitation of the M band is in contraposition with Kasha’s rule 
[46] since it is assumed that such excitation leads to the 
quasi-degenerated exited state S2 (see Fig. 4 for the Jablonsky diagram 
proposed for 2a in analogy with the Gouterman four-orbital model). PL 
from higher excited states (S2 → S0) is a quite rare phenomenon that 
mainly occurs in small organic compounds [47] although it has also 
been reported in macrocycles such as [18]annulene C18H18 [48], akin to 
carbo-benzene also identifiable as the most symmetric dodecadehydro- 
[18]annulene C18H6, BODYPI-based macrocycles [33], metal
loporphyrins [49a,49b], and theoretically predicted in cyclo[n]thio
phenes [50]. Anomalous emission had been also already observed for a 
dichromic carbo-cyclohexadiene [18] having a green PL band appearing 
between its blue and red absorption bands. However, this PL band was 
not explicitly identified as a radiative decay of the type S2 → S0. The 
accepted interpretation for anomalous PL in organic molecules is that it 
can occur when the energy gap ΔE(S2– S1) is sufficiently large to reduce 
the Franck-Condon factor [51], the latter expressing the overlap integral 
of vibrational wavefunctions involved in the internal conversion (IC) 
process between S2 and S1, to a level where the rate of radiative S2 → S0 
transitions competes with the IC rate. Azulene, a polar hydrocarbon 
molecule, is a well-known prototype that exhibits efficient PL from S2 
due to a very large ΔE(S2– S1) ~ 10 000 cm− 1 [47]. The carbo-chro
mophore 2a also exhibits significant ΔE(S2– S1) ~ 3673 cm− 1. This value 
is even larger for the carbo-cyclohexadiene reported in Ref. [18], ΔE(S2– 

S1) ~ 6272 cm− 1. This suggests that the fluorescence decay S2 → S0 in 2a 
could be assigned to the relatively wide separation between the M and S 
bands, which decreases, to some extent, the IC efficiency between S2 and 
S1, thus increasing the probability of bypassing S1 during relaxations. It 
must be noted that the conformation of the macrocycle determines the 
density and shape of vibronic levels, and, in turn, the Franck− Condon 
factor. In consequence, the fluorescence in carbo-benzenes originates 
simultaneously from both the first and second excited states (S1 → S0 and 
S2 → S0) as depicted in Fig. 4. All this characterization of the linear 
optical properties for 2P and 2a was obtained in diluted solutions such 
that self-assembly effects were discarded. 

As a consequence of carbo-merization, 2a exhibited significantly 
longer fluorescence lifetime than its parent molecule 2P. Fig. 5 presents 
the PL decays of the two molecules using the technique of time- 
correlated single photon counting (TCSPC); in this figure, the dotted 
lines denote the instrument response, the solid lines the lifetimes of 2P 
(black) and 2a (blue). The average lifetime measured in 2a was 5.04 ns, 
while the measurement for 2P gave a significantly shorter value (1.02 
ns), just barely different from the instrument response function. 
Although radiative decays from S2 and S1 should imply differentiated 
lifetimes, no wavelength dependence of the PL was observed, the reso
lution of the TCSPC technique probably being insufficient to allow their 
discrimination. Further investigation using techniques of higher tem
poral resolution will thus be necessary. 

Table 2 
Comparative properties for various π-conjugated macrocycles. The molecular structure of each of these macrocycles is presented in Table S1.  

π-conjugated macrocycle λabs (nm) λem (nm) ε × 105 (M− 1 cm− 1) Conjugated π-electron count m and  
Hückel aromatic charactera 

σ2PA (GM) 

σ2PA/m π-e 
σ2PA/MW 

λmax(2PA) 

(nm) 
Ref. 

Thienylene-phenanthrylene 385 495 1.51 56 antiaromatic – – [32] 
Tetraphenylethylene based 330 520 – non-aromatic – – [15] 
Oligofuran based 401 530 1.5 32 antiaromatic – – [16] 
BODIPY-phenylacetylene 364 527 0.26 32 antiaromatic – – [33] 
Phenanthrylene-ethynylidene 462 437 – non-aromatic – – [34] 
Expanded 1,3-Dithiolane [5]radialene 403 . 1.2 non-aromatic – – [35] 
Triphenylamine phenylacetylene 380 430 – non-aromatic 1300 

19.7 
0.81 

650 [36] 

Triangle-shaped annulene 332 389 – 18 aromatic 11.5 
0.64 
0.031 

372 [37] 

Triangular –[D–π–A]3– 375 469 2.0 66 aromatic 2800 
42.42 
0.85 

750 [38] 

Phenylacetylene-based macrocycle 413 486 1.1 non-aromatic 125 
4.2 
0.069 

820 [39] 

Giant expanded oligothiophenes Thiophene [30]mer 480 559 6.18 180 antiaromatic 107 800 
598 
16.30 

710 [14,40] 

Zinc(II) porphyrin 471 – – 18 aromatic 3520 
195 
2.66 

1360 [41] 

Hydrocarbon-substituted metal-free porphyrins 440 660 – 18 aromatic 42 600 
2366 
38.33 

800 [42] 

Pentapyrrolic expanded porphyrin-isosmaragdyrin 712 716 – 22 aromatic 2900 
131.8 
4.81 

1280 [43] 

Cyclo [8]pyrrole expanded porphyrin 427 1496 1.2 30 aromatic 3030 
101 
3.12 

1600 [44a, 44b] 

[26]Hexaphyrin expanded porphyrin 567 1036 4.2 26 aromatic 9890 
380 
6.77 

1200 [44a, 44b] 

Quadrupolar carbo-benzene 2a 496  2.25 18 aromatic 1430 
83.3 
2.12 

650 This work  

a Number m of conjugated π-electrons inscribed exclusively in the circuit of the corresponding macrocycle. 
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2.4.2. Nonlinear optical properties 
Comparison of one- and two-photon excitations of 2P and 2a pro

vides insight into the effects of carbo-merization on the energy level 
configuration and nonlinear polarizability. To measure σ2PA in 2P, the 
TPEF technique was used since that molecule fluoresces appreciably 
(quantum efficiency of 22%) and this technique is of higher sensitivity 
than Z-scan for molecules with small σ2PA values. TPEF spectra of 2P 
were recorded from 680 nm to 780 nm in a THF solution (8.43 × 10− 5 

M), as shown in Figure S3, and used to calculate the σ2PA spectrum 
presented in Fig. 6. In the case of 2a, it was not possible to measure σ2PA 
through the TPEF technique because of its very weak fluorescence. The 
σ2PA spectrum of 2a (THF solution at 8.43 × 10− 2 M) was thus acquired 
from 650 nm to 950 nm through the Z-scan technique. To ensure a fair 

comparison of the nonlinearities obtained for the carbo-meric and parent 
molecules through different techniques, the σ2PA values of 2P in solution 
(8.43 × 10− 2 M in THF) were also determined by Z-scan at three 
different wavelengths (black dots in Fig. 6a), showing the agreement 
between the two techniques. In spite the high concentration of the so
lutions used in Z-scan experiments, self-assembly effects in 2P and 2a 
were not detected. For instance, light scattering, an affect that is typi
cally produced in presence of self-assembled molecules, was not 
observed in the tested solutions. Of course, self-assembly could be pre
sent if the molecules are deposited in solid films, but such studies were 
beyond our present work. Larger nonlinearities are observed in 2a with 
respect to 2P, with a ca 7-fold increase in σ2PA at the infrared (IR) range 
of wavelengths (which is, in fact, the region of interest for practical 
applications of the 2 PA process). We can see that the onset of detectable 
nonlinear absorption in 2a takes place at a significantly longer wave
length (950 nm, as shown in Figure S4) compared with 2P (780 nm). Out 
of the IR range, the maximum values of σ2PA were 506 GM for 2P at 680 
nm and 1430 GM for 2a at 650 nm, with a tendency to increase at 
shorter wavelengths for both molecules. It is also illustrative to evaluate 
the enhancement of nonlinearities by comparison of the ratio between 
σ2PA and the number m of π-electrons inscribed inclusively in the 
π-conjugated circuit. For instance, at IR wavelengths we have the rela
tion σ2PA/m (2a) ~ 2 × σ2PA/m (2P). Thus, the overall linear and 
nonlinear characterization of 2a shows that carbo-merization, though 
preserving the shape, symmetry and topology of a parent molecule, can 
induce enhancements of the polarizability (ε) and hyperpolarizability 
(σ2PA) due to a wider π-conjugation extent and an improvement of the 
optical effects per π-conjugated electron. Table 2 presents σ2PA/m values 
for a variety of macrocyclic chromophores. The carbo-benzene 2a shows 
intermediate nonlinearities as compared to its counterparts. A similar 
trend is observed when σ2PA is normalized by the molecular weight. Note 
that in some series of macrocycles of increasing number m, an 
enhancement of nonlinearities is observed: giant oligothiophenes with 
m = 72 and 180 showed σ2PA/m ~209 and ~598 GM, respectively [14]. 
In line with these observations, it would thus be of interest, at least at the 
theoretical level, to study the effect of enhancement or saturation of σ2PA 
in carbo-mers of larger size than 2a, for instance in carbo-benzenes of 
second generation exhibiting 30 cyclically π-conjugated electrons [20b]. 

The excited states accessible by two-photon transitions in substituted 

Fig. 4. Jablonsky diagram (left) and Gouterman four-orbital model (right) for 2a.  

Fig. 5. Lifetime measurements of 2a (blue line) and 2P (black line). As reference, 
the response function of the instrument (dotted lines) is presented. The emission 
lifetime of 2a increases 5 times in comparison to the lifetime of 2P. The lifetime 
of 2a was monitored at 550 nm and 2P at 414 nm. Inset: Plots in semilog scale. 
(For interpretation of the references to color in this figure legend, the reader is 
referred to the Web version of this article.) 
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carbo-benzenes were examined. In Fig. 6a, the total energy for a pair of 
infrared photons (2ℏω) exciting 2a is higher than the energy corre
sponding to the one-photon peak at the M band. This blue-shifting of the 
2 PA resonance with respect to one-photon resonance is expected in 
symmetric molecules like 2a because one-photon and two-photon 
transitions are mutually exclusive according to Laporte’s rule [51]. In 
the four-orbital model used to construct the excited states diagram of 2a, 
the quasi-degenerate states 3Au and 4Au of the M band have an ungerade 
parity and are thus two-photon forbidden from the ground state of 
gerade parity (Ag). A strategy to enhance the nonlinearities at IR 
wavelengths of equivalent energies to the M band would thus be to 
lower the symmetry of carbo-benzenes by modifying the positions of the 
substituents of the C18 hexagonal core, strategy that was successfully 
applied with other macrocyclic molecules to bring 2 PA states closer in 
energy to one-photon allowed states [52]. Of course, not only the 
symmetry of the molecule but also the nature and position of the sub
stituents and π connectors play complementary roles that have to be 
globally taken into account in the design of new carbo-chromophore 
targets. 

Finally, the 2 PA properties of the carbo-benzene 2a allowed imple
mentation of optical limiting, an application of utility for the protection 
of sensors, optical elements and human eyes. Measurements were per
formed at 800 nm with pulses of 80 fs and intensities ranging from 0.1 to 

250 GW/cm2. Even at energies as low as 20 GW/cm2, 2a begins to 
deviate from the linear regime getting to a maximum deviation at 60 
GW/cm2 (Fig. 6b). For intensities as high as 250 GW/cm2 no damage or 
degradation was detected in the sample, making 2a appropriate for 
optical damage control [1c]. 

3. Conclusions 

To get insights into the underlying optical features that emerge in a 
given π-conjugated molecular topology when a C6 benzene ring is 
replaced by a C18 aromatic macrocycle, the one- and two-photon- 
promoted electronic transitions were characterized in a quadrupolar 
carbo-benzene, namely 2a, and compared with those of its parent 
molecule 2P. In passing, but not less importantly, the synthesis and 
extensive characterization of the previously unknown carbo-benzene 2a, 
homologue 2b, and parent molecule 2P are disclosed. In the linear 
regime, a notorious increment in the polarizability was observed, 
whereas, in the nonlinear regime, a higher 2 PA activity per π-electron 
was determined. The presence of the hexagonal carbo-benzene ring in 
the conjugated backbone introduces anomalous PL due to simultaneous 
radiative decays S1 → S0 and S2 → S0. In view of these results, the C18 
π-conjugated macrocycle can be considered as a versatile platform on 
which substituents can be attached at various positions in dipolar, 
quadrupolar or octupolar geometries, the two latter being relevant for 
potential applications involving 2 PA as an initial process, or possibly for 
energy transfer from either the S1 or S2 excited states. Finally, the results 
also suggest that lowering the symmetry of substituted carbo-benzenes, 
through replacement of some peripheral phenyl groups by other sub
stituents, might allow tuning the peak of 2 PA to longer wavelengths. 

4. Experimental section 

4.1. General 

THF, Et2O, pentane and DCM were dried with a PureSolv-MD-5 
Innovative Technology system for the purification of solvents. All 
other reagents were used as commercially available. In particular, so
lutions of n-BuLi were 1.6 or 2.5 M in hexane, solutions of EtMgBr were 
3.0 M in THF, solution of n-OctMgBr were 2 M in Et2O, solution of n- 
BuMgCl were 2.0 M in THF. All the reactions were carried out under an 
argon atmosphere by using Schlenk tube and vacuum line techniques. 
Column chromatography was carried out on silica gel (60 Å, C.C. 
70–200 μm). Silica gel TLC plates (60F254, 0.25 mm) were observed 
under UV light and/or by treatment with a solution of phosphomolybdic 
acid (20%) in ethanol. The following analytical instruments were used: 
1H and 13C NMR spectroscopy: Avance 300, Avance 400 and Avance 400 
HD spectrometers; MS: TSQ 7000 Thermo Electron and Voyager DE-ST 
Perseptive Biosystems spectrometers; UV/vis: PerkinElmer UV–vis 
Win-Lab Lambda 35; FT-IR: PerkinElmer 1725. 

NMR chemical shifts are given in ppm, with positive values to high 
frequency relative to the tetramethylsilane (TMS) reference. Coupling 
constants, J, are in Hz, UV–vis extinction molar coefficients, ε, are in M-1 

cm− 1, wavelengths, λ, in nm. 

4.2. Voltammetry 

Voltammetric measurements were carried out with an Autolab 
PGSTAT100 potentiostat controlled by GPES 4.09 software. Experi
ments were performed at room temperature in a homemade, air-tight, 
three-electrode cell connected to a vacuum/argon line. The reference 
electrode consisted of a SCE separated from the solution by a bridge 
compartment. The counter electrode was a platinum wire of about 1 cm2 

apparent surface. The working electrode was a Pt microdisk (0.5 mm 
diameter). The supporting electrolyte, [nBu4N][PF6], was used as 
received (Fluka, 99% electrochemical grade) and simply degassed under 
argon. The solution used in the electrochemical study was 10− 3 M in 

Fig. 6. a) Spectra of the 2 PA cross section for 2P and 2a measured in THF 
solution by TPEF and Z-scan techniques at the concentration of 8.43 × 10− 5 and 
8.43 × 10− 2 M, respectively. 2 PA cross sections were also measured for 2P by 
Z-scan technique is a THF solution at 8.43 × 10− 2 M; b) Optical limiting at 800 
nm for 2a emphasizing that, at the relatively low intensity of 20 GW/cm2, its 
transmission diverges from a linear behavior. 
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carbo-benzene and 0.1 M in supporting electrolyte. Before each mea
surement, the solution is degassed by bubbling with argon, and the 
working electrode was polished by using a polishing machine (Presi 
P230). Typical instrumental parameters for recording SW voltammo
grams were: SW frequency, f = 20 Hz; amplitude, Esw = 20 mV; scan 
increment dE = 0.5 mV. 

4.3. Crystallography 

Data collections were performed on a high flux microfocus Rigaku 
FRX rotating anode at the copper kα wavelength equipped with a Dectris 
Pilatus 200 K hybrid detector at 130 K. The structure was solved using 
Superflip [53a], and refined by full-matrix least-squares procedures on F 
using the programs of CRYSTALS [53b]. Atomic scattering factors were 
taken from the International tables for X-ray Crystallography [53c]. All 
non-hydrogen atoms were refined anisotropically. Hydrogen atoms were 
refined using a riding model. Absorption corrections were introduced 
using the program MULTISCAN. 

4.4. Synthesis and characterization 

• 2-(2-{10-[2-(3,4-dialkylthien-2-yl)ethynyl]-4,7,13,16-tetraphe
nylcyclooctadeca-1,2,3,7,8,9,13,14,15-nonaen-5,11,17-triyn-1-yl}ethy
nyl)-3,4-dialkylthiophene (2a, 2b). 

To the solution of 9a or 9b (0.025 mmol) in 20 mL of dry DCM at 
− 78 ◦C was added anhydrous SnCl2 (20 eq.), and the resulting mixture 
was allowed warming to room temperature and stirred at this temper
ature for 3 h. Then the mixture was filtered through a pad of silica gel 
using DCM until complete elution of colored fractions. The resulting 
colored solutions were joined and concentrated under vacuum and the 
residue were washed with pentane to give 2a or 2b as a dark violet solid 
(2a: 35%, 2b: 20%). 

2a: 1Н NMR (CD2Cl2, 400 MHz): δ 0.61 (t, J = 7.1 Hz, 6H), 0.94 (t, J 
= 6.6 Hz, 6H), 1.01–1.13 (m, 8H), 1.17–1.29 (m, 4H), 1.32–1.58 (m, 
24H), 1.65 (quint, J = 7.2 Hz, 4H), 1.81 (quint, J = 7.6 Hz, 4H), 1.99 
(quint, J = 8.7, Hz, 4H), 2.75 (t, J = 7.8 Hz, 4H), 3.28 (t, J = 7.7 Hz, 4H), 
7.26 (s, 2H), 7.73 (t, J = 7.5 Hz, 4H), 7.96 (t, J = 7.8 Hz, 8H), 9.43 (d, J 
= 7.5 Hz, 8H). 

13C {1H} NMR (CD2Cl2, 100 MHz): δ 14.1, 14.3, 22.9, 23.2, 29.3, 
29.6, 29.7, 29.8, 30.0, 30.0, 30.1, 30.1, 30.4, 30.9, 32.1, 32.4, 85.1, 
94.0, 97.6, 105.1, 114.0, 118.7, 119.4, 120.0, 124.8, 130.3, 130.3, 
130.4, 139.4, 143.7, 150.2. 

HRMS (MALDI-TOF/DCTB): m/z calcd for C86H90S2 [M*]+
1186.6484, found: 1186.6416. 

UV–Visible (CHCl3): λmax = 497 nm (ε = 225 000 L mol− 1 cm− 1). 
2b: 1Н NMR (CDCl3, 300 MHz): δ 1.06–1.13 (m, 12H), 1.57 (m, 4H), 

1.72–2.01 (m, 12H), 2.75 (t, J = 7.8 Hz, 4H), 3.28 (t, J = 7.6 Hz, 4H), 
7.22 (s, 2H), 7.75 (t, J = 7.3 Hz, 4H), 7.97 (t, J = 7.7 Hz, 8H), 8.46 (d, J 
= 7.3 Hz, 8H). 

HRMS (MALDI-TOF/DCTB): m/z calcd for C70H58S2 [M*]+
962.3943, found: 962.3980. 

• 2-(2-{4-[2-(3,4-dioctylthien-2-yl)ethynyl]phenyl}ethynyl)-3,4- 
dioctylthiophene (2P). 

To a degassed solution of 1,4-diiodobenzene (48 mg, 0.143 mmol) 
and 4a (100 mg, 0.301 mmol) in a mixture of dry THF/Et3N (5 mL, 4/1) 
under an argon atmosphere were added copper(I) iodide (3 mg, 0.0143 
mmol) and bis(triphenylphosphine)palladium(II) dichloride (5 mg, 
0.00715 mmol). The mixture was heated in a sealed tube at 75 ◦C for 12 
h before cooling to room temperature and concentration under vacuum. 
The residue was purified by SiO2 column chromatography (pentane: 
EtOAc = 10 : 1) to give 2P as a waxy solid (49 mg, 47%). 

1Н NMR (CDCl3, 400 MHz): δ 0.84–0.95 (m, 12H), 1.22–1.47 (m, 
40), 1.56–1.69 (m, 8H), 2.51 (t, J = 7.6 Hz, 4H), 2.71 (t, J = 7.6 Hz, 4H), 
6.88 (s, 2H), 7.42–7.48 (s, 4H). 

13C {1H} NMR (CDCl3, 100 MHz): δ 14.1, 22.7, 28.3, 29.1, 29.3, 
29.3, 29.4, 29.5, 29.5, 29.6, 29.8, 30.0, 31.9, 31.9, 85.2, 94.6, 118.3, 

121.7, 123.0, 131.0, 142.2, 147.3. 
HRMS (MALDI-TOF/DCTB): m/z calcd for C50H74S2 [M*]+

738.5232, found: 738.5288. 
• 2-ethynyl-3,4-dialkylthiophene (4a,b). 
n-BuLi (1.2 eq.) was added at − 78 ◦C to a solution of dibromoolefin 

8a or 8b (13 mmol,1 eq.) in pentane (300 mL). The temperature was 
increased up to ca − 40 ◦C and stirring was continued for 30 min. Then, 
the mixture was cooled again to − 78 ◦C and treated with a saturated 
aqueous solution of NH4Cl. After extractions of the aqueous layer with 
diethyl ether, the combined organic layers were washed with brine, 
dried over MgSO4 and evaporated under reduced pressure to give the 
expected product 4a or 4b as a yellow liquid (4a: 99%, 4b: 91%). 

4a: 1H NMR (400 MHz, CDCl3) δ 0.90–0.93 (m, 6H), 1.29–1.41 (m, 
24H), 1.55–1.63 (m, 4H), 2.51 (t, J = 8.0 Hz, 2H), 2.66 (t, J = 8.0 Hz, 
2H), 3.43 (s, 1H), 6.84 (s, 1H). 

13C {1H} NMR (CDCl3, 100 MHz) δ 14.1, 22.7, 28.1, 29.0, 29.3, 29.3, 
29.4, 29.5, 29.5, 29.6, 29.8, 30.0, 31.9, 31.9, 82.6, 117.3, 121.4, 141.9, 
148.1. 

HRMS (DCI/CH4): m/z calcd for C22H37S [M − H]+ 333.2616, found: 
333.2603. 

IR (cm− 1): ν = 3313, 2954, 2923, 2854, 2101, 1465, 1155, 875, 744, 
655, 575. 

4b: the obtained data were in accordance with those previously 
described [28]. 

• 3,4-dialkylthiophenes (5a, 5b) were prepared following 
described procedures. Physical properties of the obtained products are 
in accordance with those previously reported [28,54]. 

• 3,4-dialkyl-2-thiophenocarboxaldehyde (6a, 6b). 
A solution of the alcohol 7a or 7b (1 eq., 15 mmol) in DCM (300 mL) 

was treated with MnO2 (10 eq.) at 0 ◦C. The mixture was stirred at 0 ◦C 
for 10 min, then 1.5 h at room temperature, before being filtered 
through Celite®. The solution was concentrated under vacuum to give 
the expected spectroscopically pure aldehydes 6a or 6b as a yellow oil 
(6a: 95%, 6b: 94%) 

6a: the obtained data were in accordance with those previously 
described [54]. 

6b: the obtained data were in accordance with those previously 
described [55]. 

• 2-Hydroxymethyl-3,4-dialkylthiophene (7a,7b). 
n-BuLi (1.2 eq.) was added at 0 ◦C to a solution of the 6a, 6a′ or 6b, 

6b’ mixture (1 eq., 16 mmol) in THF (50 mL). After 45 min of stirring, 
the mixture was brought to room temperature and a suspension of 
paraformaldehyde (1.8 eq.) in THF (10 mL) was added. The mixture was 
stirred for 3 h at room temperature, and poured into ice and water. Then, 
the pH was adjusted to 6 by addition of concentrated HCl. After ex
tractions of the aqueous layer with diethyl ether, the combined organic 
layers were washed with water, dried over MgSO4 and evaporated under 
reduced pressure. After purification by silica gel chromatography 
(pentane: diethyl ether, 98 : 2), the alcohols 7a or 7b were obtained as a 
yellow liquid (7a: 83%, 7b: 95%) 

7a: t he obtained data were in accordance with those previously 
described [54]. 

7b: the obtained data were in accordance with those previously 
described [56]. 

• ((1,1-Dibromo) -2-ethene) − 3,4-dialkylthiophene (8a,8b). 
A solution of aldehyde 6a or 6b (1 eq., 15 mmol) in DCM (200 mL) 

was added at 0 ◦C to a mixture of PPh3 (4 eq.) and CBr4 (2 eq.) in DCM 
(50 mL). The resulting mixture was stirred for 5 min before being 
concentrated to dryness. The residue was purified by silica gel chro
matography (pentane: EtOAc 100 : 1) to give the expected product 8a or 
8b as a yellowish liquid (8a: 91%, 8b: 66%). 

8a: 1H NMR (300 MHz, CDCl3) δ 0.96 (t, J = 8.0 Hz, 6H), 1.34–1.40 
(m, 22H), 1.64–1.70 (m, 2H), 2.53–2.60 (m, 4H), 7.04 (s, 1H), 7.68 (s, 
1H). 

13C {1H} NMR (CDCl3) δ 14.2, 22.8, 27.4, 28.8, 29.3, 29.4, 29.4, 
29.6, 29.7, 29.7, 29.8, 31.0, 32.0, 85.9, 121.7, 129.9, 131.9, 141.8, 
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143.2. 
HRMS (DCI/CH4): m/z calcd for C22H36OSBr2 [M] 490.0904, found: 

490.0904. 
8b: 1H NMR (300 MHz, CDCl3) δ 0.97 (m, 6H), 1.39–1.62 (m, 12H), 

2.50–2.60 (m, 4H), 7.03 (s, 1H), 7.64 (s, 1H). 
13C {1H} NMR (75 MHz, CDCl3): δ 13.9, 14.0, 22.6, 22.7, 27.2, 28.4, 

31.9, 33.1, 85.9, 121.7, 129.8, 131.8, 141.8, 143.2. 
HRMS (DCI/CH4): m/z calcd for C14H20OSBr2 [M] 377.9639, found: 

377.9652. 
• 1,10-bis[2-(3,4-dialkylthien-2-yl)ethynyl]-4,7,13,16-tetrame

thoxy-4,7,13,16-tetraphenylcyclooctadeca-2,5,8,11,14,17-hexayne- 
1,10-diol (9a, 9b). 

To the solution of 4a or 4b (3 eq.) in dry THF (10 mL) at − 78 ◦C was 
added dropwise a n-BuLi solution (1.6 M in hexane, 2.5 eq.). Stirring was 
continued at − 78 ◦C for 30 min, then at room temperature for 1 h. After 
cooling to − 78 ◦C, a solution of 3 (0.15 mmol) in dry THF (2 mL) was 
added dropwise and the mixture was allowed warming slowly to room 
temperature overnight. The reaction was treated with a saturated 
aqueous solution of NH4Cl and the aqueous layer was extracted with 
Et2O. The combined organic layers were dried with MgSO4, concen
trated under vacuum and purified by SiO2 column chromatography 
(pentane: EtOAc 10 : 1) leading to the diol 9a or 9b as a waxy solid (9a: 
58%, 9b: 48%). 

9a: 1Н NMR (CDCl3, 300 MHz): δ 0.84–0.94 (m, 12H), 1.18–1.65 (m, 
24H), 2.49–2.67 (8H), 2.93–3.21 (m, 2H), 3.41–3.68 (m, 12H), 6.92 (s, 
2H), 7.28–7.42 (m, 12H), 7.74–7.82 (m, 8H). 

13C {1H} NMR (CDCl3, 100 MHz): δ 14.1, 22.7, 28.3, 28.9, 29.2, 
29.4, 29.5, 29.7, 29.8, 30.0, 30.1, 31.9, 53.6, 54.9, 71.9, 78.3, 80.4, 
84.4, 90.5, 116.1, 123.0, 126.5, 128.5, 129.1, 139.2, 142.2, 149.0. 

HRMS (MALDI-TOF/DCTB): m/z calcd for C86H90S2 [M]+

1186.6484, found: 1186.6460. 
9b: 1Н NMR (CDCl3, 300 MHz): δ 0.88–0.98 (m, 12H), 1.27–1.59 (m, 

16H), 2.48–2.62 (m, 8H), 3.52–3.54 (m, 12H), 6.88 (s, 2H), 7.29–7.33 
(m, 12H), 7.74 (m, 8H). 

MS (MALDI-TOF/DCTB): m/z [M − Na]+ 1143.7 [M − K]+ 1159.7. 

4.5. Linear and nonlinear spectroscopic characterization 

Spectra of linear absorption, emission, excitation, and lifetime of 
fluorescence were obtained with the use of a fluorometer (FS5, Edin
burgh Instruments). Emission was also obtained by pumping the sample 
with short optical pulses (100 kHz repetition rate) from an optical 
parametric amplifier (Orpheus, Light Conversion, Lithuania) pumped at 
1030 nm by a mode-locked oscillator (Pharos—Model PH1-20-0200-02- 
10, Light Conversion, Lithuania). To minimize absorption inner effects, 
the excitation and recollection of emission was produced in the front 
face of a 1 mm-thick cuvette containing a solution of the sample. The 
emission analyzed with an imaging spectrograph (Shamrock 193i, 
Andor Technology) and detected with a multichannel detector. The σ2PA 
was obtained by Z-scan method with 80 fs (800 nm) laser pulses deliv
ered by a Ti:Sa amplifier (Libra HE from Coherent) at 1 KHz. At the 
position Z = 0 the beam waist was 20 μm. THF solutions were tested at 
the concentration of 8.43 × 10− 2 M in a 1 mm quartz cell. For wave
lengths other than 800 nm in the range 650–950 nm, the Z-scan method 
was implemented with an optical parametric amplifier (TOPAs, from 
Light Conversion). The nonlinear coefficient β was calculated from the 
equation [57a,57b]: 

T(z)= 1 −
1

2
̅̅̅
2

√ β
I0Leff

1 + (Z/Z0)
2 (1)  

where I0 is the peak intensity, Leff is the effective length of the sample 
with Leff = [1 − exp( − α0L)]/α0, where L is the sample thickness and 

α0 the absorption coefficient, Z the sample position and Z0 =

(

πω2
0
/

λ

)

the Rayleigh range. To determine ω0 the knife edge method was used. 

The Z-scan apparatus was calibrated with traces in the close aperture 
scheme using CS2 as standard nonlinear refractive material with n2 = 2 
× 10− 15 cm2/W [58]. Finally, σ2PA = ℏω

N β, where ℏω is the photon en
ergy and N the density of molecules in the solution. 

Two-photon excited fluorescence (TPEF) was implemented with 140 
fs pulses from a Ti:Sa oscillator (Chameleon ultra, from Coherent) in the 
range 680–1080 nm. THF solutions were tested at a concentration of 
8.43 × 10− 5 M. Laser beam was focused in the frontal face of a 1 cm 
quartz cell with a 35 mm focal length lens. TPEF signal was detected in 
the perpendicular direction to the excitation with a hand-held spec
trometer (Ocean optics, 2000+) and using a low pass filter to block the 
excitation. The σ2PA value was obtained using the equation [59]: 

σTPA = σR
FsCRΦRηR

FRCRΦSηS
(2)  

where, F is the integrated area of the emission, C is the molar concen
tration (mol. L− 1), Φ is the fluorescence QY, and η is the refraction index 
of the solvent, the subscripts S and R denoting sample and reference, 
respectively. The Rodhamine 6G at a concentration of 1 × 10− 5 M was 
used as reference for calibration. 

4.6. Optical limiting 

For optical limiting measurements, the same laser source as the Z- 
scan experiments was used at 800 nm. The setup consisted in a laser 
beam hitting a 1 mm quartz cell containing a solution of 2a at a con
centration of 8.43 × 10− 2 M in THF. 
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conjugated cyclo[n]thiophenes – an experimental and theoretical approach. 
Beilstein J Nanotechnol 2011;2:720–6. 

[51] Principles and Applications of Quantum Chemistry. V.P. Gupta, academic press. 
2016. 

[52] Esipova TV, Rivera-Jacquez EJ, Weber B, Masunov AE, Vinogradov SA. Two- 
photon absorbing phosphorescent metalloporphyrins: effects of π-extension and 
peripheral substitution. J Am Chem Soc 2016;138:15648–62. 

[53] a) Palatinus L, Chapuis G. J Appl Crystallogr 2007;40:786–90.b) Betteridge PW, 
Carruthers JR, Cooper RI, Prout K, Watkin DJ. J Appl Crystallogr 2003;36:1487.c) 
International Tables for X-ray CrystallographyIV. Birmingham, England: Kynoch 
Press; 1974. 

[54] Van De Wetering K, Brochon C, Ngov C, Hadziioannou G. Design and synthesis of a 
low band gap conjugated macroinitiator: toward rod-coil donor-acceptor block 
copolymer. Macromolecules 2006;39:4289–97. 

[55] Guo K, Hao J, Zhang T, Zu F, Zhai J, Qiu L, Zhen Z, Liu X, Shen Y. The synthesis and 
properties of novel diazo chromophores based on thiophene conjugating spacers 
and tricyanofuran acceptors. Dyes Pigments 2008;77:657–64. 
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