Accepted Manuscript

Enantioselective synthesis of BE ring analogues of methyllycaconitine
Emma Dickson, Lisa I. Pilkington, Margaret A. Brimble, David Barker

PII: \quad S0040-4020(15)30241-6
DOI: 10.1016/j.tet.2015.11.057
Reference: TET 27314

To appear in: Tetrahedron

Received Date: 27 August 2015
Revised Date: 10 November 2015
Accepted Date: 24 November 2015

Please cite this article as: Dickson E, Pilkington LI, Brimble MA, Barker D, Enantioselective synthesis of BE ring analogues of methyllycaconitine, Tetrahedron (2015), doi: 10.1016/j.tet.2015.11.057.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Graphical Abstract

Enantioselective synthesis of BE ring analogues of methyllycaconitine

Emma Dickson, Lisa I. Pilkington, Margaret A. Brimble* and David Barker*
School of Chemical Sciences, University of Auckland, 23 Symonds St, Auckland, New Zealand

methyllycaconitine

$B E$ ring analogues

Enantioselective synthesis of BE ring analogues of methyllycaconitine

Emma Dickson, Lisa I. Pilkington, Margaret A. Brimble* and David Barker*
School of Chemical Sciences, University of Auckland, 23 Symonds St, Auckland, New Zealand
Corresponding authors. Tel.: +64-9-373-7599; fax: +64-64-373-7422;
E-mail: d.barker@auckland.ac.nz; m.brimble@auckland.ac.nz

Abstract

The enantioselective synthesis of decahydroquinolines mimicking the BE rings of methyllycacontine (MLA) is reported. The analogues were synthesised via a one-pot cyclisation using ethyl α (bromomethyl)acrylate, (R)-1-phenylethanamine and cyclohexanone to form chiral octahydroquinolines which can be selectively hydrogenated to form the 3-substituted-decahydroquinolines with the same stereochemistry found in MLA. The amine and ketone components in the one-pot reaction can also be altered to provide access to structurally related heterocycles.

Key words: Multi-component reaction; quinolones; methyllycaconitine; enantioselective synthesis

1. Introduction

Methyllycaconitine (MLA) 1, first discovered by Manske in 1938, ${ }^{1}$ is the 2-[2-(S)-methylsuccinimido]benzoate ester of the norditerpenoid alkaloid lycoctonine $\mathbf{2}$ and is the major toxic component in Delphinium brownii. ${ }^{2}$ An essential structural feature of MLA 1, this N-substituted anthranilate ester is postulated to be a key pharmacophore in the molecule. ${ }^{2,3}$ It has been proposed that at physiological pH the tertiary amine in the E ring system of MLA 1 is protonated and together with the ester form a homocholine motif which mimics acetylcholine. ${ }^{2}$ It is also predicted that the methylsuccinimido moiety may help to maintain the correct geometry between the tertiary nitrogen atom of the piperidine E ring in the alkaloid with the carbonyl oxygen of the ester bond. ${ }^{4}$

Figure 1. Methyllycaconitine 1 and lycoctonine 2
The primary mode of action of methyllycaconitine $\mathbf{1}$ is through competitive blockade at the nicotinic acetylcholine receptors ($n A C h R s$) and whilst methyllycaconitine binds to all subtypes of nAChRs it has high affinity to the $\alpha 7 \mathrm{nAChR}$ subtype. The $\alpha 7 \mathrm{nAChR}$ subtype is amongst the most common in the brain and has been linked to pain, neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease as well as psychiatric disorders such as schizophrenia and depression. ${ }^{5}$ MLA 1 is one of only a handful of compounds, which also include the poison frog alkaloid $235 \mathrm{~B}^{6}$ and the peptide toxins α-bungarotoxin and α-conotoxin ImI, that bind with high affinity and selectivity to the $\alpha 7 \mathrm{nAChR}$. ${ }^{7}$ Additionally, methyllycaconitine $\mathbf{1}$ is reported to be one of the most potent, non-protein, competitive $\alpha 7 \mathrm{nAChR}$ antagonists presently available.

Structure-activity relationship studies on MLA 1 have shown that the N-substituted anthranilate ester moiety is essential for potent pharmacological activity. ${ }^{2}$ This can be seen through comparison of the neuronal activity of MLA 1 and lycoctonine 2; it has been established that lycoctonine 2, which does not contain this structural feature, exhibits 2000 times less affinity for rat neuronal $\alpha 7$ nAChRs than MLA 1 (Figure 1). ${ }^{2}$ Similarly, removal of the N-ethyl group in the E ring results in a greater than 10 -fold reduction in potency. ${ }^{8}$ Of additional
note, a structure-activity relationship study of simple E ring analogues by Bergmeier et al. ${ }^{9}$ demonstrated that the N-3-phenylpropyl moiety in comparison to the natural N-Et group resulted in a significant increase in binding affinity.

In the hexacyclic core structure of methyllycaconitine $\mathbf{1}$ the key piperidine E ring is embedded within an azabicyclo[3.3.1]nonane and a decahydroquinoline, forming the AE and BE ring systems respectively. Many groups, ${ }^{9,10,11}$ including our own, ${ }^{10}$ have synthesised analogues of these alkaloids and most previous syntheses have focused on constructing azabicyclo[3.3.1]nonanes ${ }^{10,11}$ to mimic the AE rings, whilst others have worked specifically on the synthesis of piperidine E-ring analogues 2 (Figure 1). There are, however, only two reported examples of BE ring analogues, both of which were racemic analogues and only in one was the pharmacologically important anthranilate ester moiety introduced. ${ }^{12}$

We have previously reported ${ }^{12}$ the synthesis of racemic BE ring analogues using a one-pot bicyclization reaction of cyclohexanone and non-volatile amines to form the core octahydroquinoline. We now herein report the enantioselective synthesis of the decahydroquinoline BE rings of methyllycaconitine as well as a number of bicyclic analogues of the BE ring system.

2. Results and Discussion

Our synthetic strategy to the bicyclic compounds utilizes a one-pot reaction involving, a primary amine, ethyl α-(bromomethyl)acrylate 3 and a cyclic ketone and is based on a method first reported by Hori et al. for the synthesis of ergot alkaloids. ${ }^{13}$ We previously demonstrated the method could be applied using cyclohexanone $\mathbf{4 a}$ and non-volatile amines to afford octahydroquinolines in good yields. All previous examples of this condensation utilized a cyclohexanone ${ }^{12,13}$ as the ketone component, therefore we first wished to determine whether other cyclic ketones could be used to provide alternative heterocyclic systems. 3,5-cisDimethylcyclohexanone $\mathbf{4 b}$ was prepared from the hydrogenation of 3,5-dimethyl-2-cyclohexen-1-one, ${ }^{14}$ whilst commercially available cyclohexanone $\mathbf{4 a}$, cycloheptanone $\mathbf{4 c}$ and cyclopentanone $\mathbf{4 d}$ were also chosen. Ethyl α-(bromomethyl)acrylate $\mathbf{3}$ was prepared from ethyl acrylate using literature methods. ${ }^{15}$ Ketones $\mathbf{4 a} \mathbf{- d}$ were then reacted with acrylate $\mathbf{3}$ and benzylamine $\mathbf{5 a}$ and gave bicycles $\mathbf{6 a - c}$ in similar 70-76\% yields (Table 1, entries 13). The $5 / 6$-fused bicycle $\mathbf{6 d}$ formed from cyclopentanone $\mathbf{4 d}$ and benzylamine $\mathbf{5 a}$ was obtained in only $\mathbf{1 3 \%}$ yield (Table 1, entry 4). To expand our study we then tested the reaction with alternative primary amines, 3phenylpropylamine 5b and chiral amine (R) - α-methyl benzylamine $\mathbf{5 c}$, again using ketones $\mathbf{4 a - d}$ (Table 1 , entries 5-12). The yields of the bicyclic compounds $\mathbf{6 e - j}$ were similar to those produced using benzylamine $\mathbf{5 a}$, with reactions involving cyclopentanone $\mathbf{4 d}$ again giving bicycles $\mathbf{6 k}, \mathbf{l}$ in lower yields. Bicycles $\mathbf{6 f}, \mathbf{h}, \mathbf{j}, \mathbf{l}$ were obtained as single diastereomers, which were later determined to have an S configuration at $\mathrm{C}-3$ (see below). The lower yields of the $5 / 6$-fused bicyles $\mathbf{6 d}, \mathbf{k}, \mathbf{l}$ are presumably due to the unfavourable formation of this more strained ring system. Due to the fact that these compounds $\mathbf{6 d}, \mathbf{k}, \mathbf{l}$ were obtained in low yields and were found to be unstable even when stored at low temperatures, only the elaboration of bicycles $\mathbf{6 a - c}, \mathbf{e}-\mathbf{j}$ was pursued. Bicycles 6b,g,h were obtained as single diastereomers with NOESY correlations between H-5 and H-7 indicating the methyl groups at these positions were syn. However, the relative stereochemistry between $\mathrm{H}-3$ and $\mathrm{H}-5 / 7$ could not be determined.

With bicycles 6a-c,e-j mimicking the BE rings of methyllycaonitine in hand, we turned to the hydrogenation of the tetrasubstituted alkene to obtain the cis stereochemistry which is found in ring systems of MLA $\mathbf{1}$. Bicycles $\mathbf{6 a - c}, \mathbf{e}-\mathbf{j}$ were hydrogenated (1 atm .) over Adam's catalyst $\left(\mathrm{PtO}_{2}\right)^{13}$ in ethyl acetate for 18 h to afford the corresponding saturated bicycles 7a-i (Scheme 1). Purification of the bicycles was performed using basic alumina, as significant loss of product was found when silica gel was used. Hydrogenation of the unsubstituted octahydroquinolines 6a,e,f gave decahydroquinolines $\mathbf{7 a - c}$ in $41-72 \%$ yield, while hydrogenation of the 6/7fused bicycles $\mathbf{6 c , i}, \mathbf{j}$ and dimethyl-substituted octahydroquinolines $\mathbf{6 b}, \mathbf{g}, \mathbf{h}$ gave saturated bicycles $\mathbf{7 d} \mathbf{d} \mathbf{h}$ in generally lower yields, whilst $7 \mathbf{i}$ was not formed and only a complex mixture obtained. In all cases only the cissyn stereochemistry was obtained, as confirmed by the observation of NOESY correlations between 4a-H and both $8 \mathrm{a}-\mathrm{H}(9 \mathrm{a}-\mathrm{H}$ in the case of $\mathbf{7 d - f})$ and $3-\mathrm{H}$, thus establishing the relative stereochemistry to be the same as that found in MLA 1 (Figure 2). The stereochemistry was further confirmed when a subsequent derivative was found to be suitable for X-ray crystallographic analysis (see below). Decahydroquinolines $\mathbf{7 g}$ and $\mathbf{7 h}$ were isolated as single diastereomers where the relationship between $\mathrm{H}-5 / 7$ and $\mathrm{H}-3 / 4 \mathrm{a} / 8 \mathrm{a}$ could not be determined thus $7 \mathbf{g}$ and 7 h are either the $3 S^{*}, 4 \mathrm{a} S^{*}, 5 R^{*}, 7 S^{*}, 8 \mathrm{a} R^{*}$ or $3 S^{*}, 4 \mathrm{a} S^{*}, 5 S^{*}, 7 R^{*}, 8 \mathrm{a} R^{*}$ diastereomers.

Entry

NA = not attempted. * The relationship between the syn 5/7-dimethyl groups and H-3 could not be determined.

Figure 2. Relative stereochemistry of saturated bicycles 7 determined by nOe interactions between H-3, H-4a and $\mathrm{H}-8 \mathrm{a}$.

With the saturated bicycles mimicking the BE rings of MLA now formed, the addition of the 2-(2methylsuccinimido)benzoate ester was required (Scheme 1, Table 2). This was achieved by reduction of the ethyl esters $\mathbf{7 a}-\mathrm{h}$ using LiAlH_{4} in THF to afford alcohols $\mathbf{8 a} \mathbf{- h}$ in quantitative yield. After purification, alcohol $\mathbf{8 c}$ bearing the chiral $(R)-\alpha$-methyl benzylamine moiety was obtained as a crystalline solid suitable for X-ray crystallographic analysis (Figure 3). The X-ray crystal structure confirmed the stereochemistry between H-4a, $\mathrm{H}-8 \mathrm{a}$ and $\mathrm{H}-3$ and established the absolute stereochemistry of the bicycle to be $3 S, 4 \mathrm{a} R, 8 \mathrm{a} R$, which is the same as that found in MLA 1. The final steps were to install the succinimido anthranilate ester pharmacophore of MLA 1. This was achieved firstly by the DCC (2 equiv.), DMAP (0.1 equiv.) mediated coupling of 2-(3-methyl-2,5-dioxo-2,5-dihydro-1 H -pyrrol-1-yl)benzoic acid $\boldsymbol{9}^{16}$ (2.0 equiv.) with alcohols $\mathbf{8 a} \mathbf{- h}$, in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and afforded anthranilate esters $\mathbf{1 0 a}-\mathrm{h}$ in $53-95 \%$ yields. Finally the maleimide unit in anthranilates 10a-h was hydrogenated over 10% palladium on charcoal (1 atm .) for 18 h to yield the desired succinimido anthranilates 11a-h in near quantitative yields. This reaction gave succinimido anthranilates 11a-h as $1: 1$ mixtures of diastereomers at the $\mathrm{C}-3^{\prime \prime}$ position. Preparation of enantiopure succinimido anthranilates has previously been achieved via the three step process ${ }^{10 q, 16}$ however biological assessment has shown diastereomeric mixtures have similar activity to single isomers. ${ }^{9,101}$

Scheme 1. Synthesis of succinimido anthranilates 11.

Table 2: Synthesis of succinimido anthranilates 11.
comer

Figure 3. X-ray crystal structure of 8c (available from the CCDC: 1419766).

Scheme 2. Synthesis of succinimide anthranilate 16.
The decahydroquinoline BE rings of MLA 1 have an N-ethyl group and we envisaged that this could be introduced by hydrogenolysis of the (R) - α-methyl benzylamine moiety in $7 \mathbf{c}$ and subsequent addition of an ethyl moiety. Whilst the α-methyl benzylamine group had not been removed upon hydrogenation over PtO_{2} we found that hydrogenation of $\mathbf{7 c}$ over 10% palladium on charcoal (1 atm .) in MeOH for 18 h gave amine $\mathbf{1 2} \mathbf{~ i n ~} 91 \%$ yield (Scheme 2). Amine $\mathbf{1 2}$ was reacted immediately with acetic anhydride and DMAP in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{3} \mathrm{~N}$ (1:1) to allow acetamide $\mathbf{1 3}$ in quantitative yield. Acetamide $\mathbf{1 3}$ underwent complete degradation when subjected to chromatography with either silica or alumina and was therefore reduced immediately, using LiAlH_{4}, to give amino alcohol 14 in quantitative yield. Coupling of alcohol 14 with acid 9 followed by hydrogenation of the resultant maleimide 15 gave succinimido anthranilate 16 in 79% yield over two steps. Anthranilate $\mathbf{1 6}$ contains the complete carbon framework of the BE rings of MLA 1 including the natural N-ethyl substituent, with the same absolute stereochemistry as the natural product.

3. Conclusions

In conclusion we have reported the use of a three component, one-pot, cyclisation reaction to form 2,3-fused $5 / 6,6 / 6$ and $7 / 6$ piperidine heterocycles. Subsequent transformation of the bicycles into analogues of the BE rings of MLA 1 has also been achieved. Use of a chiral (R) - α-methyl benzylamine auxiliary allowed the synthesis of enantiopure decahydroquinoline $\mathbf{7 c}$ which was converted into succinimido anthranilate $\mathbf{1 6}$ in 72% yield in 5 steps. This synthesis of anthranilate $\mathbf{1 6}$ constitutes the first asymmetric synthesis of the complete carbon framework of the BE rings of methyllycaconitine 1.

4. Experimental Section

4.1 General Experimental

Analytical thin layer chromatography (TLC) was performed using 0.2 mm thick precoated silica gel plates (Merck Kieselgel 60 F254). Compounds were visualized by ultraviolet fluorescence or by staining iodine. Flash chromatography was performed using Riedel-de Haën silica gel $(0.032-0.063 \mathrm{~mm})$ with the indicated solvents. ${ }^{1} \mathrm{H}$ NMR spectra were recorded with a Bruker DRX $300(300 \mathrm{MHz})$ or a Bruker DRX 400 (400 MHz)
spectrometer at ambient temperature using CDCl_{3} as a solvent. Chemical shifts are given in parts per million (ppm) downfield shift from tetramethylsilane as an internal standard, and reported as position (δ), multiplicity (s $=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{dd}=$ double of doublets, $\mathrm{ddd}=$ doublet of doublet of doublets, ddt $=$ doublet of doublet of triplets, $\mathrm{dt}=$ doublet of triplets, $\mathrm{m}=$ multiplet, $\mathrm{t}=$ triplet, $\mathrm{td}=$ triplet of doublets, $\mathrm{q}=$ quartet $)$, relative integral, assignment and coupling constant (J in Hz). ${ }^{13} \mathrm{C}$ NMR spectra were recorded with a Bruker DRX 300 (75 MHz) or a Bruker DRX $400(100 \mathrm{MHz})$ spectrometer at ambient temperature with complete proton decoupling. Chemical shifts are expressed in parts per million referenced to the residual chloroform peak ($\delta=77.0 \mathrm{ppm}$), and reported as position (δ) and assignment, aided by DEPT 135 experiments. In addition, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}-\mathrm{COSY},{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}-$ NOESY and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}-\mathrm{HSQC}$ correlation spectra were used for the complete assignment of the proton and carbon resonances. High resolution mass spectra were recorded with a VG-70SE mass spectrometer. Ionisation method employed was electron impact (EI) or electrospray ionization (ESI). Melting points were determined on a Kofler hot-stage apparatus and are uncorrected. $[\alpha]_{\mathrm{D}}{ }^{20}$ values are given in $10^{-1} \mathrm{deg} \mathrm{cm}^{3} \mathrm{~g}^{-1}$. Ethyl 2(bromomethyl)acrylate $\mathbf{3}^{15}$ and 2-(3-methyl-2,5-dioxo-2,5-dihydropyrrol-1-yl)benzoic acid $\mathbf{9}^{16}$ were prepared as reported. X-ray crystal structures were obtained using a Bruker SMART platform goniometer with a CCD area detector at 150 K with structural solution and refinement by SHELXTL software package.
4.1.1 3,5-cis-Dimethylcyclohexanone 4b. To a solution of 3,5-dimethyl-2-cyclohexeneone ($0.400 \mathrm{~g}, 3.22 \mathrm{mmol}$) in isopropanol (4.0 mL) was added 10% palladium on carbon $(0.04 \mathrm{~g}, 0.38 \mathrm{mmol})$ and the resulting mixture was stirred under an atmosphere of hydrogen for 2 h . The mixture was filtered through Celite and washed with further isopropanol (20 mL) and the solvent was removed in vacuo to give the title compound $\mathbf{4 b}(0.406 \mathrm{~g}$, 100%) as a pale blue/green oil that was used immediately without further purification; ${ }^{1} \mathrm{H}$ NMR (400 MHz ; $\left.\mathrm{CDCl}_{3}\right): \delta=1.02\left(6 \mathrm{H}, \mathrm{d}, J=5.8 \mathrm{~Hz}, 3-\mathrm{CH}_{3}\right.$ and $\left.5-\mathrm{CH}_{3}\right), 1.78-1.97(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-5), 2.33(4 \mathrm{H}, \mathrm{d}, J=11.8$ $\mathrm{Hz}, \mathrm{H}-2$ and $\mathrm{H}-6) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $22.3\left(3-\mathrm{CH}_{3}\right.$ and $5-\mathrm{CH}_{3}$), $33.2(\mathrm{C}-3$ and $\mathrm{C}-5), 42.8$ (C-4), 49.2 ($2 \mathrm{x} \mathrm{CH}_{2}, \mathrm{C}-2$ and $\mathrm{C}-6$), 212.11 (q, COO). The spectroscopic data was consistent with literature values. ${ }^{14}$
4.2 General Method A: Three component synthesis of bicycles $\mathbf{6}$. To amine $\mathbf{5}(6.0 \mathrm{mmol})$ in toluene (32 mL) was added dropwise ethyl 2-(bromomethyl)acrylate $\mathbf{3}(3.00 \mathrm{mmol})$ in toluene $(5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After 15 min a solution of cyclic ketone $4(3.00 \mathrm{mmol})$ in toluene $(5 \mathrm{~mL})$ was added and the reaction mixture was heated under reflux under N_{2} for 18 h using a Dean-Stark trap containing $5 \AA$ molecular sieves. The mixture was cooled and extracted with $1 \mathrm{M} \mathrm{HCl}(2 \times 100 \mathrm{~mL})$. The combined aqueous layers were washed with ethyl acetate (100 mL), basified with solid $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 75 \mathrm{~mL})$. The extract was dried $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude product was purified by column chromatography using silica gel to give the desired unsaturated bicycle 6 .
4.2.1 Ethyl 1-benzyl-1,2,3,4,5,6,7,8-octahydroquinoline-3-carboxylate 6a. Using general method A, benzyl amine 5a ($0.655 \mathrm{~mL}, 6.0 \mathrm{mmol}$) and cyclohexanone $4 \mathbf{a}(0.310 \mathrm{~mL}, 3.0 \mathrm{mmol})$ after purification by flash chromatography (20% ethyl acetate in n-hexanes) gave the title compound $\mathbf{6 a}(0.632 \mathrm{~g}, 70 \%$) as a bright yellow oil; $\mathrm{R}_{\mathrm{F}}=0.68$ (4:1 n-hexanes, ethyl acetate); $v_{\max } / \mathrm{cm}^{-1} 3025,2927,2836,1727,1176,1027 ;{ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right): \delta=1.21\left(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.55-1.73(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-6$ and $\mathrm{H}-7), 1.81-2.14(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-5$ and $\left.\mathrm{H}_{\mathrm{A}}-8\right)$, 2.15-2.26 ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$ and $\mathrm{H}_{\mathrm{B}}-8$), 2.61-2.75 $(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 2.91\left(1 \mathrm{H}, \mathrm{t}, J=11.3 \mathrm{~Hz}, \mathrm{H}_{\mathrm{A}}-2\right), 3.14(1 \mathrm{H}$, ddd, $\left.J=1.9,3.3,11.3 \mathrm{~Hz}, \mathrm{H}_{\mathrm{B}}-2\right), 3.96-4.06\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 4.07-4.13\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 7.22-7.33(5 \mathrm{H}, \mathrm{m}$, $\mathrm{Ar}-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta=14.14\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 23.0(\mathrm{C}-7), 23.6(\mathrm{C}-6), 26.7(\mathrm{C}-5), 29.9(\mathrm{C}-8)$, $31.2(\mathrm{C}-4), 37.6(\mathrm{C}-3), 50.0(\mathrm{C}-2), 53.8\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 60.2\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 106.3(\mathrm{C}-4 \mathrm{a}), 126.7(\mathrm{Ar}-\mathrm{CH}), 127.6(\mathrm{Ar}-$ CH), 128.19 ($\mathrm{Ar}-\mathrm{CH}$), 135.9 (q, C-8a), 140.12 ($\mathrm{Ar}-\mathrm{C}$) and $174.5(\mathrm{q}, \mathrm{COO}) ; \mathrm{MS}(\mathrm{EI}): m / z=299\left(\mathrm{M}^{+}, 76 \%\right), 226$ (25), 208 (75), 91 (100); HRMS (EI): $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{NO}_{2}$ requires 299.18853; found: 299.18823.
4.2.2 Ethyl 1-benzyl-5,7-dimethyl-1,2,3,4,5,6,7,8-octahydroquinoline-3-carboxylate $\mathbf{6 b}$. Using general method A, benzylamine $\mathbf{5 a}(0.568 \mathrm{~mL}, 5.2 \mathrm{mmol})$ and 3,5 -cis-dimethylcyclohexanone $\mathbf{4 b}(0.372 \mathrm{~mL}, 2.6 \mathrm{mmol})$ after purification by flash chromatography (20% ethyl acetate in n-hexanes) gave the title compound $\mathbf{6 b}$ (0.605 g , 76%) as a pale yellow oil. $\mathrm{R}_{\mathrm{F}}=0.75$ (4:1 n-hexanes, ethyl acetate); $v_{\max } / \mathrm{cm}^{-1} 3019,2951,2907,1729,1453$, 1171,$1028 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta=0.80-0.92\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-6\right), 0.96\left(3 \mathrm{H}, \mathrm{d}, J=6.2 \mathrm{~Hz}, 5-\mathrm{CHCH}_{3}\right), 1.00$ $\left(3 \mathrm{H}, \mathrm{d} J=6.6 \mathrm{~Hz}, 7-\mathrm{CHCH}_{3}\right), 1.22\left(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.61-1.79\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-4\right.$ and $\left.\mathrm{H}_{\mathrm{B}}-6\right), 1.99(1 \mathrm{H}$, dd, $\left.J=3.0,15.8 \mathrm{~Hz}, \mathrm{H}_{\mathrm{A}}-8\right), 2.12-2.25(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-5$ and $\mathrm{H}-7), 2.35\left(1 \mathrm{H}, \mathrm{td}, J=3.0,13.6 \mathrm{~Hz}, \mathrm{H}_{\mathrm{B}}-8\right), 2.67(1 \mathrm{H}$, tdd, $J=2.8,5.2$ and $11.3 \mathrm{~Hz}, \mathrm{H}-3), 2.78\left(1 \mathrm{H}, \mathrm{t}, J=11.3 \mathrm{~Hz}, \mathrm{H}_{\mathrm{A}}-2\right), 3.13\left(1 \mathrm{H}, \mathrm{dt}, J=2.8,11.3 \mathrm{~Hz}, \mathrm{H}_{\mathrm{B}}-2\right), 3.95-$ $4.02\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Ph}\right), 4.05-4.13\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.14-4.27\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{Ph}\right)$ and $7.20-7.36(5 \mathrm{H}$,
m, Ar-H); ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ; \delta=14.2\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 20.5\left(7-\mathrm{CHCH}_{3}\right), 22.2\left(5-\mathrm{CHCH}_{3}\right), 29.2(\mathrm{C}-8)$, $35.2(\mathrm{C}-5$ and $\mathrm{C}-7), 35.7(\mathrm{C}-4), 38.3(\mathrm{C}-3), 41.6(\mathrm{C}-6), 49.9(\mathrm{C}-2), 53.9\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 60.3\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 109.1(\mathrm{C}-$ $4 a), 126.7$ (Ar-CH), $127.5(\mathrm{Ar}-\mathrm{CH}), 128.3(\mathrm{Ar}-\mathrm{CH}), 135.9(\mathrm{C}-8 \mathrm{a}), 140.1$ (Ar-C) and $174.8(\mathrm{COO}) ;$ HRMS (ESI): $m / z[\mathrm{MH}]^{+} \mathrm{C}_{21} \mathrm{H}_{30} \mathrm{NO}_{2}$ requires 328.2270; found 328.2271.
4.2.3 Ethyl 1-benzyl-2,3,4,5,6,7,8,9-octahydro-1H-cyclohepta[b]pyridine-3-carboxylate 6c. Using general method A benzylamine $5 \mathbf{5 a}(0.568 \mathrm{~mL}, 5.2 \mathrm{mmol})$ and cycloheptanone $\mathbf{4 c}(0.306 \mathrm{~mL}, 2.6 \mathrm{mmol})$ after purification by flash chromatography (33% ethyl acetate in n-hexanes) gave the title compound $\mathbf{6 c}(0.611 \mathrm{~g}$, 75%) as a bright yellow oil. $\mathrm{R}_{\mathrm{F}}=0.7$ (4:1 n-hexanes, ethyl acetate); $v_{\max } / \mathrm{cm}^{-1} 3063,3035,2915,2843,1728$, 1454,$1155 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta=1.21\left(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.30-1.51,1.54-1.75,1.76-$ 1.87 and 2.19-2.43 (10H, $4 \times \mathrm{m}, \mathrm{H}-5, \mathrm{H}-6, \mathrm{H}-7, \mathrm{H}-8$ and H-9), 2.02-2.16 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$), 2.54-2.64 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$), 2.68-2.79 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-2$), 3.03-3.12 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{B}}-2$), 3.55-3.64 $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{\mathrm{A}} \mathrm{CH}_{\mathrm{B}} \mathrm{Ph}\right), 4.03-4.14(3 \mathrm{H}, \mathrm{m}$, $\mathrm{NCH}_{\mathrm{A}} \mathrm{CH}_{\mathrm{B}} \mathrm{Ph}$ and $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$ and 7.16-7.39 (5H, m, Ar-H); ${ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=14.2\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $27.0,27.6,32.2,32.3$ and 32.5 (C-5, C-6, C-7, C-8 and C-9), 33.6 (C-4), 35.6 (C-3), 49.4 (C-2), 54.4 $\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 60.2\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 116.0(\mathrm{C}-4 \mathrm{a}), 126.9(\mathrm{Ar}-\mathrm{CH}), 127.9(\mathrm{Ar}-\mathrm{CH}), 128.1$ (Ar-CH), 139.9 (q, C-9a), 143.3 (Ar-C), 174.7 (COO); HRMS (ESI): $m / z:[\mathrm{MH}]^{+} \mathrm{C}_{20} \mathrm{H}_{28} \mathrm{NO}_{2}$ requires 314.2115; found 314.2115.
4.2.4 Ethyl 1-benzyl-2,3,4,5,6,7-hexahydro-1H-cyclopenta[b]pyridine-3-carboxylate 6d. Using general method A benzylamine $5 \mathbf{5}(0.568 \mathrm{~mL}, 5.2 \mathrm{mmol})$ and cyclopentanone $\mathbf{4 d}(0.230 \mathrm{~mL}, 2.6 \mathrm{mmol})$ after purification by flash chromatography (66% ethyl acetate in n-hexanes) gave the title compound $\mathbf{6 d}(0.101 \mathrm{~g}, 13 \%$) as a brown oil. $\mathrm{R}_{\mathrm{F}}=0.65$ (4:1 n-hexanes, ethyl acetate); $v_{\max } / \mathrm{cm}^{-1} 3469,2934,2843,1727,1452,1367,1179 ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta=1.21\left(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.83-1.94(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6), 2.17-2.34\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-4, \mathrm{H}_{\mathrm{A}}-5\right)$, 2.37-2.44 (1H, m, H ${ }_{\mathrm{B}}-5$), 2.45-2.53 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-7$), $2.70-2.80(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 2.93\left(1 \mathrm{H}, \mathrm{t}, J=11.5 \mathrm{~Hz}, \mathrm{H}_{\mathrm{A}}-2\right), 3.08-$ $3.15\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{B}}-2\right), 4.02-4.17\left(4 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{Ph}\right.$ and $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 7.20-7.39(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=14.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 20.8(\mathrm{C}-6), 26.9(\mathrm{C}-4), 31.2(\mathrm{C}-7), 34.0(\mathrm{C}-5), 39.0(\mathrm{C}-3), 49.5(\mathrm{C}-2), 55.6$ $\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 60.3\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 106.6(\mathrm{C}-4 \mathrm{a}), 126.8(\mathrm{Ar}-\mathrm{CH}) .127 .7(\mathrm{Ar}-\mathrm{CH}), 128.3(\mathrm{Ar}-\mathrm{CH}), 139.3(\mathrm{Ar}-\mathrm{C}), 141.8$ (C-7a), $174.4(\mathrm{COO})$; HRMS (ESI): $m / z=\left[\mathrm{MH}^{+}\right] \mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NO}_{2}$ requires 286.1802; found 286.1810.
4.2.5 Ethyl 1-(3-phenylpropyl)-1,2,3,4,5,6,7,8-octahydroquinoline-3-carboxylate 6e. Using general method A 3phenylpropylamine $\mathbf{5 b}(0.854 \mathrm{~mL}, 6.0 \mathrm{mmol})$ and cyclohexanone $\mathbf{4 a}(0.310 \mathrm{~mL}, 3.0 \mathrm{mmol})$ after purification by flash chromatography (20% ethyl acetate in n-hexanes) gave the title compound $\mathbf{6 e}(0.589 \mathrm{~g}, 60 \%$) as a pale yellow oil. $\mathrm{R}_{\mathrm{F}}=0.8$ (4:1 n-hexanes, ethyl acetate); $v_{\max } / \mathrm{cm}^{-1} 3025,2925,2857,1727,1496,1379,1260,1176$, 1026; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta=1.25\left(3 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.43-1.79(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-6$ and H-7), 1.72-1.79 ($2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 1.82-1.90 ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}-5$ and H-8), 1.97-2.03 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$), $2.59(2 \mathrm{H}, \mathrm{dt}, J=$ $\left.2.7,8.3 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 2.71(1 \mathrm{H}$, ddt, $J=3.3,5.7,11.8 \mathrm{~Hz}, \mathrm{H}-3), 2.86-2.99\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-2\right.$ and $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 3.20\left(1 \mathrm{H}\right.$, ddd, $\left.J=1.8,3.3,11.8 \mathrm{~Hz}, \mathrm{H}_{\mathrm{B}}-2\right), 4.15\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 7.17-7.28(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-$ $\mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($\left.75.5 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta=14.2\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 22.9(\mathrm{C}-7), 23.6(\mathrm{C}-6), 26.4\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 29.7$ (C-8), 29.9 (C-5), $31.2(\mathrm{C}-4), 33.36\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 38.1(\mathrm{C}-3), 50.0\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 50.2(\mathrm{C}-2), 60.3$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 106.1(\mathrm{C}-4 \mathrm{a}), 125.7(\mathrm{Ar}-\mathrm{CH}), 128.3(2 \times \mathrm{Ar}-\mathrm{CH}), 135.8$ (q, C-8a), 142.0 (Ar-C), 174.6 (COO); MS $(\mathrm{EI}): m / z=327\left(\mathrm{M}^{+}, 4 \%\right), 222(10), 91(55) ;$ HRMS (EI): $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{NO}_{2}$ requires 327.2198; found 327.2197.
4.2.6 (3S)-Ethyl 1-((R)-1-phenylethyl)-1,2,3,4,5,6,7,8-octahydroquinoline-3-carboxylate 6f. Using general method A, (R)-1-phenylethylamine $5 \mathbf{c}(0.727 \mathrm{~mL}, 6.0 \mathrm{mmol})$ and cyclohexanone $\mathbf{4 a}(0.310 \mathrm{~mL}, 3.0 \mathrm{mmol})$ after purification by flash chromatography (20% ethyl acetate in n-hexanes) gave the title compound $\mathbf{6 f}(0.789 \mathrm{~g}$, $84 \%)$ as a bright yellow oil. $[\alpha]_{\mathrm{D}}{ }^{20}+39\left(c \quad 0.89, \mathrm{CHCl}_{3}\right) ; \mathrm{R}_{\mathrm{F}}=0.70\left(4: 1 n\right.$-hexanes, ethyl acetate); $v_{\max } / \mathrm{cm}^{-1}$ 3021, 2930, 2846, 1727, 1446, 1371, 1176, 1026; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=1.94(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.43\left(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{NCH}\left(\mathrm{CH}_{3}\right) \mathrm{Ph}\right), 1.60-1.77(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-6$ and $\mathrm{H}-7), 1.85-2.08(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-5$ and $\left.\mathrm{H}_{\mathrm{A}}-8\right)$, 2.13-2.36 (3H, m, H-4 and $\left.\mathrm{H}_{\mathrm{B}}-8\right)$, 2.61-2.70 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-2\right.$ and $\left.\mathrm{H}-3\right), 2.98-3.10\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{B}}-2\right), 3.99-4.17$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.73-4.81\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}\left(\mathrm{CH}_{3}\right) \mathrm{Ph}\right), 7.23-7.40(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta$ $=14.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 15.5\left(\mathrm{NCH}\left(\mathrm{CH}_{3}\right) \mathrm{Ph}\right), 23.1(\mathrm{C}-7), 23.9(\mathrm{C}-6), 26.7(\mathrm{C}-5), 30.1(\mathrm{C}-8), 30.3(\mathrm{C}-4), 38.1(\mathrm{C}-3)$, $44.9(\mathrm{C}-2), 53.3\left(\mathrm{NCH}\left(\mathrm{CH}_{3}\right) \mathrm{Ph}\right), 60.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 105.6(\mathrm{C}-4 \mathrm{a}), 126.5(\mathrm{Ar}-\mathrm{CH}), 127.2(\mathrm{Ar}-\mathrm{CH}), 128.6$ (ArCH), 134.5 (C-8a), 143.3 (Ar-C), 174.7 (COO); HRMS (ESI): $m / z=[M]^{+} \mathrm{C}_{20} \mathrm{H}_{27} \mathrm{NO}_{2}$ requires 313.20418; found 313.20420.
4.2.7 Ethyl 5,7-dimethyl-l-(3-phenylpropyl)-1,2,3,4,5,6,7,8-octahydroquinoline-3-carboxylate $\mathbf{6 g}$. Using general method A 3-phenylpropylamine $\mathbf{5 b}(0.740 \mathrm{~mL}, 5.2 \mathrm{mmol})$ and 3,5 -cis-dimethylcylohexanone $\mathbf{4 b}(0.372 \mathrm{~mL}, 2.6$ mmol) after purification by flash chromatography (33% ethyl acetate in n-hexanes) gave the title compound $\mathbf{6 g}$ $(0.400 \mathrm{~g}, 43 \%)$ as a pale yellow oil. $\mathrm{R}_{\mathrm{F}}=0.6\left(3: 1 n\right.$-hexanes, ethyl acetate); $v_{\max } / \mathrm{cm}^{-1} 3028,2956,2925,1721$, $1451,1188,1028 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta=0.75-0.84\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-6\right), 0.92(3 \mathrm{H}, \mathrm{d}, J=6.2 \mathrm{~Hz}, 5-\mathrm{CHC}-$ H_{3}), $0.95\left(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, 7-\mathrm{CHCH}_{3}\right), 1.26\left(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.44-1.54\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-4\right), 1.50-1.61$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5), 1.62-1.70\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{B}}-6\right), 1.66-1.70\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-8\right), 1.78-1.87\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{B}}-8\right), 1.89-1.97(1 \mathrm{H}, \mathrm{m}$, $\mathrm{NCH}_{2} \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}_{2} \mathrm{Ph}$), 1.98-2.05 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{B}}-4$), 2.06-2.14 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7$), 2.25-2.35 $\left(\mathrm{NCH}_{2} \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{CH}_{2} \mathrm{Ph}\right), 2.58$ $\left(2 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 2.60-2.70(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 2.84\left(1 \mathrm{H}, \mathrm{t}, J=11.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{A}}-2\right), 2.91(2 \mathrm{H}, \mathrm{t}, J=$ $\left.7.4 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 3.22\left(1 \mathrm{H}, \mathrm{dt}, J=2.6,11.2 \mathrm{~Hz}, \mathrm{H}_{\mathrm{B}}-2\right), 4.07-4.19\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $7.11-7.31(5 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar}-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=14.2\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 20.4\left(7-\mathrm{CHCH}_{3}\right), 22.1\left(5-\mathrm{CHCH}_{3}\right), 29.0$ and 29.1 (C-5, C-8 and $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), $33.2\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right.$), 35.2 and 35.3 (C-7 and C-4), 38.6 (C-3), 41.4 (C-6), $50.0\left(\mathrm{C}-2\right.$ and $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 60.2\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 109.2(\mathrm{C}-4 \mathrm{a}), 125.6(\mathrm{Ar}-\mathrm{CH}), 128.8$ (Ar-CH), 128.3 (ArCH), 135.7 (C-8a), 141.9 (Ar-C), 174.8 (COO); HRMS (ESI): $m / z=[\mathrm{MH}]^{+} \mathrm{C}_{23} \mathrm{H}_{34} \mathrm{NO}_{2}$ requires 356.2584; found 356.2590 .
4.2.8 (3S)-Ethyl 5,7-dimethyl-1-((R)-1-phenylethyl)-1,2,3,4,5,6,7,8-octahydroquinoline-3-carboxylate $\mathbf{6 h}$. Using general method A (R)-1-phenethylamine $\mathbf{5 c}(0.670 \mathrm{~mL}, 5.2 \mathrm{mmol})$ and 3,5 -cis-dimethylcylohexanone $\mathbf{4 b}$ (0.372 $\mathrm{mL}, 2.6 \mathrm{mmol}$) after purification by flash chromatography (33% ethyl acetate in n-hexanes) gave the title compound $\mathbf{6 h}(0.266 \mathrm{~g}, 30 \%)$ as a pale yellow oil. $\mathrm{R}_{\mathrm{F}}=0.65$ ($3: 1 n$-hexanes, ethyl acetate); $v_{\text {max }} / \mathrm{cm}^{-1} 2906,2870$, $1729,1448,1371,1170 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta=0.82-0.92\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-6\right), 0.99(6 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}, 5-$ CHCH_{3} and $7-\mathrm{CHCH}_{3}$), $1.21\left(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.47\left(\mathrm{CH}_{3}, \mathrm{~d}, J=7.4 \mathrm{~Hz}, \mathrm{NCH}\left(\mathrm{CH}_{3}\right) \mathrm{Ph}\right), 1.65-1.81$ ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}-5, \mathrm{H}_{\mathrm{B}}-6$ and $\mathrm{H}-7$), 1.93-2.00 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-8$), 2.15-2.21 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-4$), 2.23-2.33 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{B}}-8$), 2.36$2.50\left(2 \mathrm{H}, \mathrm{H}_{\mathrm{A}}-2\right.$ and $\left.\mathrm{H}_{\mathrm{B}}-4\right), 2.55-2.63(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 3.07-3.14\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{B}}-2\right), 4.03-4.16\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.90$ $\left(1 \mathrm{H}, \mathrm{q}, J=7.4 \mathrm{~Hz}, \mathrm{NCH}\left(\mathrm{CH}_{3}\right) \mathrm{Ph}\right), 7.19-7.39(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=14.2\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $17.0\left(\mathrm{NCH}\left(\mathrm{CH}_{3}\right) \mathrm{Ph}\right), 20.7\left(7-\mathrm{CHCH}_{3}\right), 22.3\left(5-\mathrm{CHCH}_{3}\right), 29.3(\mathrm{C}-5$ or $\mathrm{C}-7), 29.5(\mathrm{C}-8), 35.46(\mathrm{C}-5$ or $\mathrm{C}-7$ and $\mathrm{C}-4), 39.6$ (C-3), 41.5 (C-6), $44.5(\mathrm{C}-2), 53.1\left(\mathrm{NCH}\left(\mathrm{CH}_{3}\right) \mathrm{Ph}\right), 60.2\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 108.3$ (C-4a), 126.5 (Ar-CH), 127.5 (Ar-CH), 128.2 (Ar-CH), 134.8 (C-8a), 142.9 (Ar-C) and 175.1 (COO); HRMS (ESI) $m / z=[M H]^{+}$ $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{NO}_{2}$ requires 342.2428 ; found 342.2434 .
4.2.9 Ethyl 1-(3-phenylpropyl)-2,3,4,5,6,7,8,9-octahydro-1H-cycloheptalb]pyridine-3-carboxylate 6i. Using general method A 3-phenylpropylamine $\mathbf{5 b}(0.740 \mathrm{~mL}, 5.2 \mathrm{mmol})$ and cycloheptanone $\mathbf{4 c}(0.306 \mathrm{~mL}, 2.6 \mathrm{mmol})$ after purification by flash chromatography (20% ethyl acetate in n-hexanes) gave the title compound $\mathbf{6 i}$ (0.551 $\mathrm{g}, 62 \%)$ as a yellow oil. $\mathrm{R}_{\mathrm{F}}=0.5\left(2: 1 n\right.$-hexanes, ethyl acetate); $v_{\text {max }} / \mathrm{cm}^{-1} 3025,2919,2848,1726,1453,1158 ;$ ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta=1.26\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right.$), 1.19-1.34, 1.69-1.85, 1.92-2.12 and 2.15$2.30\left(10 \mathrm{H}, \mathrm{m}, \mathrm{H}-5, \mathrm{H}-6, \mathrm{H}-7, \mathrm{H}-8\right.$ and $\mathrm{H}-9$), 1.47-1.65 ($2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 2.48-2.85 ($8 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-2, \mathrm{H}-3$, $\mathrm{H}-4, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 3.18-3.24 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{B}}-2$), 4.09-4.17 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$ and 7.13$7.31(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=14.2\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 26.8\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 27.0,30.8$, 31.8, 32.5 and 32.5 (C-5, C-6, C-7, C-8 and C-9), 33.3 and 36.1 ($\mathrm{C}-4$ and $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 36.1 (C-3), 49.6 (C-2), $50.4\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 60.3\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 115.1(\mathrm{C}-4 \mathrm{a}), 125.7(\mathrm{Ar}-\mathrm{CH}), 128.3$ (2 xArCH), 142.1 (C-9a), 143.5 (Ar-C), 174.9 (COO); HRMS (ESI): $m / z=\left[\mathrm{MH}^{+}\right] \mathrm{C}_{22} \mathrm{H}_{34} \mathrm{NO}_{2}$ requires 344.2584; found 344.2578.
4.2.10 (3S)-Ethyl 1-((R)-1-phenylethyl)-2,3,4,5,6,7,8,9-octahydro-lH-cyclohepta[b]pyridine-3-carboxylate $\mathbf{6 j}$. Using general method $\mathrm{A}(R)-1$-phenylethylamine $\mathbf{5 c}(0.670 \mathrm{~mL}, 5.2 \mathrm{mmol})$ and cycloheptanone $\mathbf{4 c}(0.306 \mathrm{~mL}$, 2.6 mmol) after purification by flash chromatography (33% ethyl acetate in n-hexanes) gave the title compound $6 \mathbf{j}(0.545 \mathrm{~g}, 64 \%)$ as a bright yellow oil. $[\alpha]_{\mathrm{D}}{ }^{20}+41\left(c 1.0, \mathrm{CHCl}_{3}\right) ; \mathrm{R}_{\mathrm{F}}=0.6$ ($3: 1 n$-hexanes, ethyl acetate); $v_{\max } / \mathrm{cm}^{-1} 3007,2921,2848,1726,1448,1377,1178,1027 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta=1.21(3 \mathrm{H}, \mathrm{t}, J=6.8$ $\mathrm{Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), $1.44\left(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{NCH}\left(\mathrm{CH}_{3}\right) \mathrm{Ph}\right), 1.62-1.79,2.20-2.24,2.25-2.33$ and $2.38-2.47(10 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-5, \mathrm{H}-6, \mathrm{H}-7, \mathrm{H}-8$ and $\mathrm{H}-9)$, 2.57-2.63 ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-2$ and $\mathrm{H}-3$), $3.03-3.07\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{B}}-2\right.$), 4.07-4.22 ($2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.64\left(1 \mathrm{H}, \mathrm{q}, J=7.0 \mathrm{~Hz}, \mathrm{NCH}\left(\mathrm{CH}_{3}\right) \mathrm{Ph}\right), 7.19-7.48(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ $14.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 15.5\left(\mathrm{NCH}\left(\mathrm{CH}_{3}\right) \mathrm{Ph}\right), 26.7,27.4,30.8,32.3$ and $32.5(\mathrm{C}-5, \mathrm{C}-6, \mathrm{C}-7, \mathrm{C}-8$ and $\mathrm{C}-9), 33.9(\mathrm{C}-4)$, $39.1(\mathrm{C}-3), 45.5(\mathrm{C}-2), 54.8\left(\mathrm{NCH}\left(\mathrm{CH}_{3}\right) \mathrm{Ph}\right), 60.2\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 114.3(\mathrm{C}-4 \mathrm{a}), 126.5(\mathrm{Ar}-\mathrm{CH}), 127.3(\mathrm{Ar}-\mathrm{CH})$, 128.4 (Ar-CH), 141.4 (C-9a), 143.7 (Ar-C), 175.0 (COO); HRMS (ESI) $m / z=[M H]^{+} \mathrm{C}_{21} \mathrm{H}_{30} \mathrm{NO}_{2}$ requires 328.2271 ; found 328.2278 .
4.2.11 Ethyl 1-(3-phenylpropyl)-2,3,4,5,6,7-hexahydro-1H-cyclopenta[b]pyridine-3-carboxylate 6k. Using general method A 3-phenylpropylamine $\mathbf{5 b}(0.740 \mathrm{~mL}, 5.2 \mathrm{mmol})$ and cyclopentanone $\mathbf{4 d}(0.230 \mathrm{~mL}, 2.6$ mmol) after purification by flash chromatography (50% ethyl acetate in n-hexanes) gave the title compound $\mathbf{6 k}$ $(0.132 \mathrm{~g}, 17 \%)$ as a dark brown oil. $\mathrm{R}_{\mathrm{F}}=0.8$ ($1: 1 n$-hexanes, ethyl acetate); $v_{\max } / \mathrm{cm}^{-1} 3018,2938,1727,1496$, $1454,1397,1189,1029 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta=1.26\left(3 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.68-1.94(4 \mathrm{H}, \mathrm{m}$, $6-\mathrm{CH}_{2}$ and $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 2.20-2.35\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-7\right.$ and $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 2.36-2.46\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-5\right.$ and $\left.\mathrm{H}_{\mathrm{B}}-7\right)$, 2.64-2.71 ($\left.2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 2.78-2.93(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 2.96-3.04\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-2\right), 3.25-3.32\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{B}^{-}}\right.$ 2), 4.15-4.28 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$ and $7.18-7.39(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=14.2$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 20.9(\mathrm{C}-6), 27.0(\mathrm{C}-4), 29.4\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 31.0(\mathrm{C}-5), 33.2\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 34.0(\mathrm{C}-7)$, $39.4(\mathrm{C}-3), 49.5(\mathrm{C}-2), 51.3\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 60.4\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 106.5(\mathrm{C}-4 \mathrm{a}), 125.8(\mathrm{Ar}-\mathrm{CH}), 128.2(\mathrm{Ar}-\mathrm{CH})$, 128.3 ($\mathrm{Ar}-\mathrm{CH}$), 141.1 (C-7a and $\mathrm{Ar}-\mathrm{C}$) and 174.6 (COO); HRMS (EI) $\mathrm{m} / \mathrm{z}=[\mathrm{MH}]^{+} \mathrm{C}_{20} \mathrm{H}_{28} \mathrm{NO}_{2}$ requires 314.2215; found 314.2112.
4.2.12 (3S)-Ethyl 1-((R)-1-phenylethyl)-2,3,4,5,6,7-hexahydro-1H-cyclopenta[b]pyridine-3-carboxylate $\mathbf{6 l}$. Using general method $\mathrm{A}(R)$-1-phenylethylamine $5 \mathbf{c}(0.670 \mathrm{~mL}, 5.2 \mathrm{mmol})$ and cyclopentanone $\mathbf{4 a}(0.230 \mathrm{~mL}$, 2.6 mmol) after purification by flash chromatography (50% ethyl acetate in n-hexanes) gave the title compound $61(0.11 \mathrm{~g}, 14 \%)$ as a brown oil. $[\alpha]_{\mathrm{D}}{ }^{20}+39\left(c 1.0, \mathrm{CHCl}_{3}\right) ; \mathrm{R}_{\mathrm{F}}=0.65$ ($1: 1 n$-hexanes, ethyl acetate); $v_{\max } / \mathrm{cm}^{-1}$ 2955, 1727, 1636, 1449, 1371, 1177, 1027; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.18\left(3 \mathrm{H}, \mathrm{t}, J=6.7 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.44(3 \mathrm{H}$, $\left.\mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{NCH}\left(\mathrm{CH}_{3}\right) \mathrm{Ph}\right), 1.86-1.99(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6), 2.17-2.27(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4), 2.28-2.34(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-7), 2.63-$ $2.71(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 2.72-2.80\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-2\right), 2.77-2.86(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-5), 3.08-3.15\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{B}}-2\right), 4.04-4.17(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.57-4.65\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}\left(\mathrm{CH}_{3}\right) \mathrm{Ph}\right), 7.18-7.52(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 14.1$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 16.1\left(\mathrm{NCH}\left(\mathrm{CH}_{3}\right) \mathrm{Ph}\right), 20.9(\mathrm{C}-6), 27.0(\mathrm{C}-4), 31.4(\mathrm{C}-5), 34.3(\mathrm{C}-7), 39.6(\mathrm{C}-3), 44.5(\mathrm{C}-2), 56.2$ $\left(\mathrm{NCH}\left(\mathrm{CH}_{3}\right) \mathrm{Ph}\right), 60.3\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 106.5(\mathrm{C}-4 \mathrm{a}), 126.7(\mathrm{Ar}-\mathrm{CH}), 127.3(\mathrm{Ar}-\mathrm{CH}), 128.2(\mathrm{Ar}-\mathrm{CH}), 141.0(\mathrm{Ar}-\mathrm{C})$, $142.7(\mathrm{C}-7 \mathrm{a}), 174.8(\mathrm{COO})$; HRMS (EI+) $\mathrm{m} / \mathrm{z}=[\mathrm{MH}]^{+} \mathrm{C}_{19} \mathrm{H}_{26} \mathrm{NO}_{2}$ requires 300.1958; found 300.1965.
4.3 General Method B: Hydrogenation of octahydroquinolines 6 to decahydroquinolines 7. To a solution of octahydroquinoline $\mathbf{6}(1.0 \mathrm{mmol})$ in ethyl acetate $(5.0 \mathrm{~mL})$ was added platinum oxide $(0.04 \mathrm{~g}, 0.17 \mathrm{mmol})$ and the resulting mixture was stirred under hydrogen (1 atm) for 18 h . The mixture was filtered through Celite which was washed with ethyl acetate (20 mL) and the volatile solvents were removed in vacuo to give the crude product which was purified by chromatography on basic alumina to give the desired decahydroquinoline 7 .
4.3.1 $\left(3 S^{*}, 4 a R^{*}, 8 a R^{*}\right)$-Ethyl 1-benzyldecahydroquinoline-3-carboxylate 7a. Using general method B octahydroquinline $6 \mathbf{a}(0.415 \mathrm{~g}, 1.4 \mathrm{mmol}$) after purification by chromatography on basic alumina (2% ethyl acetate in n-hexanes) gave title compound $7 \mathbf{7 a}(0.227 \mathrm{~g}, 54 \%)$ as a pale yellow oil. $\mathrm{R}_{\mathrm{F}}=0.70(4: 1 n$-hexanes, ethyl acetate); $v_{\max } / \mathrm{cm}^{-1} 2927,2836,1727,1660,1176,1027 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.08-1.14\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-8\right)$, $1.21\left(3 \mathrm{H}, \mathrm{t}, J=10.3 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.31-1.39(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6), 1.45-1.71\left(5 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-4, \mathrm{H}-5, \mathrm{H}-7\right), 1.72-1.92(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{H}_{\mathrm{B}}-4, \mathrm{H}_{\mathrm{B}}-8\right), 1.94-2.10(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4 \mathrm{a}), 2.51-2.66\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-2, \mathrm{H}-3\right), 2.67-2.80\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{B}}-2, \mathrm{H}-8 \mathrm{a}\right), 3.57-$ $3.62\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{\mathrm{A}} \mathrm{CH}_{\mathrm{B}} \mathrm{Ph}\right), 3.71-3.76\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{\mathrm{A}} \mathrm{CH}_{\mathrm{B}} \mathrm{Ph}\right), 4.10\left(2 \mathrm{H}, \mathrm{q}, J=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) 7.16-7.31$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}) ; \delta_{\mathrm{C}}\left(75.5 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 14.2\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 18.1(\mathrm{C}-7), 21.0(\mathrm{C}-6), 25.5(\mathrm{C}-8), 27.3(\mathrm{C}-4), 31.4(\mathrm{C}-$ 5), 34.7 (C-4a), $42.3(\mathrm{C}-3), 47.0(\mathrm{C}-2), 58.4\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 58.9(\mathrm{C}-8 \mathrm{a}), 60.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 126.7$ (Ar-CH), 128.1 (Ar-CH), 128.4 (Ar-CH), $139.8(\mathrm{Ar}-\mathrm{C}), 174.7(\mathrm{COO})$; HRMS (EI+) $\mathrm{m} / \mathrm{z}=[\mathrm{M}]^{+} \mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NO}_{2}$ requires 301.20418; found 301.20339.
4.3.2 $\left(3 S^{*}, 4 a R^{*}, 8 a R^{*}\right)$-Ethyl 1-(3-phenylpropyl)decahydroquinoline-3-carboxylate 7b. Using general method B octahydroquinline $6 \mathbf{e}(0.350 \mathrm{~g}, 1.07 \mathrm{mmol}$) after purification by chromatography on basic alumina (2% ethyl acetate in n-hexanes) gave title compound $\mathbf{7 b}(0.149 \mathrm{~g}, 41 \%)$ as a pale yellow oil. $\mathrm{R}_{\mathrm{F}}=0.75$ ($4: 1 n$-hexanes, ethyl acetate); $v_{\text {max }} / \mathrm{cm}^{-1} 2928,2861,1727,1451,1369,1247,1155,1031 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.10-1.97(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{H}_{\mathrm{A}}-8\right), 1.20\left(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.28-1.41(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6), 1.43-1.50(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-7), 1.51-1.58(2 \mathrm{H}$, $\mathrm{m}, \mathrm{H}-5), 1.61-1.73(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4), 1.74-1.76\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{B}}-8\right), 1.79-1.87\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 1.94-2.01(1 \mathrm{H}$, $\mathrm{m}, \mathrm{H}-4 \mathrm{a}), 2.45-2.53\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-2, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 2.65\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 2.55-2.67(1 \mathrm{H}$, $\mathrm{m}, \mathrm{H}-3), 2.68-2.73(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{a}), 2.78\left(1 \mathrm{H}, \mathrm{dd}, J=2.7,11.2 \mathrm{~Hz}, \mathrm{H}_{\mathrm{B}}-2\right), 4.11\left(2 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$ 7.14-7.29 (5H, m, Ar-H); $\delta_{\mathrm{C}}\left(75.5 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 14.0\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 17.3(\mathrm{C}-7), 20.2(\mathrm{C}-6), 25.3(\mathrm{C}-8), 26.9(\mathrm{C}-$ 4), $29.3\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 31.2(\mathrm{C}-5), 33.4\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 34.5(\mathrm{C}-4 \mathrm{a}), 42.0(\mathrm{C}-3), 47.2(\mathrm{C}-2), 53.1$ $\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 58.4(\mathrm{C}-8 \mathrm{a}), 59.9\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 125.4(\mathrm{Ar}-\mathrm{CH}), 128.0(\mathrm{Ar}-\mathrm{CH}), 128.1(\mathrm{Ar}-\mathrm{CH}), 142.1$ (ArC), 174.2 (COO); HRMS (EI+) $m / z=[M]^{+} \mathrm{C}_{21} \mathrm{H}_{31} \mathrm{NO}_{2}$ requires 329.2355, found 329.2353.
4.3.3 (3S,4aR,8aR)-Ethyl 1-((R)-1-phenylethyl)decahydroquinoline-3-carboxylate 7c. Using general method B octahydroquinline $6 \mathbf{f}(0.323 \mathrm{~g}, 1.03 \mathrm{mmol}$) after purification by chromatography on basic alumina (2% ethyl acetate in n-hexanes) gave title compound $7 \mathbf{c}(0.235 \mathrm{~g}, 72 \%)$ as a yellow oil. $[\alpha]_{\mathrm{D}}{ }^{20}+45\left(c 1.0, \mathrm{CHCl}_{3}\right) ; \mathrm{R}_{\mathrm{F}}=$ 0.75 ($1: 1 n$-hexanes, ethyl acetate); $v_{\max } / \mathrm{cm}^{-1} 2973,2930,2870,1720,1449,1367,1324,1186,1153,1029 ; \delta_{\mathrm{H}}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $1.14-1.22\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-8\right), 1.9\left(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.27-1.30(3 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{NCH}\left(\mathrm{CH}_{3}\right) \mathrm{Ph}\right), 1.32-1.46(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6), 1.43-1.77$ ($6 \mathrm{H}, \mathrm{m}, \mathrm{H}-4, \mathrm{H}-5, \mathrm{H}-7$), 1.79-1.86 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4 \mathrm{a}$), 2.00-2.08 $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{B}}-8\right), 2.40-2.53\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-2, \mathrm{H}-3\right), 2.64\left(1 \mathrm{H}, \mathrm{d}, J=5.6 \mathrm{~Hz}, \mathrm{H}_{\mathrm{B}}-2\right), 3.05(1 \mathrm{H}, \mathrm{dt}, J=3.5,12.0 \mathrm{~Hz}, \mathrm{H}-$ $8 \mathrm{a}), 3.66\left(1 \mathrm{H}, \mathrm{q}, J=6.4 \mathrm{~Hz}, \mathrm{NCH}\left(\mathrm{CH}_{3}\right) \mathrm{Ph}\right), 4.01-4.05\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 7.21-7.35(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}) ; \delta_{\mathrm{C}}(100$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 14.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 18.0\left(\mathrm{NCH}\left(\mathrm{CH}_{3}\right) \mathrm{Ph}\right), 21.0(\mathrm{C}-7), 22.2(\mathrm{C}-6), 25.6(\mathrm{C}-8), 27.6(\mathrm{C}-4), 31.6(\mathrm{C}-5)$, 34.7 (C-4a), 42.3 (C-3), $45.4(\mathrm{C}-2), 55.1\left(\mathrm{NCH}\left(\mathrm{CH}_{3}\right) \mathrm{Ph}\right), 60.0(\mathrm{C}-8 \mathrm{a}), 60.4\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 126.5(\mathrm{Ar}-\mathrm{CH}), 126.9$ (Ar-CH), 128.3 (Ar-CH), 147.1 (Ar-C), 174.8 (COO); HRMS (EI+) $m / z=[M]^{+} \mathrm{C}_{20} \mathrm{H}_{29} \mathrm{NO}_{2}$ requires 315.21983; found 315.21981 .
4.3.4 (3S*,4aR*,9aR*)-Ethyl 1-benzyldecahydro-1H-cyclohepta[b]pyridine-3-carboxylate 7d. Using general method B octahydroquinline $\mathbf{6 c}(0.600 \mathrm{~g}, 1.91 \mathrm{mmol})$ after purification by chromatography on basic alumina (2% ethyl acetate in n-hexanes) gave title compound $7 \mathrm{~d}(0.357 \mathrm{~g}, 58 \%)$ as a yellow oil. $\mathrm{R}_{\mathrm{F}}=0.7$ ($4: 1 n$-hexanes, ethyl acetate); $v_{\text {max }} / \mathrm{cm}^{-1} 2923,2853,1728,1454,1255,1148 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 0.97-1.08 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-5$), $1.02-1.15\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-4\right), 1.11-1.22\left(1 \mathrm{H}, \mathrm{m}_{\mathrm{A}} \mathrm{H}_{\mathrm{A}}-6\right.$ or $\left.\mathrm{H}_{\mathrm{A}}-7\right), 1.22-1.32\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-8\right), 1.23(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.34-1.47\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{B}}-6-\right.$ or $\mathrm{H}_{\mathrm{B}}-7$ and $\left.\mathrm{H}_{\mathrm{A}}-9\right)$, , $1.52-1.60\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{B}}-8\right), 1.64-1.73\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{B}}-9\right)$, 1.73-1.86 ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{B}}-4$ and $\mathrm{H}-6$ or $\mathrm{H}-7$), $1.88-1.97\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{B}}-5\right), 2.37-2.48\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-2\right)$, 2.54-2.61 ($1 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-3)$, $2.65-2.73\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{B}}-2\right), 2.69-2.84(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9 \mathrm{a}), 3.59-3.70\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 4.03-4.13(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$ 7.14-7.37 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 14.2\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 20.2(\mathrm{C}-9), 23.3(\mathrm{C}-8), 28.1(\mathrm{C}-$ 4), 31.0, 31.1 (C-6, C-7), 33.5 (C-5), 36.8 (C-4a), 42.3 (C-3), $47.7(\mathrm{C}-2), 58.9\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 60.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 62.2$ (C-9a), 126.7 (Ar-CH), 128.1 (Ar-CH), $128.3(\mathrm{Ar}-\mathrm{CH}), 139.7$ (Ar-C), 174.6 (COO); HRMS (EI+) $m / z=[\mathrm{MH}]^{+}$ $\mathrm{C}_{20} \mathrm{H}_{3} \mathrm{NO}_{2}$ requires 316.2271; found 316.2262.
4.3.5 ($3 S^{*}, 4 a R^{*}, 9 a R^{*}$)-Ethyl 1-(3-phenylpropyl)decahydro-1H-cyclohepta[b]pyridine-3-carboxylate 7e. Using general method B octahydroquinline $\mathbf{6 i}(0.350 \mathrm{~g}, 1.02 \mathrm{mmol})$ after purification by chromatography on basic alumina (2% ethyl acetate in n-hexanes) gave title compound $7 \mathrm{e}(0.188 \mathrm{~g}, 54 \%)$ a yellow oil; $\mathrm{R}_{\mathrm{F}}=0.6$ (3:1 nhexanes, ethyl acetate); $v_{\max } / \mathrm{cm}^{-1} 2931,2850,1721,1451,1247,1155,1031 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 0.96-1.07 $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-5\right), 1.11-1.20\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-4\right.$ and $\mathrm{H}_{\mathrm{A}}-6$ or $\left.\mathrm{H}_{\mathrm{A}}-7\right), 1.23\left(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.29-1.40(3 \mathrm{H}$, $\mathrm{m}, \mathrm{H}_{\mathrm{A}}-8, \mathrm{H}_{\mathrm{A}}-9$ and $\mathrm{H}_{\mathrm{A}}-6$ or $\mathrm{H}_{\mathrm{A}}-7$), 1.51-1.65 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{B}}-8, \mathrm{H}_{\mathrm{B}}-9$), 1.73-1.85 ($4 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}, \mathrm{H}_{\mathrm{B}}-6$, $\left.\mathrm{H}_{\mathrm{B}}-7\right), 1.90-2.02\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4 \mathrm{a}, \mathrm{H}_{\mathrm{B}}-5\right), 2.32\left(1 \mathrm{H}, \mathrm{t}, J=12.1 \mathrm{~Hz}, \mathrm{H}_{\mathrm{A}}-2\right), 2.48(1 \mathrm{H}, \mathrm{td}, J=2.2,7.4 \mathrm{~Hz}$, $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 2.53-2.59 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$), $2.63\left(2 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 2.73-2.77\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{B}}-2\right)$, $2.78-2.82(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9 \mathrm{a}), 4.06-4.12\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 7.13-7.29(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 14.1$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 19.6(\mathrm{C}-9), 23.1(\mathrm{C}-8), 28.1(\mathrm{C}-4), 29.4\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 30.8,31.0(\mathrm{C}-6, \mathrm{C}-7), 33.4,33.5$ (C-5, $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), $36.4(\mathrm{C}-4 \mathrm{a}), 42.0(\mathrm{C}-3), 48.1(\mathrm{C}-2), 53.6\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 60.0\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 61.8(\mathrm{C}-9 \mathrm{a})$, 125.5 (Ar-CH), 128.1 (Ar-CH), 128.3 (Ar-CH), 142.2 (Ar-C), 174.4 (COO); HRMS (EI+) $m / z=[M H]^{+}$ $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{NO}_{2}$ requires 344.2584; found 344.2578.
4.3.6 (3S,4aR,9aR)-Ethyl 1-((R)-1-phenylethyl)decahydro-1H-cyclohepta[b]pyridine-3-carboxylate 7f. Using general method B octahydroquinline $\mathbf{6 j}(0.236 \mathrm{~g}, 0.721 \mathrm{mmol})$ after purification by chromatography on basic alumina (2% ethyl acetate in n-hexanes) gave title compound $7 \mathbf{f}(0.123 \mathrm{~g}, 52 \% \text {) as a pale yellow oil. [} \alpha]_{\mathrm{D}}{ }^{20}+68$ (c $\left.1.0, \mathrm{CHCl}_{3}\right) ; \mathrm{R}_{\mathrm{F}}=0.55$ ($3: 1 n$-hexanes, ethyl acetate); $v_{\max } / \mathrm{cm}^{-1} 2934,2851,1725,1441,1257,1130 ; \delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 1.00-1.05 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-5$), $1.16\left(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.18-1.22\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-4\right.$ and $\mathrm{H}_{\mathrm{A}}-6$ or $\left.\mathrm{H}_{\mathrm{A}}-7\right), 1.25\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{NCH}\left(\mathrm{CH}_{3}\right) \mathrm{Ph}\right), 1.27-1.33\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-8\right), 1.34-1.41\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-6\right.$ or $\left.\mathrm{H}_{\mathrm{A}}-7\right), 1.56-$ $1.63\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{B}}-8\right.$ and $\left.\mathrm{H}-9\right)$, 1.75-1.84 ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{B}}-4, \mathrm{H}_{\mathrm{B}}-6, \mathrm{H}_{\mathrm{B}}-7$), 1.93-2.07 $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-2\right)$, 2.39-2.45 ($1 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-3), 2.55-2.61\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{B}}-2\right), 3.15\left(1 \mathrm{H}, \mathrm{q}, J=5.0 \mathrm{~Hz}, \mathrm{NCH}\left(\mathrm{CH}_{3}\right) \mathrm{Ph}\right), 3.57-3.63(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9 \mathrm{a}), 4.00(2 \mathrm{H}, \mathrm{q}, J$ $\left.=4.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 7.16-7.37(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 14.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 20.3(\mathrm{C}-9), 22.5$ $\left(\mathrm{NCH}\left(\mathrm{CH}_{3}\right) \mathrm{Ph}\right), 23.3(\mathrm{C}-8), 27.8(\mathrm{C}-4), 31.3,31.7(\mathrm{C}-6, \mathrm{C}-7), 33.9(\mathrm{C}-5), 36.6(\mathrm{C}-4 \mathrm{a}), 42.1(\mathrm{C}-3), 46.3(\mathrm{C}-2)$, $57.7\left(\mathrm{NCH}\left(\mathrm{CH}_{3}\right) \mathrm{Ph}\right), 60.0\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 61.4(\mathrm{C}-9 \mathrm{a}), 126.6(\mathrm{Ar}-\mathrm{CH}), 127.4(\mathrm{Ar}-\mathrm{CH}), 128.3(\mathrm{Ar}-\mathrm{CH}), 147.4$ (ArC), 174.8 (COO); HRMS (EI+) $m / z=[\mathrm{MH}]^{+} \mathrm{C}_{21} \mathrm{H}_{32} \mathrm{NO}_{2}$ requires 330.2480; found 330.2483 .
4.3.7 (3S",4aS",8aR")-Ethyl 1-benzyl-5,7-dimethyldecahydroquinoline-3-carboxylate 7g. Using general method B octahydroquinline $\mathbf{6 b}(0.215 \mathrm{~g}, 0.67 \mathrm{mmol})$ after purification by chromatography on basic alumina (2% ethyl acetate in n-hexanes) gave title compound $7 \mathrm{~g}(0.091 \mathrm{~g}, 42 \%)$ as a pale yellow oil. $\mathrm{R}_{\mathrm{F}}=0.8(4: 1 n$-hexanes, ethyl
acetate); $v_{\text {max }} / \mathrm{cm}^{-1} 2968,2950,2855,1714,1495,1455,1368,1239,1200,1160,1064 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $0.67-0.77\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-6\right), 0.81\left(3 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz}, 5-\mathrm{CH}_{3}\right), 0.89\left(3 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz}, 7-\mathrm{CH}_{3}\right), 0.99-1.09\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}^{-}}\right.$ 8), $1.18\left(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.25-1.33(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4 \mathrm{a}), 1.42-1.51\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-4\right), 1.72-1.80(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{H}_{\mathrm{B}}-6\right)$, 1.84-2.00 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-5$ and $\mathrm{H}_{\mathrm{A}}-2$), 2.12-2.23 ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{B}}-4, \mathrm{H}-7$ and $\mathrm{H}_{\mathrm{B}}-8$), 2.35-2.41 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{a}$), 2.59-2.69 (1H, m, H-3), $2.91\left(1 \mathrm{H}, \mathrm{d}, J=13.3 \mathrm{~Hz}, \mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Ph}\right), 2.95-3.00\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{B}}-2\right), 4.00-4.08(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.11\left(1 \mathrm{H}, \mathrm{d}, J=13.6 \mathrm{~Hz}, \mathrm{NCH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{Ph}\right), 7.19-7.34(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 14.1$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 19.7\left(7-\mathrm{CH}_{3}\right), 22.6\left(5-\mathrm{CH}_{3}\right), 26.2(\mathrm{C}-5), 28.5(\mathrm{C}-7), 30.3(\mathrm{C}-4), 37.6(\mathrm{C}-4 \mathrm{a}), 38.7(\mathrm{C}-8), 43.6(\mathrm{C}-3)$, $45.2(\mathrm{C}-6), 55.2(\mathrm{C}-2), 56.7\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 60.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 61.7(\mathrm{C}-8 \mathrm{a}), 126.6(\mathrm{Ar}-\mathrm{CH}), 127.8(\mathrm{Ar}-\mathrm{CH}), 128.6$ (Ar-CH), 140.1 (Ar-C), 174.9 (COO); HRMS (EI+) $m / z=[M H]^{+} \mathrm{C}_{21} \mathrm{H}_{32} \mathrm{NO}_{2}$ requires 330.2428; found 330.2422 .
4.3.8 $\left(3 S^{*}, 4 a S^{*}, 8 a R^{*}\right)$-Ethyl 5,7-dimethyl-1-(3-phenylpropyl)decahydroquinoline-3-carboxylate 7h. Using general method B octahydroquinline $\mathbf{6 g}(0.400 \mathrm{~g}, 1.13 \mathrm{mmol})$ after purification by chromatography on basic alumina (2% ethyl acetate in n-hexanes) gave title compound $7 \mathbf{h}\left(0.174 \mathrm{~g}, 43 \%\right.$) as a pale yellow oil. $\mathrm{R}_{\mathrm{F}}=0.7$ (3:1 n-hexanes, ethyl acetate); $v_{\text {max }} / \mathrm{cm}^{-1} 2994,2866,1730,1453,1182,1153 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.58-0.70$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-6\right), 0.77\left(3 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}, 5-\mathrm{CH}_{3}\right), 0.84\left(3 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}, 7-\mathrm{CH}_{3}\right), 0.83-0.94\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-8\right), 1.14-$ $1.22(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 1.24\left(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.39\left(1 \mathrm{H}, \mathrm{td}, J=4.6,13.3 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}_{2} \mathrm{Ph}\right)$, 1.60-1.90 (5H, m, H-4, H-5, H $\left.\mathrm{H}_{\mathrm{B}}-6, \mathrm{H}_{\mathrm{B}}-8\right), 1.91-2.01(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7), 2.12-2.20\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{CH}_{2} \mathrm{Ph}\right), 2.23$ $\left(1 \mathrm{H}, \mathrm{t}, J=11.3 \mathrm{~Hz}, \mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 2.28-2.33(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{a}), 2.34-2.44\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-2\right), 2.47-2.71(4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{H}_{\mathrm{B}}-2, \mathrm{H}-4 \mathrm{a}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 3.07-3.14\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 4.10\left(2 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, 7.12-7.32 (5H, m, Ar-CH); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 14.2\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 19.7\left(7-\mathrm{CH}_{3}\right), 22.5\left(5-\mathrm{CH}_{3}\right), 25.4(\mathrm{C}-4)$, 26.3 (C-5), $28.4(\mathrm{C}-7), 30.0\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 33.8\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 37.8$ (C-4a), 38.2 (C-8), 43.2 (C-3), $45.0(\mathrm{C}-6), 52.0(\mathrm{C}-2), 55.1\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 60.0(\mathrm{C}-8 \mathrm{a}), 60.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 125.7(\mathrm{CH}, \mathrm{Par}-\mathrm{CH}), 128.2$ (ArCH), 128.3 (Ar-CH), 142.3 (Ar-C), 174.9 (COO); HRMS (EI+) $m / z=[\mathrm{MH}]^{+} \mathrm{C}_{23} \mathrm{H}_{36} \mathrm{NO}_{2}$ requires 358.2741; found 358.2748 .
4.4 General Method C: Reduction of esters 7 to alcohols 8. To a solution of lithium aluminium hydride (3.0 $\mathrm{mmol})$ in dry THF (2.0 mL) was added dropwise a solution of ester $7(1.0 \mathrm{mmol})$ in dry THF $(8.0 \mathrm{~mL})$ and the mixture was stirred for 15 min . The reaction was quenched by the dropwise addition of 5.2 M potassium hydroxide (1.2 mL) and stirring continued for 15 min . The resultant mixture was filtered through Celite and washed with ethyl acetate (40 mL). The volatile solvents were removed in vacuo to give the desired alcohol $\mathbf{8}$, which was used without further purification.
4.4.1 (($\left.3 S^{*}, 4 a R^{*}, 8 a R^{*}\right)$-1-Benzyldecahydroquinolin-3-yl)methanol 8a. Using general method C ester $7 \mathbf{a}$ (0.277 $\mathrm{g}, 0.964 \mathrm{mmol})$ gave the title compound $\mathbf{8 a}(0.195 \mathrm{~g}$, quant.) as a pale yellow oil, which was used without further purification. $\mathrm{R}_{\mathrm{F}}=0.2$ (1:1 n-hexanes, ethyl acetate); $v_{\max } / \mathrm{cm}^{-1} 3352,3027,2920,2852,1494,1451,1369$, $1069,1036,735,700 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.02-1.18\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-7\right), 1.23-1.29(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6), 1.29-1.39(2 \mathrm{H}$, $\mathrm{m}, \mathrm{H}-4), 1.48-1.64(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-5, \mathrm{H}-8), 1.70-1.77\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{B}}-7\right), 1.81-1.92(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 2.01-2.08(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ 4a), 2.15-2.21 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-2$), $2.63\left(1 \mathrm{H}, \mathrm{d}, J=11.4 \mathrm{~Hz}, \mathrm{H}_{\mathrm{B}}-2\right), 2.72-2.82(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{a}), 3.42-3.45(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{OH}\right), 3.58\left(1 \mathrm{H}, \mathrm{dd}, J=2.6,13.6 \mathrm{~Hz}, \mathrm{NCH}_{\mathrm{A}} \mathrm{CH}_{\mathrm{B}} \mathrm{Ph}\right), 3.73\left(1 \mathrm{H}, \mathrm{dd}, J=2.6,13.6 \mathrm{~Hz}, \mathrm{NCH}_{\mathrm{A}} \mathrm{CH} H_{\mathrm{B}} \mathrm{Ph}\right), 7.20-$ $7.34(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 17.5(\mathrm{C}-8), 20.8(\mathrm{C}-6), 25.4(\mathrm{C}-7), 27.0(\mathrm{C}-4), 31.5(\mathrm{C}-5), 34.9(\mathrm{C}-$ $4 a), 39.0(\mathrm{C}-3), 48.6(\mathrm{C}-2), 58.4\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 59.1(\mathrm{C}-8 \mathrm{a}), 66.1\left(\mathrm{CH}_{2} \mathrm{OH}\right), 126.5(\mathrm{Ar}-\mathrm{CH}), 128.1$ (Ar-CH), 128.4 (Ar-CH), 139.6 (Ar-C); HRMS (EI+) $m / z=[M]^{+} \mathrm{C}_{17} \mathrm{H}_{25} \mathrm{NO}$ requires 258.20275; found 258.20298.
4.4.2 (($\left.3 S^{*}, 4 a R^{*}, 8 a R^{*}\right)$-1-(3-Phenylpropyl)decahydroquinolin-3-yl)methanol 8b. Using general method C ester $\mathbf{7 b}(0.350 \mathrm{~g}, 1.07 \mathrm{mmol})$ gave title compound $\mathbf{8 b}(0.130 \mathrm{~g}$, quant.) as a pale yellow oil, which was used without further purification. $\mathrm{R}_{\mathrm{F}}=0.25$ (1:1 n-hexanes, ethyl acetate); $v_{\max } / \mathrm{cm}^{-1} 3444,3025,2923,2853,1495,1449$, 1371, 1080, 1043, 730, 698; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.10-1.20\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-7\right), 1.29-1.37(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4), 1.39-1.42$ $(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6), 1.43-1.50(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-8), 1.58-1.62(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-5), 1.78-1.82\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{B}}-7\right), 1.85-1.93(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 1.94-2.08(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4 \mathrm{a}), 2.12-2.19\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-2\right), 2.40-2.54\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right)$, 2.55-2.71 ($2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 2.74-2.76 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{B}}-2$), 2.79-2.81 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{a}$), 3.41-3.55 ($2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{OH}\right) 7.22-7.35(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}) ; \delta_{\mathrm{C}}\left(75.5 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 17.0(\mathrm{C}-8), 21.0(\mathrm{C}-6), 25.6(\mathrm{C}-7), 27.2(\mathrm{C}-4), 29.4$ $\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 31.7(\mathrm{C}-5), 33.8\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 35.2$ (C-4a), 39.4 (C-3), 49.5 (C-2), 53.7 $\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 58.8(\mathrm{C}-8 \mathrm{a}), 66.41\left(\mathrm{CH}_{2} \mathrm{OH}\right), 125.6(\mathrm{Ar}-\mathrm{CH}), 128.2(\mathrm{Ar}-\mathrm{CH}), 128.3(\mathrm{Ar}-\mathrm{CH}), 142.3(\mathrm{Ar}-\mathrm{C}) ;$ MS (EI): $m / z=287\left(\mathrm{M}^{+}, 32\right), 244$ (97), 182 (100), 91 (27), 44 (21);); HRMS (EI+) $m / z=[M H]^{+} \mathrm{C}_{21} \mathrm{H}_{29} \mathrm{NO}_{2}$ $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{NO}_{2}$ requires 287.2249; found 287.2248.
4.4.3 ((3S,4aR,8aR)-1-((R)-l-Phenylethyl)decahydroquinolin-3-yl)methanol 8c. Using general method C ester $7 \mathbf{c}(0.235 \mathrm{~g}, 0.740 \mathrm{mmol})$ gave $8 \mathrm{c}(0.202 \mathrm{~g}$, quant.) as a pale yellow solid, which was used without further purification. $[\alpha]_{\mathrm{D}}{ }^{20}+44\left(c 1.0, \mathrm{CHCl}_{3}\right)$; m.p. $109-110{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{F}}=0.15\left(1: 1 n\right.$-hexanes, ethyl acetate); $\mathrm{v}_{\max } / \mathrm{cm}^{-1}$ 3285, 3027, 2920, 2871, 1450, 1368, 1070, 1040, 761, 701; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.11-1.22\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-7\right)$, 1.27 ($3 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, \mathrm{NCH}\left(\mathrm{CH}_{3}\right) \mathrm{Ph}$), 1.30-1.43 (4H, m, H-4, H-6), 1.46-1.63 (4H, m, H-5, H-8), 1.65-1.78 $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{B}}-7\right), 1.95-2.08\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-2, \mathrm{H}-3, \mathrm{H}-4 \mathrm{a}\right), 2.46\left(1 \mathrm{H}, \mathrm{dd}, J=3.8,11.6 \mathrm{~Hz}, \mathrm{H}_{\mathrm{B}}-2\right), 3.08-3.12(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ $8 \mathrm{a}), 3.35\left(2 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}, \mathrm{CH} \mathrm{C}_{2} \mathrm{OH}\right), 3.61\left(1 \mathrm{H}, \mathrm{q}, J=6.5 \mathrm{~Hz}, \mathrm{NCH}\left(\mathrm{CH}_{3}\right) \mathrm{Ph}\right), 7.17-7.31(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}) ; \delta_{\mathrm{C}}(100$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 17.6(\mathrm{C}-8), 21.1\left(\mathrm{NCH}\left(\mathrm{CH}_{3}\right) \mathrm{Ph}\right), 22.1(\mathrm{C}-6), 25.9$ (C-7), 27.5 (C-4), 31.9 (C-5), 35.2 (C-4a), 39.3 (C-3), $47.1(\mathrm{C}-2), 55.6\left(\mathrm{NCH}\left(\mathrm{CH}_{3}\right) \mathrm{Ph}\right), 60.7(\mathrm{C}-8 \mathrm{a}), 66.6\left(\mathrm{CH}_{2} \mathrm{OH}\right), 126.5(\mathrm{Ar}-\mathrm{CH}), 127.0(\mathrm{Ar}-\mathrm{CH}), 128.3(\mathrm{Ar}-$ CH), 147.4 (Ar-C); HRMS (EI+) $m / z=[\mathrm{M}]^{+} \mathrm{C}_{18} \mathrm{H}_{27} \mathrm{NO}_{2}$ requires 273.21533; found 273.21513.
4.4.4 ((3S", $\left.4 a R^{*}, 9 a R^{*}\right)-1$-Benzyldecahydro-1H-cyclohepta[b]pyridin-3-yl)methanol 8d. Using general method C ester $7 \mathbf{d}(0.147 \mathrm{~g}, 0.466 \mathrm{mmol})$ gave title compound $\mathbf{8 d}(0.127 \mathrm{~g}$, quant.) as a pale yellow oil, which was used without further purification. $\mathrm{R}_{\mathrm{F}}=0.1$ (2:1 n-hexanes, ethyl acetate); $v_{\text {max }} / \mathrm{cm}^{-1} 3336,2917,2851,1453,1355$, 1063, 1026; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 0.93-1.06 ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}-5$ and $\mathrm{H}-6$ or $\mathrm{H}-7$), $1.26-1.33\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-8\right), 1.33-1.41$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-9\right), 1.52-1.61\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{B}}-8\right), 1.54-1.61\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-6\right.$ or $\left.\mathrm{H}_{\mathrm{A}}-7\right), 1.64-1.71\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{B}}-9\right), 1.74-1.80$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{B}}-6\right.$ or $\left.\mathrm{H}_{\mathrm{B}}-7\right), 1.76-1.84(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4), 1.80-1.89(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 2.01-2.07\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-2\right), 2.02-2.11$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4 \mathrm{a}$), $2.55-2.62\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{B}}-2\right), 2.75-2.83(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9 \mathrm{a}), 3.38-3.48\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 3.62(2 \mathrm{H}, \mathrm{q}, J=$ $7.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}$), 7.18-7.44 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) 20.1 (C-9), 23.4 (C-8), 28.2 (C-4), 31.2, 31.3 (C-6, C-7), 33.9 (C-5), 37.1 (C-4a), 39.2 (C-3), 49.3 (C-2), $59.2\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 62.9(\mathrm{C}-9 \mathrm{a}), 66.7\left(\mathrm{CH}_{2} \mathrm{OH}\right), 126.6$ (Ar-CH), 128.1 (Ar-CH), 128.5 (Ar-CH), 140.3 (Ar-C);); HRMS (EI+) $m / z=[M H]^{+} \mathrm{C}_{18} \mathrm{H}_{28} \mathrm{NO}$ requires 274.2165; found 247.2162.
4.4.5 ((3S*,4aR*,9aR*)-1-(3-Phenylpropyl)decahydro-1H-cycloheptalblpyridin-3-yl)methanol 8e. Using general method C ester $7 \mathbf{e}(0.160 \mathrm{~g}, 0.465 \mathrm{mmol})$ gave title compound $\mathbf{8 e}(0.125 \mathrm{~g}$, quant.) as a yellow oil, which was used without further purification. $\mathrm{R}_{\mathrm{F}}=0.3$ ($1: 1 n$-hexanes, ethyl acetate); $v_{\max } / \mathrm{cm}^{-1} 3344,2920,2852,1453$, $1373,1105,1029 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 0.88-1.02 ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-5$, and $\mathrm{H}-6$ or $\mathrm{H}-7$), $1.10-1.20\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-4\right)$, 1.22-1.38 ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{B}}-4, \mathrm{H}_{\mathrm{A}}-8, \mathrm{H}_{\mathrm{A}}-9$), 1.48-1.62 ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{B}}-8, \mathrm{H}_{\mathrm{B}}-9$ and $\mathrm{H}-6$ or $\mathrm{H}-7$), 1.73-1.84, 1.73-1.84 (3 H , $\mathrm{m}, \mathrm{H}-3, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 1.88-2.02 ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-2, \mathrm{H}-4 \mathrm{a}, \mathrm{H}_{\mathrm{B}}-5$), 2.46 ($2 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 2.58-2.68 (3H, m, $\mathrm{H}_{\mathrm{B}}-2, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 2.79-2.86 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9 \mathrm{a}$), 3.35-3.50 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}$), 7.14-7.31 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 19.3(\mathrm{C}-9), 23.3(\mathrm{C}-8), 28.3(\mathrm{C}-4), 29.5\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 31.1,31.3$ (C6, C-7), 33.8 (C-5, $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 37.0 (C-4a), 39.1 (C-3), $50.0(\mathrm{C}-2), 54.1\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 62.2$ (C-9a), $66.5\left(\mathrm{CH}_{2} \mathrm{OH}\right), 125.6(\mathrm{Ar}-\mathrm{CH}), 128.2(\mathrm{Ar}-\mathrm{CH}), 128.4(\mathrm{Ar}-\mathrm{CH}), 142.4(\mathrm{Ar}-\mathrm{C}) ;$ HRMS $(\mathrm{EI}+) \mathrm{m} / \mathrm{z}=[\mathrm{MH}]^{+}$ $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{NO}$ requires 302.2478 ; found 302.2483 .
4.4.6 ((3S,4aR,9aR)-1-((R)-1-Phenylethyl)decahydro-1H-cyclohepta[b]pyridin-3-yl)methanol 8f. To Using general method C ester $7 \mathbf{f}(0.100 \mathrm{~g}, 0.30 \mathrm{mmol})$ gave title compound $\mathbf{8 f}(0.086 \mathrm{~g}$, quant.) as a pale yellow oil, which was used without further purification. $[\alpha]_{\mathrm{D}}{ }^{20}+72\left(c 1.0, \mathrm{CHCl}_{3}\right) ; \mathrm{R}_{\mathrm{F}}=0.2$ (1:1 n-hexanes, ethyl acetate); $v_{\text {max }} / \mathrm{cm}^{-1} 3331,2929,2842,1451,1347,1063,1011 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 0.94-1.09 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-5\right.$ and $\mathrm{H}_{\mathrm{A}}-6$ or $\left.\mathrm{H}_{\mathrm{A}}-7\right), 1.23-1.31\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-4, \mathrm{NCH}\left(\mathrm{CH}_{3}\right) \mathrm{Ph}\right), 1.36-1.45\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-8, \mathrm{H}_{\mathrm{A}}-9\right), 1.53-1.71\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-3, \mathrm{H}_{\mathrm{B}}-8\right.$, $\mathrm{H}_{\mathrm{B}}-9$ and $\mathrm{H}_{\mathrm{B}}-6$ or $\mathrm{H}_{\mathrm{B}}-7$), 1.78-1.89 ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-2, \mathrm{H}_{\mathrm{B}}-4$, and $\mathrm{H}-6$ or $\mathrm{H}-7$), 1.94-2.02 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{B}}-5$), 2.04-2.11 $(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4 \mathrm{a}), 2.41-2.47\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{B}}-2\right), 3.18\left(1 \mathrm{H}, \mathrm{q}, J=5.0 \mathrm{~Hz}, \mathrm{NCH}\left(\mathrm{CH}_{3}\right) \mathrm{Ph}\right), 3.31(2 \mathrm{H}, \mathrm{dd}, J=1.6,6.1 \mathrm{~Hz}$, $\mathrm{CH}_{2} \mathrm{OH}$), $3.56-3.36$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9 \mathrm{a}$), $7.16-7.34(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 19.8$ (C-9), 22.2 $\left(\mathrm{NCH}\left(\mathrm{CH}_{3}\right) \mathrm{Ph}\right), 23.4(\mathrm{C}-8), 27.8(\mathrm{C}-4), 31.3,31.8$ (C-6, C-7), 34.3 (C-5), 37.1 (C-4a), $39.0(\mathrm{C}-3), 47.8$ (C-2), $58.1\left(\mathrm{NCH}\left(\mathrm{CH}_{3}\right) \mathrm{Ph}\right), 61.3(\mathrm{C}-9 \mathrm{a}), 66.6\left(\mathrm{CH}_{2} \mathrm{OH}\right), 126.5(\mathrm{Ar}-\mathrm{CH}), 127.3(\mathrm{Ar}-\mathrm{CH}), 128.4(\mathrm{Ar}-\mathrm{CH}), 147.6(\mathrm{Ar}-\mathrm{C})$; HRMS (EI+) $m / z=[\mathrm{MH}]^{+} \mathrm{C}_{19} \mathrm{H}_{30} \mathrm{NO}$ requires 288.2322; found 288.2321.
4.4.7 ((3S**,4aS",8aR $\left.{ }^{*}\right)$-1-Benzyl-5,7-dimethyldecahydroquinolin-3-yl)methanol 8g. Using general method C ester $7 \mathrm{~g}(0.08 \mathrm{~g}, 0.24 \mathrm{mmol})$ gave title compound $\mathbf{8 g}(0.069 \mathrm{~g}$, quant.) as a pale yellow oil, which was used without further purification. $\mathrm{R}_{\mathrm{F}}=0.18$ ($1: 1 n$-hexanes, ethyl acetate); $v_{\text {max }} / \mathrm{cm}^{-1} 3303,2918,2860,1494,1375$, 1121,$1015 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.65-0.76\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-6\right), 0.81\left(3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}, 5-\mathrm{CH}_{3}\right), 0.86(3 \mathrm{H}, \mathrm{d}, J=$ $\left.6.7 \mathrm{~Hz}, 7-\mathrm{CH}_{3}\right)$, $0.96-1.11\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-4\right.$ and $\left.\mathrm{H}_{\mathrm{A}}-8\right), 1.21-1.23(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 1.46-1.54\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-2\right), 1.70-1.77$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{B}}-6$), 1.81-1.96 (3H, m, H-4a, $\mathrm{H}_{\mathrm{B}}-4, \mathrm{H}-5$), 2.12-2.22 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-7, \mathrm{H}_{\mathrm{B}}-8$), 2.27-2.31 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{a}$), $2.86-2.93\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{B}}-2, \mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Ph}\right), 3.21-3.32\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}\right), 4.10\left(1 \mathrm{H}, \mathrm{d}, J=13.6 \mathrm{~Hz}, \mathrm{NCH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{Ph}\right), 7.16-$ $7.37(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{CH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 19.6\left(7-\mathrm{CH}_{3}\right), 22.6\left(5-\mathrm{CH}_{3}\right), 26.2(\mathrm{C}-5), 28.8(\mathrm{C}-7), 30.3(\mathrm{C}-4)$, 34.0 (C-4a), 38.9 (C-8), 43.9 (C-3), 45.3 (C-6), 57.0 and 57.1 (C-2, $\left.\mathrm{NCH}_{2} \mathrm{Ph}\right), 62.1$ (C-8a), $66.8\left(\mathrm{CH}_{2} \mathrm{OH}\right)$,
4.4.8 ((3S*, $\left.4 a S^{*}, 8 a R^{*}\right)-5,7-$ Dimethyl-1-(3-phenylpropyl)decahydroquinolin-3-yl)methanol $\mathbf{8 h}$. Using general method C ester $\mathbf{7 h}(0.084 \mathrm{~g}, 0.24 \mathrm{mmol})$ gave title compound $\mathbf{8 h}(0.072 \mathrm{~g}$, quant.) as a pale yellow oil, which was used without further purification. $\mathrm{R}_{\mathrm{F}}=0.25$ (1:1 n-hexanes, ethyl acetate); $v_{\max } / \mathrm{cm}^{-1} 3318,2918,2868$, $1453,1375,1114,1076,1038 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.56-0.66\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-6\right), 0.78\left(3 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}, 5-\mathrm{CH}_{3}\right)$, $0.82\left(3 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}, 7-\mathrm{CH}_{3}\right), 0.83-0.94\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-8, \mathrm{NCH}_{2} \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}_{2} \mathrm{Ph}\right), 1.11-1.19(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 1.62-$ 1.91 ($7 \mathrm{H}, \mathrm{m}, \mathrm{H}-4, \mathrm{H}-4 \mathrm{a}, \mathrm{H}-5, \mathrm{H}_{\mathrm{B}}-8, \mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}, \mathrm{NCH}_{2} \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{CH}_{2} \mathrm{Ph}$), 1.94-2.03 (1H, m, H-7), 2.25$2.30(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{a}), 2.37-2.70\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-2, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 3.00-3.06\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 3.28-$ $3.46\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{H}_{2} \mathrm{OH}\right), 7.13-7.29(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{CH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 19.7\left(7-\mathrm{CH}_{3}\right), 22.5\left(5-\mathrm{CH}_{3}\right), 25.0(\mathrm{C}-$ 4), 26.3 (C-5), 28.7 (C-7), $30.1\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 33.8\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 34.4$ (C-4a), 38.2 (C-8), 43.5 (C-3), $45.0(\mathrm{C}-6), 52.4(\mathrm{C}-2), 57.0\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 60.5(\mathrm{C}-8 \mathrm{a}), 66.9\left(\mathrm{CH}_{2} \mathrm{OH}\right), 125.6(\mathrm{Ar}-\mathrm{CH}), 128.2(\mathrm{Ar}-\mathrm{CH})$, $128.3\left(\right.$ Ar-CH), 142.3 (Ar-C); HRMS (EI+) $m / z=[M H]^{+} \mathrm{C}_{21} \mathrm{H}_{34}$ NO requires 316.2635; found 316.2647.
4.5 General Method D: Preparation of anthranilate esters 10. To a solution of alcohol $\mathbf{8}(1.0 \mathrm{mmol})$ in dry dichloromethane (15 mL) was added acid $9(2.0 \mathrm{mmol})$, DMAP $(0.1 \mathrm{mmol})$ and DCC (2.0 mmol) and the mixture was stirred for 18 h . The mixture was filtered through Celite and washed with ethyl acetate (90 mL). The filtered mixture was washed with aqueous $\mathrm{NaHCO}_{3}(2 \times 90 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the volatile solvents were removed in vacuo to give the crude product which was purified by flash column chromatography to give the desired anthranilate ester $\mathbf{1 0}$.
4.5.1 (($\left.3^{\prime \prime} S^{*}, 4 a^{\prime \prime} R^{*}, 8 a^{\prime \prime} R^{*}\right)-1^{\prime \prime}$-Benzyldecahydroquinolin-3"-yl)methyl 2-(3'-methyl-2',5'-dioxo-2', 5'-dihydro-1H-pyrrol-1'-yl) benzoate 10a. Using general method D alcohol $8 \mathbf{8 a}(0.080 \mathrm{~g}, 0.310 \mathrm{mmol})$ after purification by flash chromatography ($20 \% n$-hexanes in ethyl acetate) gave title compound $\mathbf{1 0 a}(0.077 \mathrm{~g}, 53 \%)$ as a green oil. $\mathrm{R}_{\mathrm{F}}=$ 0.7 (4:1 ethyl acetate, n-hexanes,); $v_{\max } / \mathrm{cm}^{-1} 3025,2929,1727,1714,1602,1494,1454,1393,1292,1259$, 1108; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) 1.04-1.14 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-7^{\prime \prime}$), 1.26-1.31 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6^{\prime \prime}$), 1.34-1.43 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4^{\prime \prime}$), 1.461.61 ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}-5^{\prime \prime}, \mathrm{H}^{\prime \prime}$), 1.69-1.79 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{B}}-7^{\prime \prime}$), 1.87-1.94 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime \prime}$), 1.97-2.10 ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}-4 \mathrm{a}^{\prime \prime}, 3^{\prime}-$ $\left.\mathrm{CH}_{3}\right), 2.22\left(1 \mathrm{H}, \mathrm{t}, J=11.2 \mathrm{~Hz}, \mathrm{H}_{\mathrm{A}}-2^{\prime \prime}\right), 2.58\left(1 \mathrm{H}, \mathrm{dd}, J=3.2,11.2 \mathrm{~Hz}, \mathrm{H}_{\mathrm{B}}-2^{\prime \prime}\right), 2.73-2.78\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{a}^{\prime \prime}\right), 3.58$ $\left(1 \mathrm{H}, \mathrm{d}, J=13.6 \mathrm{~Hz}, \mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Ph}\right), 3.73\left(1 \mathrm{H}, \mathrm{d}, J=13.6 \mathrm{~Hz}, \mathrm{NCH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{Ph}\right), 4.01-4.14\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right), 6.45(1 \mathrm{H}, \mathrm{s}$, H-4'), 7.21-7.34 (6H, m, H-6, Ar-H), $7.44(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}, \mathrm{H}-5), 7.61(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}, \mathrm{H}-4), 7.95(1 \mathrm{H}, \mathrm{d}, J=$ $8.0 \mathrm{~Hz}, \mathrm{H}-3)$; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 11.1\left(3^{\prime}-\mathrm{CH}_{3}\right), 17.6\left(\mathrm{C}-8^{\prime \prime}\right), 20.94\left(\mathrm{C}-6^{\prime \prime}\right), 25.4\left(\mathrm{C}-7^{\prime \prime}\right), 27.3\left(\mathrm{C}-4{ }^{\prime \prime}\right), 31.5(\mathrm{C}-$ $\left.5^{\prime \prime}\right), 35.0\left(\mathrm{C}-4 \mathrm{a}^{\prime \prime}\right), 36.1\left(\mathrm{C}-3^{\prime \prime}\right), 48.4\left(\mathrm{C}-2^{\prime \prime}\right), 58.4\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 58.9\left(\mathrm{C}-8 \mathrm{a}^{\prime \prime}\right), 68.3\left(\mathrm{CH}_{2} \mathrm{O}\right), 126.6(\mathrm{Ar}-\mathrm{CH}), 127.8$ (C-4'), 128.0 (C-1), 128.1 (Ar-CH), 128.5 (Ar-CH), 128.8 (C-5), 130.2 (C-6), 131.4 (C-3), 131.6 (C-2), 133.1 (C-4), 139.7 (Ar-C), 146.1 (C-3'), 164.7 (COO), $169.64\left(\mathrm{C}-2^{\prime}\right), 170.7\left(\mathrm{C}-5^{\prime}\right) ;$ HRMS (EI+) $\mathrm{m} / \mathrm{z}=[\mathrm{M}]^{+}$ $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires 427.23621; found 427.23547.
4.5.2 ((3"S** $\left.\left.4 a^{\prime \prime} R^{*}, 8 a^{\prime \prime} R^{*}\right)-1^{\prime \prime}-(3-P h e n y l p r o p y l) d e c a h y d r o q u i n o l i n-3^{\prime \prime}-y l\right) m e t h y l ~ 2-\left(3^{\prime}-m e t h y l-2^{\prime}, 5^{\prime}-\right.$ dioxo-2',5'-dihydro-lH-pyrrol-1'-yl) 10b. Using general method D alcohol $\mathbf{8 b}(0.112 \mathrm{~g}, 0.390 \mathrm{mmol})$ after purification by flash chromatography ($20 \% n$-hexanes in ethyl acetate) gave title compound $\mathbf{1 0 b}(0.180 \mathrm{~g}, 95 \%$) as a dark green oil. $\mathrm{R}_{\mathrm{F}}=0.65$ (4:1 ethyl acetate, n-hexanes,); $v_{\max } / \mathrm{cm}^{-1} 3028,2927,1727,1715,1600,1494,1398,1290,1106$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 1.03-1.1.17 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-7{ }^{\prime \prime}$), 1.29-1.40 (4H, m, H-4", H-6"), 1.41-1.50 (2H, m, H-8"), 1.54-1.59 (2H, m, H-5"), 1.68-1.84 ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{B}}-7^{\prime \prime}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 1.98-2.09 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime \prime}, \mathrm{H}-4 \mathrm{a}^{\prime \prime}$), 2.10$2.20\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-2^{\prime \prime}, 3^{\prime}-\mathrm{CH}_{3}\right), 2.44-2.57\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 2.61-2.65\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{B}}-2^{\prime \prime}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right)$, 2.76-2.80 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{a}^{\prime \prime}$), 4.04-4.21 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}$), $6.48\left(1 \mathrm{H}, \mathrm{t}, J=1.7 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right), 7.15-7.30(6 \mathrm{H}, \mathrm{m}, \mathrm{H}-6, \mathrm{Ar}-$ H), $7.49(1 \mathrm{H}, \mathrm{dt}, J=1.2,7.8 \mathrm{~Hz}, \mathrm{H}-5), 7.61(1 \mathrm{H}, \mathrm{dt}, J=1.2,7.8 \mathrm{~Hz}, \mathrm{H}-4), 8.07(1 \mathrm{H}, \mathrm{dd}, J=1.2,7.8 \mathrm{~Hz}, \mathrm{H}-3)$; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 11.1\left(3^{\prime}-\mathrm{CH}_{3}\right), 16.9\left(\mathrm{C}-8^{\prime \prime}\right), 20.9$ (C-6"), 25.5 (C-7"), 27.3 (C-4"), 29.4 $\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right)$, 31.5 (C-5"), $33.7\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right)$, 35.1 ($\left.\mathrm{C}-4 \mathrm{a}^{\prime \prime}\right)$, 36.1 (C-3"), $49.1\left(\mathrm{C}-2^{\prime \prime}\right), 53.4$ $\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 58.5\left(\mathrm{C}-8 \mathrm{a}^{\prime \prime}\right), 68.4\left(\mathrm{CH}_{2} \mathrm{O}\right), 125.6(\mathrm{Ar}-\mathrm{CH}), 127.9\left(\mathrm{C}-4{ }^{\prime}\right), 128.1(\mathrm{C}-1), 128.2(\mathrm{Ar}-\mathrm{CH}), 128.3$ (Ar-CH), 128.9 (C-5), 130.3 (C-6), 131.5 (C-3), 131.6 (C-2), 133.1 (C-4), 142.3 (Ar-C), 146.2 (C-3'), 164.8 $(\mathrm{COO}), 169.7\left(\mathrm{C}-2^{\prime}\right), 170.7(\mathrm{C}-5 ')$; HRMS (EI+) $m / z=[\mathrm{M}]^{+} \mathrm{C}_{31} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires 500.26751; found 500.26752.
4.5.3 ((3"S,4a" $\left.\left.R, 8 a^{\prime \prime} R\right)-1 "-((R)-1-P h e n y l e t h y l) d e c a h y d r o q u i n o l i n-3 "-y l\right) m e t h y l ~ 2-(3 '-m e t h y l-2 ', 5 '-d i o x o-2 ', 5 '-~$ dihydro-lH-pyrrol-1'-yl)benzoate 10c. Using general method D alcohol 8c ($0.100 \mathrm{~g}, 0.360 \mathrm{mmol}$) after purification by flash chromatography ($20 \% n$-hexanes in ethyl acetate) gave title compound $\mathbf{1 0 c}(0.121 \mathrm{~g}, 70 \%$) as a green oil. $[\alpha]_{\mathrm{D}}{ }^{20}+46\left(c 1.0, \mathrm{CHCl}_{3}\right) ; \mathrm{R}_{\mathrm{F}}=0.5(4: 1$ ethyl acetate, n-hexanes, $) ; v_{\max } / \mathrm{cm}^{-1} 2931,2852,1710$, $\left(3 \mathrm{H}, \mathrm{m}, \mathrm{NCH}\left(\mathrm{CH}_{3}\right) \mathrm{Ph}\right), 1.29-1.44\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}^{\prime \prime}, \mathrm{H}^{\prime \prime} 6^{\prime \prime}\right), 1.52-1.63\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-5^{\prime \prime}, \mathrm{H}-8^{\prime \prime}\right), 1.71-1.80\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{B}^{-}}\right.$ $7^{\prime \prime}$), 1.89-2.08 ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-2^{\prime \prime}, \mathrm{H}^{\prime \prime} 3^{\prime \prime}, \mathrm{H}-4 \mathrm{a}^{\prime \prime}$), $2.13\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{CH}_{3}\right.$), $2.52\left(1 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}, \mathrm{H}_{\mathrm{B}}-2^{\prime \prime}\right), 3.10-3.17$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{a}^{\prime \prime}\right), 3.61\left(1 \mathrm{H}, \mathrm{q}, J=6.5 \mathrm{~Hz}, \mathrm{NCH}\left(\mathrm{CH}_{3}\right) \mathrm{Ph}\right), 3.82-2.87\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{O}\right), 3.96-4.01(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{O}\right), ~ 6.45-6.46\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4{ }^{\prime}\right), 7.21-7.39(7 \mathrm{H}, \mathrm{m}, \mathrm{H}-5, \mathrm{H}-6, \mathrm{Ar}-\mathrm{H}), 7.56-7.65(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3, \mathrm{H}-4) ; \delta_{\mathrm{C}}(100$
 $\left.5^{\prime \prime}\right), 35.2\left(\mathrm{C}-4 \mathrm{a}^{\prime \prime}\right), 36.2\left(\mathrm{C}-3^{\prime \prime}\right), 47.0\left(\mathrm{C}-2^{\prime \prime}\right), 55.3\left(\mathrm{NCH}\left(\mathrm{CH}_{3}\right) \mathrm{Ph}\right), 60.5\left(\mathrm{C}-8 \mathrm{a}^{\prime \prime}\right), 70.0\left(\mathrm{CH}_{2} \mathrm{O}\right), 126.5(\mathrm{Ar}-\mathrm{CH})$, 127.0 (C-4'), 127.8 (C-1), 127.9 (Ar-CH), 128.2 (Ar-CH), 128.8 (C-5), 130.1 (C-6), 131.2 (C-3), 131.6 (C-2), 132.9 (C-4), 146.0 (C-3', Ar-C), 164.44 (COO), 169.4 (C-2'), 170.7 (C-5'); HRMS (EI+) m/z = CM^{+} $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires 486.25186; found 486.25221 .
4.5.4 (($\left.3^{\prime \prime} S^{*}, 4 a^{\prime \prime} R^{*}, 9 a^{\prime \prime} R^{*}\right)-1^{\prime \prime}$-Benzyldecahydro-1I-cyclohepta[b]pyridin-3"-yl)methyl 2-(3'-methyl-2',5'-dioxo-2',5'-dihydro-1I-pyrrol-1'-yl)benzoate 10d. Using general method D alcohol 8d ($0.120 \mathrm{~g}, 0.44 \mathrm{mmol}$) after purification by flash chromatography ($50 \% n$-hexanes in ethyl acetate) gave title compound $\mathbf{1 0 d}(0.167 \mathrm{~g}, 78 \%$) as a light green oil. $\mathrm{R}_{\mathrm{F}}=0.55$ (3:1 ethyl acetate, n-hexanes,); $v_{\max } / \mathrm{cm}^{-1} 2930,1715,1497,1453,1371,1260$, $1072 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 0.94-1.19 ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-4^{\prime \prime}, \mathrm{H}_{\mathrm{A}}-5^{\prime \prime}, \mathrm{H}_{\mathrm{A}}-6^{\prime \prime}, \mathrm{H}_{\mathrm{A}}-7^{\prime \prime}$), 1.21-1.30 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-8^{\prime \prime}$), 1.31$1.40\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{A^{\prime}}-9^{\prime \prime}\right), 1.50-1.61\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{B}}-6^{\prime \prime}\right.$ or $\mathrm{H}_{\mathrm{B}}-7^{\prime \prime}$ and $\left.8^{\prime \prime}-\mathrm{H}_{\mathrm{B}}\right), 1.62-1.70\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{B}}-9^{\prime \prime}\right), 1.71-1.81(2 \mathrm{H}, \mathrm{m}$, $\mathrm{H}_{\mathrm{B}}-4^{\prime \prime}$ and $\mathrm{H}_{\mathrm{B}}-6^{\prime \prime}$ or $\left.\mathrm{H}_{\mathrm{B}}-7^{\prime \prime}\right)$, 1.85-1.94 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{B}}-5^{\prime \prime}$), 1.95-2.00 ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-2^{\prime \prime}, \mathrm{H}-3^{\prime \prime}, \mathrm{H}-4 \mathrm{a}^{\prime \prime}$), 2.15 ($3 \mathrm{H}, \mathrm{s}, 3^{\prime}-$ $\left.\mathrm{CH}_{3}\right), 2.56\left(1 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}, \mathrm{H}_{\mathrm{B}}-2^{\prime \prime}\right), 2.77-2.83\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9 \mathrm{a}^{\prime \prime}\right), 3.58-3.69\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 3.91-4.05(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{O}\right), 6.44\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4^{\prime}\right), 7.19-7.35(6 \mathrm{H}, \mathrm{m}, \mathrm{H}-6, \mathrm{Ar}-\mathrm{H}), 7.44(1 \mathrm{H}, \mathrm{td}, J=1.4,7.5 \mathrm{~Hz}, \mathrm{H}-5), 7.61(1 \mathrm{H}, \mathrm{td}, J=$ $1.4,7.5 \mathrm{~Hz}, \mathrm{H}-4), 7.93(1 \mathrm{H}, \mathrm{dd}, J=1.4,7.5 \mathrm{~Hz}, \mathrm{H}-3)$; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 11.1\left(3^{\prime}-\mathrm{CH}_{3}\right), 19.8\left(\mathrm{C}-9^{\prime \prime}\right), 23.3(\mathrm{C}-$ $\left.8^{\prime \prime}\right)$, 28.0 (C-4"), 31.1, 31.4 (C-6", C-7"), 33.7 (C-5"), 36.0 (C-4a"), 37.0 (C-3"), 49.1 (C-2"), 58.8 ($\mathrm{NCH}_{2} \mathrm{Ph}$), $62.1\left(\mathrm{C}-9 \mathrm{a}^{\prime \prime}\right), 68.1\left(\mathrm{CH}_{2} \mathrm{O}\right), 126.6(\mathrm{Ar}-\mathrm{CH}), 127.8(\mathrm{C}-1), 128.1(2 \times \mathrm{Ar}-\mathrm{CH}), 128.5\left(\mathrm{C}-4^{\prime}\right), 128.8(\mathrm{C}-5), 130.2$ (C-6), 131.4 (C-3), 131.5 (C-2), 133.0 (C-4), 139.5 (Ar-C), 146.1 (C-3'), 164.7 (COO), 169.6 (C-2'), 170.7 (C5^{\prime}); HRMS (EI+) $m / z=[\mathrm{MH}]^{+} \mathrm{C}_{30} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires 487.2591; found 487.2580 .
4.5.5 (($\left.\left.3^{\prime \prime} S^{*}, 4 a^{\prime \prime} R^{*}, 9 a^{\prime \prime} R^{*}\right)-1^{\prime \prime}-(3-P h e n y l p r o p y l) d e c a h y d r o-1 H-c y c l o h e p t a[b] p y r i d i n-3 "-y l\right) m e t h y l ~ 2-(3 '-m e t h y l-$ $2^{\prime}, 5^{\prime}$-dioxo- $2^{\prime}, 5^{\prime}$-dihydro-1H-pyrrol-1'-yl)benzoate 10e. Using general method D alcohol 8e ($0.120 \mathrm{~g}, 0.40$ mmol) after purification by flash chromatography ($50 \% n$-hexanes in ethyl acetate) gave title compound $\mathbf{1 0 e}$ $(0.136 \mathrm{~g}, 64 \%)$ as a green oil. $\mathrm{R}_{\mathrm{F}}=0.45$ (1:1 ethyl acetate, n-hexanes, $) ; v_{\max } / \mathrm{cm}^{-1} 2928,2853,1709,1585,1449$, $1256,1134,1085 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 0.93-1.04 (3H, m, $\mathrm{H}_{\mathrm{A}}-5^{\prime \prime}$ and H-6" or H-7"), 1.13-1.19 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4^{\prime \prime}$), 1.23-1.40 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-8^{\prime \prime}, \mathrm{H}_{\mathrm{A}}-9^{\prime \prime}$), 1.50-1.62 ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{B}}-8^{\prime \prime}, \mathrm{H}_{\mathrm{B}}-9^{\prime \prime}$, and $\mathrm{H}-6^{\prime \prime}$ or $\mathrm{H}-7^{\prime \prime}$), 1.74-1.84 ($2 \mathrm{H}, \mathrm{m}$, $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 1.90-2.03 ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-2^{\prime \prime}, \mathrm{H}-3^{\prime \prime}, \mathrm{H}-4 \mathrm{a}^{\prime \prime}, \mathrm{H}_{\mathrm{B}}-5^{\prime \prime}$), $2.16\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{CH}_{3}\right), 2.46(2 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}$, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 2.57\left(1 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}, \mathrm{H}_{\mathrm{B}}-2^{\prime \prime}\right), 2.63\left(2 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 2.80-2.86(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{H}-9 \mathrm{a}^{\prime \prime}\right), 3.97-4.07\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right), 6.47\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4^{\prime}\right), 7.16-7.32(6 \mathrm{H}, \mathrm{m}, \mathrm{H}-6, \mathrm{Ar}-\mathrm{H}), 7.50(1 \mathrm{H}, \mathrm{td}, J=1.3,7.7$ $\mathrm{Hz}, \mathrm{H}-5), 7.64(1 \mathrm{H}, \mathrm{td}, J=1.3,7.7 \mathrm{~Hz}, \mathrm{H}-4), 8.06(1 \mathrm{H}, \mathrm{dd}, J=1.3,7.7 \mathrm{~Hz}, \mathrm{H}-3) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 11.2$ (3'CH_{3}), 19.1 ($\mathrm{C}-9^{\prime \prime}$), 23.3 ($\mathrm{C}-8^{\prime \prime}$), 28.3 (C-4"), $29.6\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right.$), 31.2, 31.5 (C-6", C-7"), 33.8 (C-5", $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 36.1\left(\mathrm{C}-4 \mathrm{a}^{\prime \prime}\right), 37.1\left(\mathrm{C}-3^{\prime \prime}\right), 49.9\left(\mathrm{C}-2^{\prime \prime}\right), 53.9\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 61.8\left(\mathrm{C}-9 \mathrm{a}^{\prime \prime}\right), 68.3\left(\mathrm{CH}_{2} \mathrm{O}\right)$, 125.6 (Ar-CH), 127.9 (C-1), 128.1 (Ar-CH), 128.3 (Ar-CH), 128.4 (C-4'), 128.9 (C-5), 130.1 (C-6), 131.5 (C-3), 131.8 (C-2), 133.3 (C-4), 142.5 (Ar-C), 146.2 (C-3'), 164.9 (COO), 169.6 (C-2'), 170.7 (C-5'); HRMS (EI+) m/z $=[\mathrm{MH}]^{+} \mathrm{C}_{32} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires 515.2904; found 515.2902.
4.5.6 (($\left.3^{\prime \prime} \mathrm{S}, 4 a^{\prime \prime} R, 9 a^{\prime \prime} R\right)-1^{\prime \prime}-((R)-1-P h e n y l e t h y l)$ decahydro-1H-cyclohepta[b]pyridin-3"-yl)methyl 2-(3'-methyl-2',5'-dioxo-2',5'-dihydro-1H-pyrrol-1'-yl)benzoate 10f. Using general method D alcohol $\mathbf{8 f}(0.080 \mathrm{~g}, 0.28 \mathrm{mmol})$ after purification by flash chromatography ($50 \% n$-hexanes in ethyl acetate) gave title compound $\mathbf{1 0 f}(0.122 \mathrm{~g}$, $88 \%)$ as a tan oil. $[\alpha]_{\mathrm{D}}{ }^{20}+28\left(c 1.0, \mathrm{CHCl}_{3}\right) ; \mathrm{R}_{\mathrm{F}}=0.35$ (1:1 ethyl acetate, n-hexanes, $) ; v_{\max } / \mathrm{cm}^{-1} 2929,1709$, $1495,1451,1375,1256,1083 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.27\left(3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}, \mathrm{NCH}\left(\mathrm{CH}_{3}\right) \mathrm{Ph}\right), 1.34-1.45(2 \mathrm{H}, \mathrm{m}$, $\mathrm{H}_{\mathrm{A}}-8^{\prime \prime}, \mathrm{H}_{\mathrm{A}}-9^{\prime \prime}$), 1.53-1.68 (4H, m, H-6" or H-7", $\left.\mathrm{H}_{\mathrm{B}}-8^{\prime \prime}, \mathrm{H}_{\mathrm{B}}-9^{\prime \prime}\right)$, 1.79-1.90 ($6 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-2^{\prime \prime}, \mathrm{H}-4^{\prime \prime}, \mathrm{H}-4 \mathrm{a}^{\prime \prime}, \mathrm{H}-6^{\prime \prime}$ or $\left.\mathrm{H}-7^{\prime \prime}\right), 1.94-2.03\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-5^{\prime \prime}\right), 2.04-2.12\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime \prime}\right), 2.49\left(3 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, 3^{\prime}-\mathrm{CH}_{3}\right), 3.21-3.27(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{NCH}\left(\mathrm{CH}_{3}\right) \mathrm{Ph}\right), 3.56-3.63\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9 \mathrm{a}^{\prime \prime}\right), 3.75-3.84\left(1 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 3.92-3.97\left(1 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{\mathrm{A}} H_{\mathrm{B}}\right), 7.15-7.41$ ($6 \mathrm{H}, \mathrm{m}, \mathrm{H}-4^{\prime}, \mathrm{H}-2, \mathrm{H}-3, \mathrm{Ar}-\mathrm{H}$), 7.48-7.65 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4, \mathrm{H}-5$); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 11.2$ ($3^{\prime}-\mathrm{CH}_{3}$), 19.6 (C-9"), $22.1\left(\mathrm{NCH}\left(\mathrm{CH}_{3}\right) \mathrm{Ph}\right), 23.5\left(\mathrm{C}-8^{\prime \prime}\right), 27.9\left(\mathrm{C}-4^{\prime \prime}\right), 31.4,31.9\left(\mathrm{C}-6^{\prime \prime}, \mathrm{C}-7^{\prime \prime}\right), 34.2\left(\mathrm{C}-5^{\prime \prime}\right), 36.2\left(\mathrm{C}-4 \mathrm{a}^{\prime \prime}\right), 37.3$ (C-3"), $48.0\left(\mathrm{C}-2^{\prime \prime}\right), 57.9\left(\mathrm{NCH}\left(\mathrm{CH}_{3}\right) \mathrm{Ph}\right), 61.2\left(\mathrm{C}-9 \mathrm{a}^{\prime \prime}\right), 127.8(\mathrm{Ar}-\mathrm{CH}), 127.9\left(\mathrm{C}-4^{\prime}\right), 128.0(\mathrm{Ar}-\mathrm{CH}) 128.8(\mathrm{Ar}-\mathrm{CH})$, 129.3 (C-5), 131.4 (C-6), 131.6 (C-3), 133.0 (C-4), 146.1 (C-3', Ar-C), 164.7 (COO), 169.6 (C-2'), 170.6 (C-5'); HRMS (EI+) $m / z=[\mathrm{MH}]^{+} \mathrm{C}_{31} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires 501.2740; found 501.2748.
$4.5 .7 \quad\left(\left(3^{\prime \prime} S^{*}, 4 a^{\prime \prime} S^{*}, 8 a^{\prime \prime} R^{*}\right)-l^{\prime \prime}\right.$-Benzyl-5",7"-dimethyldecahydroquinolin-3"-yl)methyl 2-(3'-methyl-2',5'-dioxo$2^{\prime}, 5^{\prime}-$ dihydro-1H-pyrrol-1'-yl)benzoate $\mathbf{1 0 g}$. Using general method D alcohol $\mathbf{8 g}(0.065 \mathrm{~g}, 0.23 \mathrm{mmol})$ after purification by flash chromatography ($50 \% n$-hexanes in ethyl acetate) gave title compound $\mathbf{1 0 g}(0.081 \mathrm{~g}, 70 \%)$ as a light brown oil. $\mathrm{R}_{\mathrm{F}}=0.20$ (1:1 ethyl acetate, n-hexanes,); $v_{\text {max }} / \mathrm{cm}^{-1}$ 2930, 2851, 1718, 1440, 1111; $\delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.69-0.75\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-6^{\prime \prime}\right), 0.82\left(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, 5^{\prime \prime}-\mathrm{CH}_{3}\right), 0.85\left(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, 7^{\prime \prime}-\mathrm{CH}_{3}\right)$,
 $6^{\prime \prime}$), 1.87-2.00 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{B}}-4^{\prime \prime}$ and $\mathrm{H}-5^{\prime \prime}$), 2.04-2.21 ($6 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{an}^{\prime \prime}, \mathrm{H}-7^{\prime \prime}, \mathrm{H}_{\mathrm{B}}-8^{\prime \prime}, 3^{\prime}-\mathrm{CH}_{3}$), 2.31-2.35 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ $\left.8 \mathrm{a}^{\prime \prime}\right), 2.87-2.96\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{B}}-2^{\prime \prime}, \mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Ph}\right), 3.80-4.00\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right), 4.08-4.15\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{A} H_{\mathrm{B}} \mathrm{Ph}\right), 6.44$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4^{\prime}$), $7.16-7.36$ ($6 \mathrm{H}, \mathrm{m}, \mathrm{H}-6, \mathrm{Ar}-\mathrm{CH}$), 7.39 ($1 \mathrm{H}, \mathrm{td}, J=1.5,7.7 \mathrm{~Hz}, \mathrm{H}-5$), $7.60(1 \mathrm{H}, \mathrm{td}, J=1.5,7.7 \mathrm{~Hz}$, $\mathrm{H}-4), 7.76(1 \mathrm{H}, \mathrm{dd}, J=1.5,7.7 \mathrm{~Hz}, \mathrm{H}-3)$; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 11.3\left(3^{\prime}-\mathrm{CH}_{3}\right), 19.7\left(7^{\prime \prime}-\mathrm{CH}_{3}\right), 22.6\left(5^{\prime \prime}-\mathrm{CH}_{3}\right)$, 26.2 (C-5"), 28.8 (C-7"), 30.3 (C-4"), 31.1 (C-4a"), 38.7 (C-8"), 44.1 (C-3"), 45.2 (C-6"), 56.8 (C-2", $\mathrm{NCH}_{2} \mathrm{Ph}$), 62.1 (C-8a"), $68.4\left(\mathrm{CH}_{2} \mathrm{O}\right), 126.5(\mathrm{Ar}-\mathrm{CH}), 127.8(\mathrm{Ar}-\mathrm{CH}), 128.0(\mathrm{C}-1), 128.1$ (Ar-CH), 128.7 (C-4), 128.8 (C5), 130.2 (C-3), 131.5 (C-6), 131.6 (C-2), 133.0 (C-4), 140.0 (Ar-C), 146.1 (C-3'), 164.6 (COO), 169.7 (C-2'), 170.7 (C-5'); HRMS (EI+) $m / z=[\mathrm{MH}]^{+} \mathrm{C}_{31} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires 501.2748; found 501.2760.
4.5.8 ((3"S",4a"S $\left.S^{*}, 8 a^{\prime \prime} R^{*}\right)-5^{\prime \prime}, 7^{\prime \prime}-$ Dimethyl-1"-(3-phenylpropyl)decahydroquinolin-3"-yl)methyl 2-(3'-methyl-2',5'-dioxo-2',5'-dihydro-lH-pyrrol-1'-yl)benzoate 10h. Using general method D alcohol $\mathbf{8 h}(0.065 \mathrm{~g}, 0.21$ mmol) after purification by flash chromatography ($50 \% n$-hexanes in ethyl acetate) gave title compound $\mathbf{1 0 h}$ $(0.085 \mathrm{~g}, 77 \%)$ as a pale green oil. $\mathrm{R}_{\mathrm{F}}=0.60$ (2:1 ethyl acetate, n-hexanes,); $v_{\text {max }} / \mathrm{cm}^{-1} 2935,2844,1717,1438$, $1114 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.63\left(1 \mathrm{H}, \mathrm{q}, J=12.5 \mathrm{~Hz}, \mathrm{H}-6^{\prime \prime}\right), 0.77\left(3 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}, 5^{\prime \prime}-\mathrm{CH}_{3}\right), 0.82(3 \mathrm{H}, \mathrm{d}, J=$ $\left.6.5 \mathrm{~Hz}, 7^{\prime \prime}-\mathrm{CH}_{3}\right), 0.86-0.94\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-8^{\prime \prime}\right), 0.97-1.05\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}_{\mathrm{A}} \mathrm{CH}_{\mathrm{B}} \mathrm{CH}_{2} \mathrm{Ph}\right), 1.15-1.22\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime \prime}\right)$, $1.64-1.74\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-5^{\prime \prime}\right.$ and $\left.\mathrm{H}_{\mathrm{B}}-6^{\prime \prime}\right)$, 1.76-2.03 ($6 \mathrm{H}, \mathrm{m}, \mathrm{H}-4^{\prime \prime}, \mathrm{H}-7^{\prime \prime}, \mathrm{H}_{\mathrm{B}}-8^{\prime \prime}, \mathrm{NCH}_{2} \mathrm{CH}_{A} H_{B} \mathrm{CH}_{2} \mathrm{Ph}$, $\mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), $2.07-2.14\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4 \mathrm{a}^{\prime \prime}\right), 2.16\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{CH}_{3}\right), 2.28-2.33\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{a}^{\prime \prime}\right), 2.40-2.48(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{H}_{\mathrm{A}}-2^{\prime \prime}\right), 2.49-2.56\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Ph}\right), 2.86-2.90\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{B}}-2^{\prime \prime}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{Ph}\right), 3.00-3.04$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 3.90-4.06\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right), 6.50\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4^{\prime}\right), 7.13-7.31(6 \mathrm{H}, \mathrm{m}, \mathrm{H}-6, \mathrm{Ar}-\mathrm{CH})$, $7.45-7.53(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5), 7.60-7.68(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4), 8.70(1 \mathrm{H}, \mathrm{dd}, J=1.5,7.6 \mathrm{~Hz}, \mathrm{H}-3)$; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 11.1$ $\left(3^{\prime}-\mathrm{CH}_{3}\right), 19.7\left(7^{\prime \prime}-\mathrm{CH}_{3}\right), 22.5\left(5^{\prime \prime}-\mathrm{CH}_{3}\right), 25.0\left(\mathrm{C}-4^{\prime \prime}\right), 26.4\left(\mathrm{C}-5^{\prime \prime}\right), 28.7\left(\mathrm{C}-7^{\prime \prime}\right), 30.1\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 31.3$ (C$\left.4 \mathrm{a}^{\prime \prime}\right), 33.8\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 38.2$ (C-8"), 43.4 (C-3"), 45.0 (C-6"), $52.2\left(\mathrm{C}-2^{\prime \prime}\right), 57.0\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 60.2$ (C-8a"), 68.8 ($\mathrm{CH}_{2} \mathrm{O}$), 125.7 ($\mathrm{Ar}-\mathrm{CH}$), 127.4 (C-1), 127.8 (Ar-CH), 128.2 (C-4), 128.3 (Ar-CH), 128.4 (C-5), 128.9 (C-6), 130.3 (C-3), 131.7 (C-2), 133.2 (C-4), 142.3 (Ar-C), 146.4 (C-3'), 164.7 (COO), 169.7 (C-2)), 170.8 (C-5'); HRMS (EI+) $m / z=[\mathrm{MH}]^{+} \mathrm{C}_{31} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires 529.3061; found 529.3055.
4.6 General Method E: Preparation of succinimido anthranilates 11. To a solution of anthranilate ester $\mathbf{1 0}$ $(1.0 \mathrm{mmol})$ in ethyl acetate (15 mL) was added 10% palladium on carbon (60 mg) and the resulting mixture was stirred under hydrogen (1 atm) for 18 h . The mixture was filtered through Celite which was washed with ethyl acetate (50 mL) and the volatile solvents were removed in vacuo to give the desired succinimide anthranilate $\mathbf{1 1}$.
4.6.1 ((3"S*,4a" $\left.R^{*}, 8 a^{\prime \prime} R^{*}\right)-1^{\prime \prime}-$ Benzyldecahydroquinolin-3"-yl)methyl 2-(3'-methyl-2',5'-dioxopyrrolidin-1'yl)benzoate 11a. Using general method E anthranilate ester 10a $(0.077 \mathrm{~g}, 0.160 \mathrm{mmol})$ gave title compound 11a $(0.075 \mathrm{~g}, 97 \%)$ as a tan oil. $\mathrm{R}_{\mathrm{F}}=0.7$ (4:1 ethyl acetate, n-hexanes,); $v_{\max } / \mathrm{cm}^{-1} 2926,2853,1713,1603,1493$, $1389,1290,1259,1184,1036,1082,1044 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.05-1.14\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-7\right.$ "), 1.26-1.34 ($2 \mathrm{H}, \mathrm{m}$, H-6"), 1.36-1.49 ($5 \mathrm{H}, \mathrm{m}, \mathrm{H}-4^{\prime \prime}, 3^{\prime}-\mathrm{CH}_{3}$), 1.50-1.61 ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}-5^{\prime \prime}, \mathrm{H}-8^{\prime \prime}$), 1.69-1.77 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{B}}-7^{\prime \prime}$), 1.83-1.97 $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime \prime}\right), 2.00-2.12\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4 \mathrm{a}^{\prime \prime}\right), 2.24$ ($1 \mathrm{H}, \mathrm{t}, J=11.3 \mathrm{~Hz}, \mathrm{H}_{\mathrm{A}}-2^{\prime \prime}$), 2.42-2.60 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4^{\prime}$), 2.62-2.65 $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{B}}-2^{\prime \prime}\right), 2.72-2.81\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{a}^{\prime \prime}\right), 2.98-3.13\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime}\right), 3.60\left(1 \mathrm{H}, \mathrm{d}, J=13.4 \mathrm{~Hz}, \mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Ph}\right), 3.74$ $\left(1 \mathrm{H}, \mathrm{d}, J=13.4 \mathrm{~Hz}, \mathrm{NCH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{Ph}\right), 3.98-4.25\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right), 7.21-7.36(6 \mathrm{H}, \mathrm{m}, \mathrm{H}-6, \mathrm{Ar}-\mathrm{H}), 7.46(1 \mathrm{H}, \mathrm{dt}, J=$ $1.3,7.7 \mathrm{~Hz}, \mathrm{H}-5), 7.63(1 \mathrm{H}, \mathrm{dt}, J=1.3,7.7 \mathrm{~Hz}, \mathrm{H}-4), 7.96(1 \mathrm{H}, \mathrm{d}, J=10.0 \mathrm{~Hz}, \mathrm{H}-3)$; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 16.2$ $\left(3^{\prime}-\mathrm{CH}_{3}\right), 16.4\left(3^{\prime}-\mathrm{CH}_{3}{ }^{*}\right), 17.7\left(\mathrm{C}-8^{\prime \prime}\right), 20.9\left(\mathrm{C}-6^{\prime \prime}\right), 25.4$ (C-7"), 27.3 (C-4"), $31.5\left(\mathrm{C}-5^{\prime \prime}\right), 33.9\left(\mathrm{C}-4-\mathrm{a}^{\prime \prime}\right), 35.2$ (C3^{\prime}), 35.5 (C-3') 36.1 (C-3'), 36.9 (C-4'), 48.4 (C-2"), $58.4\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 59.0\left(\mathrm{C}-8 \mathrm{a}^{\prime \prime}\right), 68.1\left(\mathrm{CH}_{2} \mathrm{O}\right), 122.7$ (ArCH), 127.3 (C-1), 128.1 (Ar-CH), 128.5 (Ar-CH), 129.2 (C-5), 129.7 (C-6), 131.4 (C-3), 132.6 (C-2), 133.2 (C4), 139.6 (Ar-C), 164.1 (COO), 171.0 (C-2'), 179.8 (C-5'); HRMS (EI +) $m / z=\left[\mathrm{M}^{+} \mathrm{C}_{29} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{4}\right.$ requires 474.25186; found 474.25225 .
4.6.2 $\quad\left(\left(3^{\prime \prime} S^{*}, 4 a^{\prime \prime} R^{*}, 8 a^{\prime \prime} R^{*}\right)-l^{\prime \prime}-(3-\right.$ Phenylpropyl $)$ decahydroquinolin-3"-yl)methyl 2-(3'-methyl-2',5'-dioxopyrrolidin- 1^{\prime}-yl)benzoate 11b. Using general method E anthranilate ester $\mathbf{1 0 b}(0.180 \mathrm{~g}, 0.360 \mathrm{mmol})$ gave title compound $\mathbf{1 1 b}(0.172 \mathrm{~g}, 95 \%)$ as a green oil. $\mathrm{R}_{\mathrm{F}}=0.7$ ($4: 1$ ethyl acetate, n-hexanes,); $v_{\max } / \mathrm{cm}^{-1} 2928,2853$, $1711,1602,1493,1389,1184,1031 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.02-1.98\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-7^{\prime \prime}\right), 1.23-1.52\left(9 \mathrm{H}, \mathrm{m}, \mathrm{H}-4^{\prime \prime}\right.$,
$\mathrm{H}-6^{\prime \prime}, \mathrm{H}-8^{\prime \prime}, 3^{\prime}-\mathrm{CH}_{3}$), 1.57-1.62 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-5^{\prime \prime}$), 1.72-1.80 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{B}}-7^{\prime \prime}$), 1.81-1.92 ($2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 2.02-2.07 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4 \mathrm{a}^{\prime \prime}$), 2.14-2.20 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}^{-}} 2^{\prime \prime}, \mathrm{H}-3^{\prime}$), 2.47-2.59 (3H, m, $\left.\mathrm{H}_{\mathrm{A}^{-}} 4^{\prime}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 2.61-$ $2.65\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 2.71-2.80\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{B}}-2^{\prime \prime}\right), 2.82-2.93\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{a}^{\prime \prime}\right), 2.95-3.14\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime}\right.$, $\left.\mathrm{H}_{\mathrm{B}}-4^{\prime}\right), 4.06-4.13\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right), 7.14-7.28(6 \mathrm{H}, \mathrm{m}, \mathrm{H}-6, \mathrm{Ar}-\mathrm{H}), 7.50(1 \mathrm{H}, \mathrm{dt}, J=1.2,7.7 \mathrm{~Hz}, \mathrm{H}-5), 7.64(1 \mathrm{H}$, $\mathrm{dt}, J=1.2,7.7 \mathrm{~Hz}, \mathrm{H}-4), 8.07(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{H}-3) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 16.2\left(3^{\prime}-\mathrm{CH}_{3}\right), 16.4\left(3^{\prime}-\mathrm{CH}_{3}{ }^{*}\right)$, 17.0 (C-8"), 20.9 (C-6"), 25.3 (C-7"), 27.0 (C-4"), 28.7 ($\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 31.3 (C-5"), 33.4 $\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right)$, 34.6 (C-4a"), 35.0 (C-3'), 35.2 (C-3'), 35.7 (C-3"), 36.8 (C-4'), 48.9 (C-2"), 53.2 $\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 58.4\left(\mathrm{C}-8 \mathrm{a}^{\prime \prime}\right), 67.9\left(\mathrm{CH}_{2} \mathrm{O}\right), 125.6(\mathrm{Ar}-\mathrm{CH}), 127.2(\mathrm{C}-1), 128.1(\mathrm{Ar}-\mathrm{CH}), 128.2(\mathrm{Ar}-\mathrm{CH})$, 129.2 (C-5), 129.7 (C-6), 131.3 (C-3), 132.6 (C-2), 133.2 (C-4), 141.9 (Ar-C), 164.2 (COO), 175.8 (C-2'), 179.7 $\left(\mathrm{C}-5^{\prime}\right)$; HRMS $(\mathrm{EI}+) \mathrm{m} / \mathrm{z}=[\mathrm{M}]^{+} \mathrm{C}_{31} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires 502.28316; found 502.28394.
4.6.3 ((3"S,4a"R,8a"R)-1"-((R)-1-Phenylethyl)decahydroquinolin-3"-yl)methyl 2-(3'-methyl-2',5'-dioxopyrrolidin- $\left.l^{\prime}-y l\right)$ benzoate 11c. Using general method E anthranilate ester $10 \mathrm{c}(0.100 \mathrm{~g}, 0.205 \mathrm{mmol})$ gave title compound 11c $(0.095 \mathrm{~g}, 95 \%)$ as a yellow oil. $[\alpha]_{\mathrm{D}}{ }^{20}+30\left(c 1.0, \mathrm{CHCl}_{3}\right) ; \mathrm{R}_{\mathrm{F}}=0.5$ (4:1 ethyl acetate, n hexanes, $) ; v_{\max } / \mathrm{cm}^{-1} 2927,2840,1720,1605,1494,1452,1393,1245,1205,1110,1108 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $1.01-1.13\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-7^{\prime \prime}\right)$, 1.17-1.33 (5H, m, H-6", $\left.\mathrm{NCH}\left(\mathrm{CH}_{3}\right) \mathrm{Ph}\right), 1.35-1.46\left(5 \mathrm{H}, \mathrm{m}, \mathrm{H}-4^{\prime \prime}, 3^{\prime}-\mathrm{CH}_{3}\right), 1.51-1.71$ ($\left.4 \mathrm{H}, \mathrm{m}, \mathrm{H}-5^{\prime \prime}, \mathrm{H}-8^{\prime \prime}\right), 1.75-1.83\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{B}}-7{ }^{\prime \prime}\right), 1.89-1.92\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime \prime}\right), 1.95-2.10$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-2^{\prime \prime}, \mathrm{H}-4 \mathrm{a}^{\prime \prime}$), 2.44-2.50 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4^{\prime}$), $2.55\left(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}_{\mathrm{B}}-2\right.$), $2.95-3.14\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime}\right), 3.18-3.21\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{a}^{\prime \prime}\right)$, $3.57-3.68\left(1 \mathrm{H}, \mathrm{q}, J=6.8 \mathrm{~Hz}, \mathrm{NCH}\left(\mathrm{CH}_{3}\right) \mathrm{Ph}\right), 3.83-3.90\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{O}\right), 4.00-4.07\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{O}\right), 7.19-$ 1.40 ($7 \mathrm{H}, \mathrm{m}, \mathrm{H}-5, \mathrm{H}-6, \mathrm{Ar}-\mathrm{H}), 7.58-7.62(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3, \mathrm{H}-4) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 16.2\left(3^{\prime}-\mathrm{CH}_{3}\right), 16.4$ (3'$\left.\mathrm{CH}_{3}{ }^{*}\right), 17.3\left(\mathrm{C}-8^{\prime \prime}\right), 21.0\left(\mathrm{NCH}\left(\mathrm{CH}_{3}\right) \mathrm{Ph}\right), 21.1\left(\mathrm{C}-6^{\prime \prime}\right), 25.5\left(\mathrm{C}-7{ }^{\prime \prime}\right), 27.3\left(\mathrm{C}-4^{\prime \prime}\right), 30.8\left(\mathrm{C}-5^{\prime \prime}\right), 35.1\left(\mathrm{C}-3^{\prime \prime}\right), 35.3$ (C-4a"), $36.3\left(\mathrm{C}-3^{\prime}\right), 36.9\left(\mathrm{C}-4^{\prime}\right), 48.8\left(\mathrm{C}-2^{\prime \prime}\right), 55.3\left(\mathrm{NCH}\left(\mathrm{CH}_{3}\right) \mathrm{Ph}\right), 60.5\left(\mathrm{C}-8 \mathrm{a}^{\prime \prime}\right), 67.9\left(\mathrm{CH}_{2} \mathrm{O}\right), 126.4(\mathrm{Ar}-\mathrm{CH})$, $127.0(\mathrm{C}-1), 128.2(2 \times \mathrm{Ar}-\mathrm{CH}), 129.2(\mathrm{C}-5), 129.6(\mathrm{C}-6), 131.3(\mathrm{C}-3), 132.6(\mathrm{C}-2), 133.1$ (C-4), 147.0 (Ar-C), 163.9 (COO), 171.0 (C-2'), 179.8 (C-5'); HRMS (EI +) $m / z=[M]^{+} \mathrm{C}_{30} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires 488.2675; found 488.2677 .
4.6.4 ((3"S $\left.S^{*}, 4 a^{\prime \prime} R^{*}, 9 a^{\prime \prime} R^{*}\right)-1^{\prime \prime}$-Benzyldecahydro-1H-cyclohepta[b]pyridin-3"-yl)methyl 2-(3'-methyl-2',5'-dioxopyrrolidin-1'-yl)benzoate 11d. Using general method E anthranilate ester $\mathbf{1 0 d}(0.130 \mathrm{~g}, 0.27 \mathrm{mmol})$ gave title compound 11d ($0.128 \mathrm{~g}, 97 \%$) as a tan oil. $\mathrm{R}_{\mathrm{F}}=0.8$ ($4: 1$ ethyl acetate, n-hexanes,); $v_{\max } / \mathrm{cm}^{-1} 2975,2918$, $1712,1495,1389,1262,1180,1080 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.96-1.05\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-5^{\prime \prime}\right) 1.21\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-8^{\prime \prime}\right)$, 1.33-1.41 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-9^{\prime \prime}$), 1.46-1.51 ($3 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{CH}_{3}$), 1.51-1.65 ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{B}}-8^{\prime \prime}$ and $\mathrm{H}-6^{\prime \prime}$ or $\mathrm{H}-7^{\prime \prime}$), 1.66-1.73 $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{B}}-9^{\prime \prime}\right), 1.74-1.84\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-4^{\prime \prime}\right.$ and $\mathrm{H}-6^{\prime \prime}$ or $\left.\mathrm{H}-7^{\prime \prime}\right), 1.88-1.98\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{B}}-5^{\prime \prime}\right), 2.02-2.19\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-4^{\prime}\right.$, $\left.\mathrm{H}_{\mathrm{A}}-2^{\prime \prime}\right), 2.45-2.60\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime}, \mathrm{H}_{\mathrm{B}}-2^{\prime \prime}\right), 2.80-2.87\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9 \mathrm{a}^{\prime \prime}\right), 3.00-3.15\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime \prime}, \mathrm{H}-4 \mathrm{a}^{\prime \prime}\right), 3.60(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{NCH}_{2} \mathrm{Ph}\right), 3.96-4.10\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 7.20-7.39(6 \mathrm{H}, \mathrm{m}, \mathrm{H}-6, \mathrm{Ar}-\mathrm{H}), 7.45(1 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{H}-5), 7.62(1 \mathrm{H}, \mathrm{dt}, J$ $=1.0,7.5 \mathrm{~Hz}, \mathrm{H}-4), 7.90-7.97(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3)$; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 16.3\left(3^{\prime}-\mathrm{CH}_{3}\right), 16.4\left(3^{\prime}-\mathrm{CH}_{3}{ }^{*}\right), 20.0\left(\mathrm{C}-9^{\prime \prime}\right)$, 23.4 (C-8"), 28.1 (C-4"), 31.2, 31.5 (C-6", C-7"), 33.8 (C-5"), 35.2 (C-4a"), 36.1 (C-3"), 37.0 (C-4'), 37.1 (C$\left.3^{\prime}\right), 49.2\left(\mathrm{C}-2^{\prime \prime}\right), 58.9\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 62.4\left(\mathrm{C}-9 \mathrm{a}^{\prime \prime}\right), 68.1\left(\mathrm{OCH}_{2}\right), 126.8(\mathrm{Ar}-\mathrm{CH}), 127.3(\mathrm{C}-1) 128.2(\mathrm{Ar}-\mathrm{CH}), 128.7$ (Ar-CH), 129.4 (C-5), 129.8 (C-6), 131.5 (C-3), 132.6 (C-2), 133.3 (C-4), 139.5 (Ar-C), 164.2 (COO), 175.8 (C$\left.2^{\prime}\right), 176.0\left(\mathrm{C}-5^{\prime}\right)$; HRMS (EI+) $m / z=[\mathrm{MH}]^{+} \mathrm{C}_{30} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires 489.2748; found 489.2739.
4.6.5 (($\left.\left.3^{\prime \prime} S^{*}, 4 a^{\prime \prime} R^{*}, 9 a^{\prime \prime} R^{*}\right)-1 I^{\prime \prime}-(3-P h e n y l p r o p y l) d e c a h y d r o-1 H-c y c l o h e p t a[b] p y r i d i n-3^{\prime \prime}-y l\right) m e t h y l ~ 2-(3 '$-methyl$2^{\prime}, 5^{\prime}$-dioxopyrrolidin-1'-yl)benzoate 11e. Using general method E anthranilate ester $\mathbf{1 0 e}(0.130 \mathrm{~g}, 0.25 \mathrm{mmol})$ gave title compound 11e $(0.128 \mathrm{~g}, 98 \%)$ as a tan oil. $\mathrm{R}_{\mathrm{F}}=0.4$ (1:1 ethyl acetate, n-hexanes,); $v_{\max } / \mathrm{cm}^{-1} 2926$, 2851, 1711, 1494, 1372, 1183, 1044; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) 0.93-1.06 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-5^{\prime \prime}$), 1.09-1.39 ($6 \mathrm{H}, \mathrm{m}, \mathrm{H}-4^{\prime \prime}$, $\mathrm{H}_{\mathrm{A}}-8^{\prime \prime}, \mathrm{H}_{\mathrm{A}}-9^{\prime \prime}$ and $\mathrm{H}-6^{\prime \prime}$ or $\left.\mathrm{H}-7^{\prime \prime}\right)$, 1.39-1.51 ($3 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{CH}_{3}$), 1.51-1.64 $\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{B}}-8^{\prime \prime}, \mathrm{H}_{\mathrm{B}}-9^{\prime \prime}\right.$ and $\mathrm{H}-6^{\prime \prime}$ or $\mathrm{H}-$ $7^{\prime \prime}$), 1.72-1.85 ($2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 1.88-2.11 ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-2^{\prime \prime}, \mathrm{H}-3^{\prime \prime}, \mathrm{H}_{\mathrm{B}}-5^{\prime \prime}$), 2.42-2.68 ($7 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{B}}-2^{\prime \prime}, \mathrm{H}-$ $4^{\prime}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 2.81-2.89 (1H, m, H-9a'), 2.97-3.16 (2H, m, H-3', H-4a"), 3.95-4.09 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right), 7.11-7.31(6 \mathrm{H}, \mathrm{m}, \mathrm{H}-6, \mathrm{Ar}-\mathrm{H}), 7.50(1 \mathrm{H}, \mathrm{td}, J=1.3,7.7 \mathrm{~Hz}, \mathrm{H}-5), 7.65(1 \mathrm{H}, \mathrm{td}, J=1.3,7.7 \mathrm{~Hz}$, $\mathrm{H}-4), 8.08(1 \mathrm{H}, \mathrm{bd}, \mathrm{J}=7.7 \mathrm{~Hz}, \mathrm{H}-3)$; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 16.3\left(3^{\prime}-\mathrm{CH}_{3}\right), 16.5\left(3^{\prime}-\mathrm{CH}_{3}{ }^{*}\right), 19.1\left(\mathrm{C}-9^{\prime \prime}\right), 23.3(\mathrm{C}-$ $\left.8^{\prime \prime}\right), 24.5$ (C-4"), $28.2\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 31.1,31.5$ (C-6", C-7"), 33.6 ($\left.\mathrm{C}-5^{\prime \prime}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 35.2$ (C-3'), 35.5 (C-3'), 36.0 (C-4a"), 36.9 (C-4'), 37.0 (C-3'), 49.9 (C-2"), 53.9 ($\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 61.8 (C-9a"), 68.1 $\left(\mathrm{CH}_{2} \mathrm{O}\right), 125.6(\mathrm{Ar}-\mathrm{CH}), 127.3(\mathrm{Ar}-\mathrm{CH}), 127.3(\mathrm{C}-1), 128.1(\mathrm{C}-5, \mathrm{Ar}-\mathrm{CH}), 129.3(\mathrm{C}-6), 129.8(\mathrm{C}-3), 131.3(\mathrm{C}-$ 2), $133.3(\mathrm{C}-4), 142.4$ (Ar-C), 171.1 (COO), $175.8\left(\mathrm{C}-2^{\prime}\right), 175.9\left(\mathrm{C}-5^{\prime}\right) ;$ HRMS (EI+) $m / z=[\mathrm{MH}]^{+} \mathrm{C}_{32} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires 517.3061; found 517.3053. 27.9 (C-4"), 31.4, 31.8 (C-6"', C-7"), 34.2 (C-5"), 35.2 ($\mathrm{C}-3^{\prime}$), 35.4 ($\mathrm{C}-3^{\prime}$), 36.2 ($\left.\mathrm{C}-4 \mathrm{a}^{\prime \prime}\right), 37.0$ (C-4'), 37.3 (C-3"), $48.1\left(\mathrm{C}-2^{\prime \prime}\right), 57.9\left(\mathrm{NCH}\left(\mathrm{CH}_{3}\right) \mathrm{Ph}\right), 61.3\left(\mathrm{C}-9 \mathrm{a}^{\prime \prime}\right), 67.9\left(\mathrm{CH}_{2} \mathrm{O}\right), 126.5(\mathrm{Ar}-\mathrm{CH}), 127.2(\mathrm{Ar}-\mathrm{CH}), 127.5(\mathrm{Ar}-\mathrm{CH})$, 128.3 (Ar-CH), 129.3 (C-5), 129.6 (C-6), 131.4 (C-3), 132.6 (C-2), 133.0 (C-4), 146.7 (Ar-C), 164.0 (COO), $175.7\left(\mathrm{C}-2^{\prime}\right), 175.9\left(\mathrm{C}-5^{\prime}\right)$; HRMS (EI+) $m / z=[\mathrm{MH}]^{+} \mathrm{C}_{31} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires 503.2904; found 503.2913.
4.6.7 (($\left.3^{\prime \prime} S^{*}, 4 a^{\prime \prime} S^{*}, 8 a^{\prime \prime} R^{*}\right)-l^{\prime \prime}$-Benzyl-5", $7^{\prime \prime}$-dimethyldecahydroquinolin-3"-yl)methyl 2-(3'-methyl-2',5'-dioxopyrrolidin- l^{\prime}-yl)benzoate $\mathbf{1 1 g}$. Using general method E anthranilate ester $\mathbf{1 0 g}(0.07 \mathrm{~g}, 0.14 \mathrm{mmol})$ gave title compound $\mathbf{1 1 g}(0.068 \mathrm{~g}, 97 \%)$ as a pale brown oil. $\mathrm{R}_{\mathrm{F}}=0.2(1: 1$ ethyl acetate, n-hexanes, $) ; v_{\max } / \mathrm{cm}^{-1} 2920$, $1714,1495,1453,1262,1197,1083 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.67-0.75\left(1 \mathrm{H}, \mathrm{m}_{1} \mathrm{H}_{\mathrm{A}}-6^{\prime \prime}\right), 0.82(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}$, $\left.5^{\prime \prime}-\mathrm{CH}_{3}\right), 0.86\left(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, 7^{\prime \prime}-\mathrm{CH}_{3}\right), 1.00-1.13\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-4^{\prime \prime}, \mathrm{H}_{\mathrm{A}}-8^{\prime \prime}\right), 1.25-1.31\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime \prime}\right), 1.38-1.50$ $\left(3 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{CH}_{3}\right), 1.55-1.62\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-2^{\prime \prime}\right), 1.71-1.78\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{B}}-6^{\prime \prime}\right), 1.86-2.00\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{B}}-4^{\prime \prime}\right.$ and $\left.\mathrm{H}-5^{\prime \prime}\right), 2.08-$ $2.23\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-4 \mathrm{a}^{\prime \prime}, \mathrm{H}^{\prime \prime} 7^{\prime \prime}, \mathrm{H}_{\mathrm{B}}-8^{\prime \prime}\right), 2.32-2.37\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{a}^{\prime \prime}\right), 2.43-2.56\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4^{\prime}\right), 2.88-3.11\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{B}}-2^{\prime \prime}\right.$, $\left.\mathrm{H}^{\prime} 3^{\prime}, \mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Ph}\right), 3.78-4.00\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right), 4.09-4.16\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{Ph}\right), 7.16-7.35(6 \mathrm{H}, \mathrm{m}, \mathrm{H}-6, \mathrm{Ar}-\mathrm{CH})$, $7.39(1 \mathrm{H}, \mathrm{bt}, J=7.6 \mathrm{~Hz}, \mathrm{H}-5), 7.60(1 \mathrm{H}, \mathrm{bt}, J=7.6 \mathrm{~Hz}, \mathrm{H}-4), 7.75(1 \mathrm{H}, \mathrm{bd}, J=7.6 \mathrm{~Hz}, \mathrm{H}-3) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 16.1\left(3^{\prime}-\mathrm{CH}_{3}\right), 16.4\left(3^{\prime}-\mathrm{CH}_{3}{ }^{*}\right), 19.6\left(7^{\prime \prime}-\mathrm{CH}_{3}\right), 22.1\left(5^{\prime \prime}-\mathrm{CH}_{3}\right), 26.1\left(\mathrm{C}-5^{\prime \prime}\right), 28.8\left(\mathrm{C}-7^{\prime \prime}\right), 30.2\left(\mathrm{C}-4^{\prime \prime}\right), 31.0$ (C-4a'), 35.1 (C-3'), 35.2 (C-3'), 36.8 (C-4'), 38.6 (C-8"), 43.7 (C-3"), 45.1 (C-6"), 56.8 (C-2", NCH2 ${ }_{2} \mathrm{Ph}$), 62.1 $\left(\mathrm{C}-8 \mathrm{a}^{\prime \prime}\right), 68.2\left(\mathrm{CH}_{2} \mathrm{O}\right), 126.5(\mathrm{Ar}-\mathrm{CH}), 127.2(\mathrm{C}-1), 128.1(\mathrm{Ar}-\mathrm{CH}), 128.7(\mathrm{Ar}-\mathrm{CH}), 129.2(\mathrm{C}-5), 129.6(\mathrm{C}-3)$, $131.2(\mathrm{C}-6), 132.7(\mathrm{C}-2), 133.1(\mathrm{C}-4), 140.0(\mathrm{Ar}-\mathrm{C}), 164.4(\mathrm{COO}), 170.0(\mathrm{CO}), 171.0(\mathrm{CO}) ; \mathrm{HRMS}(\mathrm{EI}+) \mathrm{m} / \mathrm{z}=$ $[\mathrm{MH}]^{+} \mathrm{C}_{31} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires 503.2904; found 503.2914.
4.6.8 ((3"S $\left.{ }^{*}, 4 a^{\prime \prime} S^{*}, 8 a^{\prime \prime} R^{*}\right)-5^{\prime \prime}, 77^{\prime \prime}-$ Dimethyl-1"-(3-phenylpropyl)decahydroquinolin-3"-yl)methyl 2-(3'-methyl$2^{\prime}, 5^{\prime}$-dioxopyrrolidin- 1^{\prime}-yl)benzoate $\mathbf{1 1 h}$. Using general method E anthranilate ester $\mathbf{1 0 h}(0.08 \mathrm{~g}, 0.15 \mathrm{mmol})$ gave title compound $\mathbf{1 1 h}(0.078 \mathrm{~g}, 98 \%)$ as a pale green oil. $\mathrm{R}_{\mathrm{F}}=0.6$ ($2: 1$ ethyl acetate, n-hexanes,); $v_{\max } / \mathrm{cm}^{-1}$ $2926,2864,1710,1453,1390,1259,1182 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.64\left(1 \mathrm{H}, \mathrm{q}, J=12.5 \mathrm{~Hz}, \mathrm{H}_{\mathrm{A}}-6^{\prime \prime}\right), 0.78(3 \mathrm{H}, \mathrm{d}$, $\left.J=6.5 \mathrm{~Hz}, 5^{\prime \prime}-\mathrm{CH}_{3}\right), 0.83\left(3 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}, 7^{\prime \prime}-\mathrm{CH}_{3}\right), 0.87-0.94\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-8^{\prime \prime}\right), 1.02(1 \mathrm{H}, \mathrm{td}, J=4.6,13.0 \mathrm{~Hz}$, $\mathrm{NCH}_{2} \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}_{2} \mathrm{Ph}$), 1.16-1.24 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime \prime}$), 1.42-1.52 ($3 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{CH}_{3}$), 1.61-2.05 ($8 \mathrm{H}, \mathrm{m}, \mathrm{H}-4^{\prime \prime}, \mathrm{H}-5^{\prime \prime}, \mathrm{H}_{\mathrm{B}^{-}}$ $6^{\prime \prime}, \mathrm{H}^{\prime \prime} 7^{\prime \prime}, \mathrm{H}_{\mathrm{B}}-8^{\prime \prime}, \mathrm{NCH}_{2} \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{CH}_{2} \mathrm{Ph}, \mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 2.12-2.21 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4 \mathrm{a}^{\prime \prime}$), 2.28-2.34 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ $8 \mathrm{a}^{\prime \prime}$), 2.41-2.72 ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}-2^{\prime \prime}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 3.00-3.15 ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime}, \mathrm{H}-4^{\prime}, \mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 3.91-4.08 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right), 7.14-7.32(6 \mathrm{H}, \mathrm{m}, \mathrm{H}-6, \mathrm{Ar}-\mathrm{CH}), 7.49(1 \mathrm{H}, \mathrm{td}, J=1.2,7.7 \mathrm{~Hz}, \mathrm{H}-5), 7.65(1 \mathrm{H}, \mathrm{td}, J=1.2,7.7$ $\mathrm{Hz}, \mathrm{H}-4), 8.09(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{H}-3) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 16.3\left(3^{\prime}-\mathrm{CH}_{3}\right), 16.6\left(3^{\prime}-\mathrm{CH}_{3}{ }^{*}\right), 19.8\left(7^{\prime \prime}-\mathrm{CH}_{3}\right)$, $22.6\left(5^{\prime \prime}-\mathrm{CH}_{3}\right), 26.0\left(\mathrm{C}-4^{\prime \prime}\right), 26.5\left(\mathrm{C}-5^{\prime \prime}\right), 28.8$ (C-7"), 30.2 ($\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 31.4$ (C-4a"), 33.8 $\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right.$), 35.1 (C-3'), 35.3 (C-3'), 37.0 (C-4'), 38.3 (C-8"), 43.5 (C-3"), 45.1 (C-6"), 52.3 (C-2"), 57.0 $\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 60.3\left(\mathrm{C}-8 \mathrm{a}^{\prime \prime}\right), 68.6\left(\mathrm{CH}_{2} \mathrm{O}\right), 125.6(\mathrm{Ar}-\mathrm{CH}), 127.6(\mathrm{C}-1), 128.2(\mathrm{Ar}-\mathrm{CH}), 128.3(\mathrm{Ar}-\mathrm{CH})$, 129.3 (CH C-5), 129.8 (C-6), 131.4 (C-3), 132.8 (C-2), 133.3 (C-4), 142.3 (Ar-C), 164.5 (COO), 176.0 (C-2'), $179.8\left(\mathrm{C}-5^{\prime}\right)$; HRMS (EI+) $m / z=[\mathrm{MH}]^{+} \mathrm{C}_{33} \mathrm{H}_{43} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires 531.3217; found 531.3218.

4.7 Synthesis of succinimido anthranilate 16

4.7.1 (3S,4aR, $8 a R$)-Ethyl 1-acetyldecahydroquinoline-3-carboxylate 13. To a solution of decahydroquinoline 7c $(0.342 \mathrm{~g}, 1.09 \mathrm{mmol})$ in methanol $(5.0 \mathrm{~mL})$ was added 10% palladium on carbon $(0.035 \mathrm{~g}, 0.11 \mathrm{mmol})$ and the resulting mixture was stirred under hydrogen (1 atm) for 18 h . The mixture was filtered through Celite which was washed with ethyl acetate (25 mL) and the volatile solvent were removed in vacuo to give ($3 S, 4 \mathrm{a} R, 8 \mathrm{a} R$)ethyl decahydroquinoline-3-carboxylate $\mathbf{1 2}(0.208 \mathrm{~g}, 91 \%)$ as a pale green oil which was used immediately without further purification. To a solution of ($3 S, 4 \mathrm{a} R, 8 \mathrm{a} R$)-ethyl decahydroquinoline-3-carboxylate $12(0.200 \mathrm{~g}$, $0.98 \mathrm{mmol})$ in dichloromethane (7.0 mL) was added freshly distilled triethylamine (7.0 mL) and the stirred mixture was cooled to $0{ }^{\circ} \mathrm{C}$, DMAP $(0.009 \mathrm{~g}, 0.01 \mathrm{mmol})$ was added followed by acetic anhydride $(0.102 \mathrm{~mL}$, 1.08 mmol) and the mixture was allowed to warm to room temperature and stirred for 20 h . The resultant
mixture was acidified with $2 \mathrm{M} \mathrm{HCl}(40 \mathrm{~mL})$ and the organic layer was separated and the aqueous layer was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 40 \mathrm{~mL})$. The combined organic extracts were washed with brine $(80 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the volatile solvents were removed in vacuo to give the title compound $\mathbf{1 3}$ (0.250 g , quant.) as a pale orange oil which was used without further purification. $[\alpha]_{\mathrm{D}}{ }^{20}+10\left(c 1.0, \mathrm{CHCl}_{3}\right) ; \mathrm{R}_{\mathrm{F}}=0.15$ (1:1 ethyl acetate, n-hexanes, ; $v_{\max } / \mathrm{cm}^{-1} 2963,2874,1714,1652,1363,1182,1102 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ [* denotes signal from minor rotamer] 1.18-1.35 ($7 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{3}, \mathrm{H}-5, \mathrm{H}-7$), 1.36-1.47 ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}-5^{*}, \mathrm{H}-6$), 1.57-1.68 ($6 \mathrm{H}, \mathrm{m}, \mathrm{H}-6^{*}, \mathrm{H}-8, \mathrm{H}-8^{*}$), 1.68-1.76 (4H, m, H-4, H-4*), 1.77-1.85 (3H, m, H-4a, H-7*), 1.86-1.94 (3H, m, H$\left.4^{*}, \mathrm{H}-4 \mathrm{a}^{*}\right), 2.06\left(6 \mathrm{H}, \mathrm{d}, J=4.1 \mathrm{~Hz}, \mathrm{COCH}_{3}, \mathrm{COCH}_{3}{ }^{*}\right), 2.35-2.46(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 2.62\left(1 \mathrm{H}, \mathrm{t}, J=12.4 \mathrm{~Hz}, \mathrm{H}_{\mathrm{A}^{-}}\right.$ $\left.2^{*}\right), 3.06\left(1 \mathrm{H}, \mathrm{q}, J=7.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{B}}-2^{*}\right), 3.14(1 \mathrm{H}, \mathrm{t}, J=12.4 \mathrm{~Hz}, \mathrm{H}-3), 3.65(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}, \mathrm{H}-8 \mathrm{a}), 3.73(1 \mathrm{H}$, dd, $J=3.8,12.4 \mathrm{~Hz}, \mathrm{H}-3 *)$, 4.05-4.16 ($4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{3}, \mathrm{OCH}_{2} \mathrm{CH}_{3}{ }^{*}$), 4.55-4.63 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{a}^{*}$), 4.66-4.73 $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{B}}-2^{*}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 8.5\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 14.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{3} *\right), 19.7(\mathrm{C}-5), 20.0(\mathrm{C}-5 *), 21.5$ $\left(\mathrm{COCH}_{3}\right), 22.1\left(\mathrm{COCH}_{3}{ }^{*}\right), 23.4(\mathrm{C}-6), 24.5\left(\mathrm{C}-6^{*}\right), 25.3(\mathrm{C}-7), 25.5(\mathrm{C}-7 *), 27.2(\mathrm{C}-4), 27.3(\mathrm{C}-4 *), 30.7(\mathrm{C}-8)$, 30.9 (C-8*), 33.8 (C-4a), 34.8 (C-4a*), 37.2 (C-2), 42.6 (C-2*), 41.9 (C-3), 42.7 (C-3*), 45.6 (C-8a), 49.5 (C$\left.8 \mathrm{a}^{*}\right), 60.5\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 60.7\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}{ }^{*}\right), 168.9(\mathrm{NCO}), 169.1(\mathrm{NCO}), 173.1(\mathrm{COO}), 173.3\left(\mathrm{COO}^{*}\right) ;$ HRMS $(\mathrm{EI}+) m / z=[\mathrm{MH}]^{+} \mathrm{C}_{14} \mathrm{H}_{24} \mathrm{NO}_{3}$ requires 254.1751; found 254.1746.
4.7.2 (($3 S, 4 a R, 8 a R)$-1-Ethyldecahydroquinolin-3-yl)methanol 14. To a solution of lithium aluminium hydride $(0.187 \mathrm{~g}, 4.9 \mathrm{mmol})$ in THF $(15.0 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added acetamide $\mathbf{1 3}(0.240 \mathrm{~g}, 0.98 \mathrm{mmol})$ in THF $(15.0 \mathrm{~mL})$ in a dropwise manner. The resulting mixture heated at reflux, under nitrogen, for 23 h . The resulting mixture was allowed to cool to room temperature and was quenched by the dropwise addition of water (1.5 mL). The mixture was filtered through Celite and washed with ethyl acetate $(20.0 \mathrm{~mL})$ and the volatile solvents were removed in vacuo to give the title compound $\mathbf{1 4}(0.190 \mathrm{~g}$, quant.) as a pale orange solid which was used without further purification. $[\alpha]_{\mathrm{D}}{ }^{20}+11\left(c 1.0, \mathrm{CHCl}_{3}\right)$; m.p. $90-92{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{F}}=0.25(4: 1$ ethyl acetate, n-hexanes, $) ; v_{\max } / \mathrm{cm}^{-}$ ${ }^{1} 3316,2950,1469,1373,1080,1044,769 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.07\left(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 1.10-1.18$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-7\right), 1.29-1.41(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-5, \mathrm{H}-8), 1.42-1.52(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6), 1.53-1.60(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4), 1.72-1.78(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{H}_{\mathrm{B}}-7\right), 1.83-1.94(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 1.96-2.03(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4 \mathrm{a}), 2.07\left(1 \mathrm{H}, \mathrm{t}, J=11.5 \mathrm{~Hz}, \mathrm{H}_{\mathrm{A}}-2\right), 2.48-2.59(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 2.71\left(1 \mathrm{H}, \mathrm{dd}, J=11.5,3.9 \mathrm{~Hz}, \mathrm{H}_{\mathrm{B}}-2\right), 2.78-2.85(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{a}), 3.42-3.55\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}\right) ; \delta_{\mathrm{C}}(100$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 12.9\left(\mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 16.7(\mathrm{C}-6), 21.0(\mathrm{C}-5), 25.6(\mathrm{C}-7), 27.2(\mathrm{C}-8), 32.0(\mathrm{C}-4), 35.2(\mathrm{C}-4 \mathrm{a}), 39.3(\mathrm{C}-$ 3), $47.9\left(\mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 49.1(\mathrm{C}-2), 58.2(\mathrm{C}-8 \mathrm{a}), 66.7\left(\mathrm{CH}_{2} \mathrm{OH}\right)$; HRMS (EI+) $\mathrm{m} / \mathrm{z}=[\mathrm{MH}]^{+} \mathrm{C}_{12} \mathrm{H}_{24} \mathrm{NO}$ requires 198.1851; found 198.1852.
4.7.3 (($\left.3^{\prime \prime} \mathrm{S}, 4 a^{\prime \prime} R, 8 a^{\prime \prime} R\right)-1^{\prime \prime}$-Ethyldecahydroquinolin-3"-yl)methyl 2-(3'-methyl-2',5'-dioxo-2',5'-dihydro-1H-pyrrol-1'-yl)benzoate $\mathbf{1 5}$. To a solution of alcohol $14(0.052 \mathrm{~g}, 0.26 \mathrm{mmol})$ in dry dichloromethane (5.0 mL) was added 2-(3-methyl-2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)benzoic acid 9 ($0.120 \mathrm{~g}, 0.52 \mathrm{mmol}$), DMAP (3.0 mg , $0.03 \mathrm{mmol})$ and DCC $(0.107 \mathrm{~g}, 0.52 \mathrm{mmol})$ and the mixture was stirred for 18 h . The mixture was filtered through Celite and washed with ethyl acetate $(30 \mathrm{~mL})$. The filtered mixture was washed with aqueous NaHCO_{3} $(2 \times 30 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the volatile solvents were removed in vacuo to give the title compound $\mathbf{1 5}$ $(0.087 \mathrm{~g}, 80 \%)$ as a green oil which was used without further purification. $[\alpha]_{\mathrm{D}}{ }^{20}+7\left(c 1.0, \mathrm{CHCl}_{3}\right) ; \mathrm{R}_{\mathrm{F}}=0.8(4: 1$ ethyl acetate, n-hexanes, ; $v_{\text {max }} / \mathrm{cm}^{-1} 2928,2854,1712,1453,1393,1258,1108 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.08(3 \mathrm{H}$, $\left.\mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 1.11-1.21\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-7^{\prime \prime}\right), 1.23-1.37\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-5^{\prime \prime}, \mathrm{H}-8^{\prime \prime}\right), 1.39-1.47$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6^{\prime \prime}$), 1.52-1.61 ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}-4^{\prime \prime}, \mathrm{H}_{\mathrm{B}}-7^{\prime \prime}$), 1.94-2.01 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4 \mathrm{a}^{\prime \prime}$), 2.05-2.11 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-2^{\prime \prime}, \mathrm{H}-3^{\prime \prime}$), 2.16 ($3 \mathrm{H}, \mathrm{s}, 3^{\prime}-$ $\left.\mathrm{CH}_{3}\right)$, 2.45-2.60 ($2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}_{3}$), $2.67\left(1 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{H}_{\mathrm{B}}-2^{\prime \prime}\right), 2.79-2.89\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{a}^{\prime \prime}\right), 4.01-4.14(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right), 6.50\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4^{\prime}\right), 7.29(1 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}, \mathrm{H}-6), 7.49(1 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, \mathrm{H}-5), 7.63(1 \mathrm{H}, \mathrm{t}, J=7.4$ $\mathrm{Hz}, \mathrm{H}-4), 8.08(1 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}, \mathrm{H}-3) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 11.0\left(3^{\prime}-\mathrm{CH}_{3}\right), 12.8\left(\mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 16.6\left(\mathrm{C}-6^{\prime \prime}\right)$, 20.8 (C-5"), 25.3 (C-7"), 27.3 (C-8"), 31.5 (C-4"), 35.1 ($\left.\mathrm{C}-4 \mathrm{a}^{\prime \prime}\right), 36.0\left(\mathrm{C}-3^{\prime \prime}\right), 47.7\left(\mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 48.8$ (C-2"), 57.9 (C-8a"), $68.3\left(\mathrm{CH}_{2} \mathrm{O}\right), 127.5\left(\mathrm{C}-4{ }^{\prime}\right), 127.8(\mathrm{C}-1), 128.8(\mathrm{C}-5), 130.2(\mathrm{C}-6), 131.4(\mathrm{C}-3), 131.6(\mathrm{C}-2), 133.0$ (C-4), 146.1 (C-3'), $164.7(\mathrm{COO}), 169.5\left(\mathrm{C}-2^{\prime}\right), 170.6\left(\mathrm{C}-5^{\prime}\right)$; HRMS (EI+) $m / z=[\mathrm{MH}]^{+} \mathrm{C}_{24} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires 411.2278; found 411.2287.
4.7.4 (($\left.3^{\prime \prime} \mathrm{S}, 4 a^{\prime \prime} R, 8 a^{\prime \prime} R\right)-1^{\prime \prime}$-Ethyldecahydroquinolin-3"-yl)methyl $2-\left(3^{\prime}-\right.$-methyl-2',5'-dioxopyrrolidin- 1^{\prime} yl)benzoate 16. To a solution of maleimide $15(0.08 \mathrm{~g}, 0.19 \mathrm{mmol})$ in ethyl acetate $(2.0 \mathrm{~mL})$ was added 10% palladium on carbon $(9.0 \mathrm{mg})$ and the resulting solution was stirred under hydrogen (1 atm) for 18 h . The mixture was filtered through Celite which was washed with ethyl acetate $(20 \mathrm{~mL})$ and the volatile solvents were removed in vacuo to give the title compound $16(0.079 \mathrm{~g}, 99 \%)$ as a pale brown oil. $[\alpha]_{\mathrm{D}}{ }^{20}+5\left(c 1.0, \mathrm{CHCl}_{3}\right) ; \mathrm{R}_{\mathrm{F}}$ $=0.75$ (4:1 ethyl acetate, n-hexanes,); $v_{\max } / \mathrm{cm}^{-1} 2927,2840,1711,1491,1380,1110,1108 ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$; $1.46-1.53$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4^{\prime \prime}$), $1.63-1.73\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{B}}-7^{\prime \prime}\right), 1.90-1.98$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4 \mathrm{a}^{\prime \prime}$), 2.03-2.09 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{A}}-2^{\prime \prime}, \mathrm{H}-3^{\prime \prime}$), 2.38-2.53 ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}-4^{\prime}, \mathrm{NCH}_{2} \mathrm{CH}_{3}$), $2.63\left(1 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{B}}-2^{\prime \prime}\right), 2.73-2.80\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{a}^{\prime \prime}\right), 2.91-3.06(1 \mathrm{H}$, $\mathrm{m}, \mathrm{H}-3^{\prime}$), $3.95-4.07\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right), 7.13-7.23(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6), 7.43(1 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, \mathrm{H}-5), 7.56(1 \mathrm{H}, \mathrm{t}, J=7.0$ $\mathrm{Hz}, \mathrm{H}-4), 8.02(1 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{H}-3) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 12.9\left(\mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 16.2\left(3^{\prime}-\mathrm{CH}_{3}\right), 16.6\left(3^{\prime}-\mathrm{CH}_{3}{ }^{*}{ }^{*}\right)$, 16.7 (C-6"), 20.8 (C-5"), 25.3 (C-7"), 27.3 (C-8"), 31.5 (C-4"), 35.1 (C-3', C-4a"), 36.1 (C-3"), 36.9 (C-4), 47.7 $\left(\mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 48.8\left(\mathrm{C}-2^{\prime \prime}\right), 57.9\left(\mathrm{C}-8 \mathrm{a}^{\prime \prime}\right), 68.2\left(\mathrm{CH}_{2} \mathrm{O}\right), 127.3(\mathrm{C}-1), 129.2(\mathrm{C}-5), 129.7(\mathrm{C}-6), 131.3(\mathrm{C}-2), 132.6$ (C-3), 133.2 (C-4), 164.1 (COO), $171.0\left(\mathrm{C}-2^{\prime}\right), 175.6\left(\mathrm{C}-5^{\prime}\right) ;$ HRMS (EI+) $m / z=[\mathrm{MH}]^{+} \mathrm{C}_{24} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires 413.2435; found 413.2436.

Acknowledgements

We are grateful for the financial support from The University of Auckland for a Doctoral Scholarship (ED).

References

1. (a) Manske, R. H. Can. J. Res. 1938, 16B, 57. (b) Goodson, J. A. J. Chem. Soc. 1943, 139-141.
2. (a) Jennings, K. R.; Brown, D. G.; Wright, D. P. Experientia 1986, 42, 611-613. (b) Kukel, C. F.; Jennings, K. R. Can. J. Physiol. Pharmacol. 1994, 72, 104-107. (c) Macallan, D. R. E.; Lunt, G. G.; Wonnacott, S.; Swanson, K. L.; Rapoport, H.; Albuquerque, E. X. FEBS Lett. 1988, 226, 357-363. (d) Reina, M.; GonzálezColoma, A. Phytochem. Rev. 2007, 6, 81-95.
3. Wonnacott, S.; Alburquerque, E. X.; Bertrand, D. Methods Neurosci. 1993, 12, 263-275.
4. Alexander, J.; Bindra, D. S.; Glass, J. D.; Holahan, M. A.; Renyer, M. L.; Rork, G. S.; Sitko, G. R.; Stranieri, M. T.; Stupienski, R. F.; Veerapanane, H.; Cook, J. J. J. Med. Chem. 1996, 39, 480-486.
5. Lloyd, G. K.; Williams, M. J. Pharm. Exp. Ther. 2000, 292, 461-467.
6. (a) Tsuneki, H.; You, Y.; Toyooka, N.; Kagawa, S.; Kobayashi, S.; Sasaoka, T.; Nemoto, H.; Kimura, I.; Dani, J. A. Mol. Pharmacol. 2004, 66, 1061-1069; (b) Toyooka, N.; Tsuneki, H.; Kobayashi, S.; Zhou, D.; Kawasaki, M.; Kimura, I.; Sasaoka, T.; Nemoto, H. Curr. Chem. Biol. 2007, 1, 97-114.
7. Jensen, A. A.; Frolund, B.; Liljefors, T.; Krogsgaard-Larsen, P. J. Med. Chem. 2005, 48, 4705-4745.
8. Manners, G. D.; Panter, K. E.; Pelleteir, S. W. J. Nat. Prod. 1995, 58, 863-869.
9. (a) McKay, D. B.; Chang, C.; Gonzalez-Cestari, T. F.; Mckay, S. B.; El-Hajj, R. A.; Bryant, D. L.; Zhu, M. X.; Swaan, P. W.; Arason, K. M.; Pulipaka, A. B.; Orac, C. M.; Bergmeier, S. C. Mol. Pharmacol. 2007, 71, 1288-1297. (b) Bryant, D. L.; Free, R. B.; Thomasy, S. M.; Lapinsky, D. J.; Ismail, K. A.; McKay, S. B.; Bergmeier, S. C.; McKay, D. B. Neurosci. Res. 2002, 42, 57-63. (b) Bergmeier, S. C.; Lapinsky, D. J.; Free, R. B.; McKay, D. B. Bioorg. Med. Chem. Lett. 1999, 9, 2263-2266; (c) Bryant, D. L.; Free, R. B.; Thomasy, S. M.; Lapinsky, D. J.; Ismail, K. A.; Arason, K. M.; Bergmeier, S. C.; McKay, D. B. Ann. N. Y. Acad. Sci. 2002, 971, 139-141; (e) Bergmeier, S. C.; Ismail, K. A.; Arason, K. M.; McKay, S.; Bryant, D. L.; McKay, D. B. Bioorg. Med. Chem. Lett. 2004, 14, 3739-3742; (f) Ismail, K. A.; Bergmeier, S. C. Eur. J. Med. Chem. 2002, 37, 469474; (h) Huang, J.; Orac, C. M.; McKay, S.; McKay, D. B.; Bergmeier, S. C. Bioorg. Med. Chem. 2008, 16, 3816-3820.
10. (a) Barker, D.; McLeod, M. D.; Brimble, M. A.; Savage, G. P. Tetrahedron Lett. 2001, 42, 1785-1788; (b) Sparrow, K. J.; Carley, S.; Sohnel, T.; Barker, D.; Brimble, M. A. Tetrahderon 2015, 71, 2210-2221. (c) Goodall, K. J.; Brimble, M. A.; Barker, D. Tetrahedron 2012, 68, 5759-5778. (d) Sparrow, K. J.; Barker, D.; Brimble, M. A. Tetrahedron 2012, 68, 1017-1028. (e) Sparrow, K. J.; Barker, D.; Brimble, M. A. Tetrahedron 2011, 67, 7989-7999. (f) Chan, Y.; Balle, J.; Sparrow, K. J.; Boyd, P. D. W.; Brimble, M. A.; Barker, D. Tetrahedron 2010, 66, 7179-7191. (g) Chan, Y.; Guthmann, H.; Brimble, M. A.; Barker, D. Synlett 2008, 17, 2601-2604. (h) Goodall, K. J.; Brimble, M. A.; Barker, D. Magn. Reson. Chem. 2008, 46, 75-79. (i) Goodall, K.
J.; Brimble, M. A.; Barker, D. Magn. Reson. Chem. 2007, 45, 695-699. (j) Goodall, K. J.; Brimble, M. A.; Barker, D. Magn. Reson. Chem. 2006, 44, 980-983. (k) Leĥmann, A.; Brocke, C.; Barker, D.; Brimble, M. A. Eur. J. Org. Chem.2006, 14, 3205-3215. (l) Barker, D.; Lin, D. H.-S.; Carland, J. E.; Chu, C. P.-Y.; Chebib, M.; Brimble, M. A.; Savage, G. P.; McLeod, M. D. Bioorg. Med. Chem. 2005, 13, 4565-4575. (m) Barker, D. Brimble, M. A.; McLeod, M. D. Tetrahedron 2004, 60, 5953-5963. (n) Barker, D.; Brimble, M. A.; McLeod, M. D.; Savage, G. P. Org. Biomol. Chem. 2004, 2, 1659-1669. (o) Barker, D.; Brimble, M. A.; McLeod, M. D.; Savage, G. P. Tetrahedron Lett. 2002, 43, 6019-6022. (p) Barker, D.; Brimble, M. A.; McLeod, M. D.; Savage, G. P.; Wong, D. J. J. Chem. Soc., Perkin Trans. 1, 2002, 7, 924-931. (q) Goodall, K. J.; Barker, D.; Brimble, M. A. Synlett 2005, 1809-1827.
11. (a) Doisy, X.; Blagbrough, I. S.; Wonnacott, S.; Potter, B. V. L. Pharm. Pharmacol. Commun. 1998, 4, 313317; (g) Simoni, D.; Rossi, M.; Rondanin, R.; Baruchello, R.; Grisolia, G.; Eleopra, M.; Giovannini, R.;
Bozzoli, A.; Davalli, S.; Di Fabio, R.; Donati, D. Tetrahedron Lett. 2005, 46, 759-762.
12. (a) Guthmann, H.; Conole, D.; Wright, E.; Koerber, K.; Barker, D.; Brimble, M. A. Eur. J. Org. Chem. 2009, 1944-1960. (b) Huang, J.; Bergmeier, S. C. Tetrahedron 2008, 64, 6434-6439.
13. (a) Horii, Z.; Watanabe, T.; Ikeda, M.; Kurihara, T.; Tamura, Y. Yakugaku Zasshi 1964, 84, 142-145. (b) Cassady, J. M.; Li, G. S.; Spitzner, E. B.; Floss, H. G.; Clemens, J. A. J. Med. Chem. 1974, 17, 300-307.
14. Weijers, C. A. G. M.; Konst, P. M.; Franssen, M. C. R.; Sudholter, E. J. R. Org. Biomol. Chem. 2007, 5, 3106-3114.
15. (a) Villieras, J.; Rambaud, M. Org. Synth. 1988, 66, 220-224. (b) Byun, H.-S.; Reddy, K. C.; Bittman, R. Tetrahedron Lett. 1994, 35, 1371-1374. (c) Hediger, M. E. Bioorg. Med. Chem. 2004, 12, 4995-5010.
16. Barker, D.; Brimble, M. A.; McLeod, M. D. Synthesis 2003, 656-658.
