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Abstract: Total synthesis of (-)-verruearol (1) was achieved starling from D-glucose-derived bicyclic 
lactone 4 through l) a stereoselective asymmetric quatemization of the a-carbon of the lactone, 
2) Dieckmann cyclization for access to the C-ring equivalent, 3) a skeletal rearrangement for the 
trichothecene ring system, and 4) the final stereoselective epoxidation of an exo-methylene group. 
© 1997 Elsevier Science Ltd. 

During the past two decades, the trichothecene family of sesquiterpenoid natural products has attracted the 

attention of synthetic chemists owing to their unique structure and significant biological activity. 2 (-)- 

Verrucarol (1) (Figure 1) was characterized as an alkaline hydrolyzate of natural antifungal and cytostatic 

antibiotic verrucarin A by Tamm and co-workers more than thirty years ago.3, 4 As other structurally related 

natural products, calonectrin (2) and anguidine (3) are known. Because of their potent biological properties 

and highly functionalized tricyclic skeletons, synthetic methods for these three sesquiterpenoids have been 

extensively explored so far. 5 Most total syntheses and synthetic endeavors were achieved in racemic 

fashion for 16 and 2, 7 although a few enantioselective total syntheses exemplified by that of 3 were reported. 8 

Here we disclose a total synthesis of 1 as the naturally derived enantiomer. We have accomplished our total 

synthesis of 1 starting from the previously reported bicyclic T-lactone 4, which was prepared from D-glucose. 9 

k• H 0 H -3 

R I ' /  ~MB ~ R 2  

[ v e r r u c a r o l  (,1) : R' = OH, 9 2 =OH, R ~ = H I 

c a l o n e c t r i n  (2)  : R 1 = OAc, R 2 = H, R 3 = OAc 
a n g u i d i n e  (3)  : R 1 = OAc, R 2 = OAc, R 3 = OH 

Figure 1 
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At the outset, the highly stereoselective asymmetric quaternization of the a-carbon of the ~-lactone 4, a 

crucial issue of the C-ring construction, was achieved as follows (Scheme 1). Deprotonation of 4 with LDA 

which, followed by addition of MeI, provided the a-methylated product 510 essentially as a single producL 

The second carbon-carbon bond formation was carried out using 4-O-(tert-butyldiphenylsilyloxy)butanal as an 

electrophile, providing 6S and 6R as a separable mixture (ca. 1:1) quantitatively. Although the attacks of 

both electrophiles occurred exclusively from the less hindered convex face of the generated bicyclic enolate as 
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anticipated, we were not able to optimize reaction conditions for the stereocontrolled introduction of the carbinol 

center in the side chain. 11 Of the two diastereomers, the 6R isomer was required for the verrucarol 

synthesis.12,13 The following conventional six-reaction sequence to modify the side chain in the separated 6R 

provided estcr-lactone 9R via 7R and 8R. The directed Dieckmann cyclization of 9R was only achieved 

when potassium bis(trimethylsily)amidc (KHMDS) was used as a base. The desired cyclized product 10 

was obtained as an inseparable diastermeric mixture (10R:10S= ca. 5:4, 1H NMR analysis) regarding the or- 

carbon of the ester group. 14 The hemiketa] hydroxyl groups in the mixture 10 were protected as the tert- 

butyldimethylsi ly l  (TBS) ethers 11. These silyl ethers could be cleanly separated by silica-gel 

chromatography, and the structure of the (R)-isomer 11R was confirmed based on the difference NOE 

experiments as depicted in Scheme 1. Both I1R and l l S  (or the mixture of them) were saponified 

separately to the same diastereomerically homogeneous carboxylic acid 12 (Scheme 2). The structure of 12 

was tentatively assigned as the a-oriented isomer, but was not confirmed. Subjection of 12 to the Barton- 

Crich's radically induced decarboxylative oxygenation reaction 15 provided two hydroxylated products 13R and 

13S as an inseparable 1:1 mixture. 16 Acetylation of the mixture gave readily separable 14S and 14R, whose 

stereochemistries were determined based on their difference NOE experiments. Diastereomerically homo- 

geneous 13S and 14S were obtained by respective Dibal-H reduction of the separated acetates 14S and 14R. 

For the construction of the B/C ring system of the trichothecene framework, we expected that the ring 

enlargement strategy, originally disclosed by Trost and McDougal, 6b could be workable in our case. In fact, 

when the mesylate 15 from the p-isomer 13S was subjected to usual desilylation conditions with tetrabutyl- 

ammonium fluoride (TBAF), ring enlargement occurred spontaneously to afford 16 exclusively as depicted in 

Scheme 3. On the contrary, the TBAF treatment of the mmesylate, prepared from 13R, did not undergo 
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Reagents and conditions: a) LDA, MeI-THF, -78 °C (96%); b) LDA, 4-O-(tert-butyldiphenylsilyloxy)butanal-THF:toluene (1:1), 
-78 0(2, then seperalion (6S:6R = 1:1, each 50%); c) Bu4NF-THF; d) PivCI-pyr.; e) MOMCI, i-Pr2NEt-CHCI3, reflux; 0 NaOMe- 
MeOH (for gR, 58% from 6R); g) Jones' reagent-acetone, 0 °C; h) CH2N2-Et2OICHCi 3, 0 °C (72%); i) KHMDS-THF, -78 °C 
(10R:I@S ffi ca. 5:4, 82% combined yield); j) TBSOTf, 2,6-1utidine-CH2C12, 0 °C (75% combined yield of 11R and 11S). 
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Reagents and conditions: a) 4M KOH- aq. McOH, 80 °C (81%); b) WSC, 4-DMAP, N-hydroxypyridine-2-thione, tert-BuSH, O2- 
CH2C12 (84% as a 1:1 mixture of 13R and 135) ; c) Ac20-pyr., and separation (43% for 14S and 54% for 14R) ; d) DibaI-H- 
CH2CI 2, -78 °(2 (quant. for 13S and 99% for 13R ). 

Scheme 2 

the ring enlargement reaction. For this skeletal transformation, the antiperiplanar alignment of  the 

mesyloxy group and the migrated C-O bond is crucial. 17 The remaining task for the total synthesis of  1 was 

the stereoselective epoxidation of  the exo-methylene derivative 17, which was prepared by the usual Wittig 

methylenation of  16. Thus, the MOM groups in 17 were deprotected with bromotrimethylsilane. The 

resulting diol 18 was known to be 12,13-deoxyverrucarol, an alkaline hydrolyzate of  naturally occurring 

verrucarin K, 18 and the spectral comparison of 18 to those of the reported data verified their identity [[0~]D -93 

for 18 and [Ct]D -98 for the reported product]. The hydroxy groups in 18 were then silylated to give 
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Reagents and conditions: a) MsCl-pyr. (99%); b) Bu4NF-THF (98%); c) Ph3P=CH2-THF, 60 0(2 (73%); d) TMSBr, MS4A- 
CH2CI 2, -30 °C (78%); e) TBSOTf, 2,6-1utidine-CH2CI2, -78 °(2 to rt (40% for 19 and 39% for 20); f) NBS-wet acetone, 0 *(2 
(94%); g) Bu4NF-THF (96%); h) m-CPBA, NaHCO3-CH2CI 2 (91%); i) Zn-Ag-THF:EtOH=5:I, reflux (81%). 

Scheme 3 
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a mixture of mono- 19 and di-O-silyl ethers 20. We could not find a practical procedure for the preferential 

protection of the primary hydroxyl group. Thus, the primary hydroxyl group and the double bond in the A 

ring were simultaneously protected as the bromo-ether 21.6~,c The silyl group in 21 was deprotected to give 

22.19 The hydroxyl-directed epoxidation of 22 with m-CPBA afforded 23 as a single product.6a, e 

Finally, the double bond in the A-ring was regenerated by the Zn-Ag reduction of the bromo-ether part in 23, 

providing (-)-verrucarol 1. The synthetic 1 was completely identical to a naturally derived specimen [mp, 

TLC, IR, 1H and 13C NMR) [[Ct]D -40.6 for the synthetic 1, and [COD -39.2 for the naturally derived product]. 

Aeknowledgnmnts: We thank Professors Ch. Tamm (Basel University) and Bruce B. Jarvis (Maryland 

University) for their kind supply of naturally derived verrucarol for our comparison. 
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