Catalysis Communications 11 (2010) 391-395

Contents lists available at ScienceDirect

Catalysis Communications

journal homepage: www.elsevier.com/locate/catcom

Increased surface area of unsupported Mo₂C catalyst by alkali-treatment

Liang Zhao^{a,b}, Farnaz Sotoodeh^b, Kevin J. Smith^{b,*}

^a State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping 102249, China
^b Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC, Canada V6T 123

ARTICLE INFO

Article history: Received 3 September 2009 Received in revised form 4 November 2009 Accepted 10 November 2009 Available online 13 November 2009

Keywords: Catalyst Catalyst preparation Alkali-treatment Mo₂C Tetrahydrocarbazole dehydrogenation Synthesis gas

1. Introduction

Molybdenum carbide is known to have catalytic properties similar to those of noble metals. Consequently, there is a significant interest in Mo₂C as a catalyst for a wide range of reactions, including hydrogenation [1,2], dehydrogenation [3–6], synthesis gas conversion [7,8], hydrocarbon isomerization [9], water–gas-shift [10] and hydrogen production from methanol and ethanol [11]. Several methods have been developed for the synthesis of Mo₂C, including the most often used temperature-programmed reduction (TPR) of oxide precursors using CH₄ or CH₄/H₂ mixtures [12]. Other approaches have also been reported such as TPR using butane [13], carbothermal hydrogen reduction [14], the pyrolysis of metal precursors [15], solution reactions [16], and photochemically promoted formation of carbide from metallic molybdenum and graphite [17].

The goal of almost all these synthesis methods is to enhance the catalyst surface area and hence increase the activity of Mo_2C catalysts. However, some of the known preparation methods are subject to limitations associated with cost and convenience. Furthermore, the surface area of the Mo_2C produced by temperature-programmed reduction of oxide precursors is greatly influenced by preparation conditions. The temperature ramp rate, the flow rate and composition of the reducing gas (CH₄, C₂H₆, H₂), and the precursor, all impact the product surface area and consequently, reported surface areas of unsupported Mo_2C vary widely [1–14,18–20]. An alternative, simple method of producing high surface area Mo_2C would be of significant benefit.

ABSTRACT

A 50% increase in the surface area of an unsupported Mo_2C catalyst, prepared by temperature-programmed reduction of a MoO_3 precursor using CH_4/H_2 , is reported following treatment in 5 M NaOH at 363 K for 2–12 h. The treated catalyst showed an increase in pores of size <3 nm and an increase in activity for the dehydrogenation of 1,2,3,4-tetrahydrocarbazole and the hydrogenation of CO, compared to the un-treated Mo_2C .

© 2009 Elsevier B.V. All rights reserved.

Alkali-treatment is a well known post-treatment technique used in zeolite synthesis, which introduces mesopore and macropore structure to the zeolite pore system [21–25]. The alkali-treated zeolites show higher catalytic activity and increased surface area compared to un-treated zeolites. Although this technique has been used to prepare high surface area zeolites [21–25] it has not been applied to Mo_2C catalysts.

In the present study, we report a simple post-treatment of Mo₂C using a hot alkali solution that enhances the Mo₂C surface area while retaining the structural integrity of the Mo₂C. The obtained high surface area Mo₂C has been used as a catalyst for the dehydrogenation of 1,2,3,4-tetrahydrocarbazole (THCZ) and the hydrogenation of CO. THCZ is a candidate heteroaromatic compound for hydrogen storage. Hydrogen is released through catalytic dehydrogenation at low temperature (\leq 423 K), using platinum group metal catalysts (Pd, Pt, Rh and Ru) [26–28]. Because of the cost of the platinum group metals, metal carbides are possible alternatives for this reaction. Metal carbides have also been shown to be active in several CO hydrogenation reactions aimed at producing higher hydrocarbons [18] and alcohols [29–31] and consequently we have tested the prepared Mo₂C for syngas conversion as well.

2. Experimental

2.1. Catalyst preparation

Unsupported Mo₂C was synthesized by temperature-programmed reduction of an oxide precursor. Approximately 3 g of MoO₃ (MoO₃, +99.5%, Sigma–Aldrich) was placed in a quartz

^{*} Corresponding author. Tel.: +1 604 822 3601; fax: +1 604 822 6003. *E-mail address:* kjs@interchange.ubc.ca (K.J. Smith).

^{1566-7367/\$ -} see front matter @ 2009 Elsevier B.V. All rights reserved. doi:10.1016/j.catcom.2009.11.008

tubular reactor and heated at a rate of 5 K/min from room temperature to 573 K, followed by heating at a rate of 1 K/min from 573 K to 948 K in 100 ml(STP)/min of CH₄/H₂ (1:4 vol). The final temperature was held for 2 h in the same CH₄/H₂ flow. The sample was then rapidly cooled to room temperature in a 80 ml(STP)/min flow of H₂. The sample was passivated by exposure to a mixture of 1% O₂ in He at a flow rate of 133 ml(STP)/min for 4 h before being removed from the reactor.

Approximately 3 g of the passivated Mo_2C was placed in 90 ml of a 5 M NaOH solution and stirred for 2, 6 and 12 h at 363 K. The mixture was subsequently cooled in an ice bath. The liquid and solid were separated by centrifuging at 12,000 rpm for 20 min at 288 K. The solid was washed with de-ionized water until the washings showed a neutral pH. The catalyst was then dried at room temperature and activated in H₂ (5–10 ml(STP)/min) at 573 K for 2 h before being used for reaction. The catalysts are designated AT-2, AT-6 and AT-12 to identify the duration of the alkali-treatment in each case.

2.2. Characterization

The passivated catalysts were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), N₂-adsorption/desorption at 77 K and thermogravimetric analysis. Prior to N₂ adsorption, the samples were degassed at 423 K in 30 mol% N₂/He (15 ml(STP)/min) for 2 h to remove moisture. All other analyses were carried out on the passivated samples without further treatment. The XRD analysis was performed using a Siemens D500 Cu Ka X-ray source of wavelength (λ) 1.54 Å. The scan rate was 2° per min for a range of 5–80° to confirm the structure of Mo₂C, and 0.5° per min for the range of $32-42^{\circ}$ to estimate the crystallite size (d_c) of the Mo₂C using the Scherrer equation, $d_c = K\lambda/\beta \cos \theta$, where the constant *K* was taken to be 0.9, λ is the wavelength of radiation, β is the peak width in radians and θ is the angle of diffraction. N₂adsorption/desorption isotherms were recorded at 77 K using a Micromeritics ASAP 2020 analyzer. The total surface area was calculated according to the BET isotherm, and the micropore volume. the mesopore volume, and external surface area were evaluated by the *t*-plot method. The pore size was reported as the average pore diameter. SEM/EDX analysis was performed using a Hitachi S-3000 N electron microscope operated with a 150 kV electron beam acceleration voltage. Thermogravimetric analysis of the catalysts was done using a TGA-50 thermogravimetric analyzer (Shimadzu, Japan). About 5–10 mg of the catalyst was loaded into an alumina crucible and heated to 1000 K at a rate of 5 K/min in an air atmosphere (flow rate = 15 ml(STP)/min). The weight gain and loss were quantified and differential TGA (DTG) was accomplished using standard TGA software.

2.3. Catalyst activity

Dehydrogenation of 1,2,3,4-tetrahydrocarbazole (THCZ) was performed at 423 K using a solution of 2.0 g THCZ dissolved in 30 ml mesitylene. The solution was loaded into a 50 ml glass flask reactor. The 1.0 g alkali-treated Mo₂C was added to the solution after activation in hydrogen. The reactor was sealed, stirred, purged in a flow of He (100 ml(STP)/min) and heated to 423 K. The He was used as a carrier gas for continuous removal of the produced hydrogen and the exit gas composition was continuously monitored using a quadrupole mass spectrometer. Catalyst activity was determined by the production of H₂ and confirmed by periodic liquid analysis using a gas chromatograph (Shimadzu GC14A) with a flame ionization detector and an ATTM-5 25 M × 0.53 mm capillary column. Product identities were also confirmed by a Shimadzu QP-2010S GC/MS using a Restek RTX5 30 M × 0.25 mm capillary

column. The absence of internal and external mass transfer effects on the reaction was confirmed experimentally and by theoretical analysis [32].

The activity of the Mo₂C catalysts for synthesis gas conversion was also measured using a laboratory fixed-bed micro reactor (o.d. = 9.53 mm and i.d. = 6.35 mm, copper lined stainless steel tube). The catalyst particles were placed on a packed bed of quartz wool inside the reactor and held in place by a bed of quartz beads. The catalyst bed depth was 5-7 cm and calculation showed that this configuration ensured plug-flow through the reactor. Synthesis gas (H₂:CO = 1) was reacted at 573 K, a pressure of 8.3 MPa and a GHSV = 3960 h⁻¹. A high temperature back pressure regulator was used to control the reactor pressure. The reaction products were analyzed using an in-line gas chromatograph (GC). Light gases (CO, CO₂ and C₁-C₄ hydrocarbons) were separated using a 5 m temperature-programmed Porapak Q 80/100 packed column and quantified with a thermal conductivity detector. The alcohols. aldehydes, ketones, carboxylic acids and C_5 + hydrocarbons were separated using a 30 m temperature-programmed EC[™]-wax capillary column (i.d. = 0.53 mm and film thickness 1.20 µm) and guantified using a flame ionization detector. GC/MS analysis was also completed periodically to confirm the identity of the reactor products. Analysis of several repeat experiments showed the conversion and selectivity data to be within ±10% of the reported values. Calculation of the internal and external heat and mass transfer rates, and application of the Mears and Weisz-Prater criteria, confirmed that at the conditions of the experiments, the reactor operated free of significant heat and mass transfer resistances.

3. Results and discussion

3.1. Mo₂C properties

The properties of the Mo₂C and the alkali-treated Mo₂C, reported in Table 1, show that several changes occurred to the Mo₂C after alkali-treatment. Compared to the un-treated Mo₂C, the alkali-treated Mo₂C showed a significant increase in surface area, an increase in the micropore area and a decrease in the average pore size of the Mo₂C. The BET surface area of the alkali-treated Mo₂C increased from 29 m²/g to 40–47 m²/g, an increase of about 50%. The N₂ adsorption and desorption isotherms of the Mo₂C and the alkali-treated Mo₂C (Fig. 1) showed increased hysteresis effects with increased time of the alkali-treatment. Fig. 2 presents the pore size distribution of the Mo₂C and the alkali-treated Mo₂C. Clearly, the alkali-treatment increased the fraction of pores <3 nm in size and decreased the average pore size (d_p) of the Mo₂C treated with NaOH for 2 and 6 h. After 12 h, Fig. 2 shows that

Table 1
Properties of the unsupported Mo ₂ C catalysts.

Property	Mo ₂ C	Alkali-treated Mo ₂ C ^a			
		2 h AT-2	6 h AT-6	12 h AT-12	
N ₂ adsorption–de	sorption				
S_{BET} (m ² /g)	29.4 ± 1.1^{b}	44.5	47.3 ± 3.1 ^b	40.0	
$S_{t-micro}$ (m ² /g)	0.06 ± 0.05	0.05	4.8 ± 2.5	10.4	
S_{t-ext} (m ² /g)	29.9 ± 1.9	44.4	42.5 ± 0.6	29.6	
$V_{\rm p}$ (cm ³ /g)	0.031 ± 0.005	0.043	0.036 ± 0.001	0.030	
$d_{\rm p}$ (nm)	4.19 ± 0.5	3.82	3.01 ± 0.12	2.98	
XRD analysis					
$d_{c}(101)$ (nm)	13.6	13.0	13.1	13.9	
d _c (100) (nm)	15.2	14.5	15.2	14.6	
a (Å)	3.005	3.005	3.009	3.012	
<i>c</i> (Å)	4.742	4.782	4.764	4.746	

^a Mo₂C treated in 5 M NaOH for the time period shown.

^b Standard deviation from three repeat measurements.

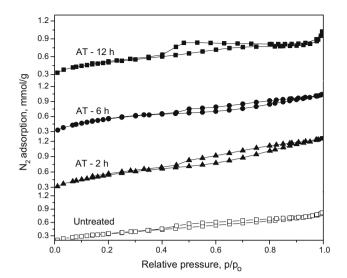


Fig. 1. N_2 adsorption-desorption isotherms measured at 77 K for Mo_2C and alkalitreated Mo_2C catalysts.

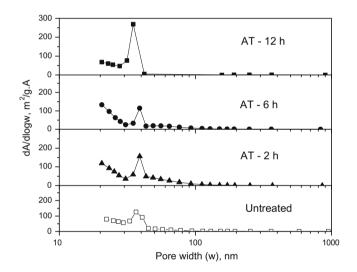


Fig. 2. Pore size distribution of Mo₂C and alkali-treated Mo₂C catalysts.

a significant increase in pores of size 20–30 nm had also occurred. The data of Table 1 shows that as the alkali-treatment time increased, the micropore area also increased. These results suggest that the alkali-treatment initially removed material from the Mo₂C to generate new pores of <3 nm in diameter, resulting in a decrease in the average pore size. With increased treatment time (12 h) the removal of material from larger pores also occurred. These observations are quite different to changes observed in zeo-lites treated with alkali. Typically with zeolites, the microporosity decreases and the meso- and macroporosity increases, leading to an increase in the average pore size of the alkali-treated zeolite compared to the un-treated zeolite [21–25].

Fig. 3 shows the XRD patterns of the Mo₂C and the alkali-treated Mo₂C. The eight peaks at 2θ equal to 34.48, 37.96, 39.52, 52.28, 61.76, 69.56, 74.80, and 75.72 can be indexed to hexagonal Mo₂C(100), (002), (101), (102), (110), (103), (112), and (201). There were no differences between the peaks before and after alkali-treatment, indicating that the crystal structure of the Mo₂C was not changed by the alkali-treatment. The Mo₂C crystal-lite size was calculated from the Scherrer equation and the results, summarized in Table 1, suggest that no significant change in crys-

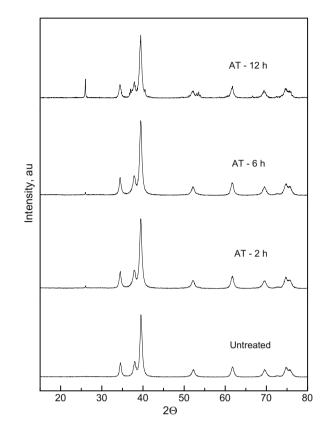


Fig. 3. X-ray diffractograms of Mo₂C and alkali-treated Mo₂C catalysts.

tallite size occurred after alkali-treatment of the Mo₂C either. The lattice parameters of the catalysts were also calculated using the Bragg equation and the results are listed in Table 1. According to the JCPDS card No. 11-0680, the lattice parameters of Mo₂C are a = 3.006 Å and c = 4.733 Å and the results obtained in the present work (Table 1) are in good agreement with these values. Hence we conclude that the crystal structure of the Mo₂C was not affected by alkali-treatment. Also, the SEM micrographs of Fig. 4 show that the Mo₂C and the alkali-treated Mo₂C had very similar macro-morphology. The materials consisted of platelet-like grains, <5 µm in size, and the alkali-treatment had no discernable effect on this Mo₂C morphology.

Fig. 5 shows the differential TGA curves of the Mo_2C and the 2 h alkali-treated Mo_2C . Both samples had very similar characteristics, with two main peaks generated as the Mo_2C was oxidized to MoO_2 and then MoO_3 . The total weight gain in both cases was 95% of the expected gain for pure Mo_2C conversion to MoO_3 , confirming that the bulk of the material was phase pure Mo_2C . These results indicate that the new pores of <3 nm diameter generated by alkali-treatment were a consequence of Mo_2C dissolution, rather than simply due to the selective removal of excess carbon or other impurity from the pores of the catalyst.

3.2. THCZ dehydrogenation

Since THCZ is a solid powder at ambient conditions with high boiling point (598 K) and melting point (391 K), the dehydrogenation reaction was carried out in the liquid phase by dissolving the THCZ in mesitylene. Over supported Pd catalysts, the reaction was zero-order in substrate (THCZ) concentration, and the catalysts showed 100% selectivity to the desired carbazole product. However, it was shown from experiment that product inhibition slowed the rate of reaction and 81% conversion was obtained after about

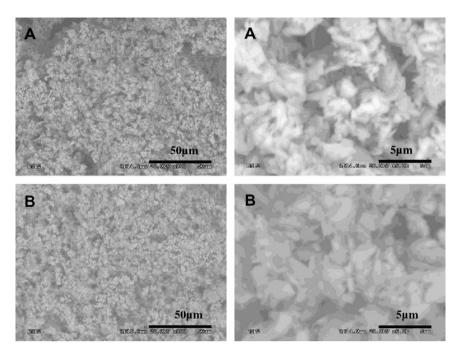


Fig. 4. SEM micrographs of (A) Mo₂C and (B) 2 h alkali-treated Mo₂C.

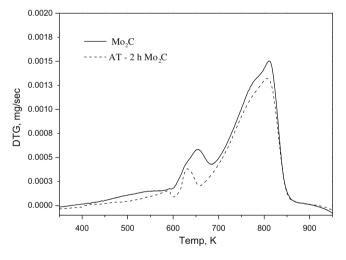


Fig. 5. Temperature-programmed oxidation of Mo_2C and $2\,h$ alkali-treated Mo_2C catalysts.

27 h at 101 kPa and 413 K. The initial rate of THCZ dehydrogenation at these conditions was 10 mM g_{cat}^{-1} min⁻¹ [26,27].

The dehydrogenation activity of Mo₂C and the 2 h alkali-treated Mo₂C was determined at 423 K. The data for the two catalysts presented in Table 2, show an initial THCZ dehydrogenation rate of 0.014 and 0.048 mM g_{cat}^{-1} min⁻¹, respectively. The alkali-treated Mo₂C had about 3×'s the initial activity of the un-treated Mo₂C

 Table 2

 THCZ dehydrogenation activity measured in a batch reactor at 101 kPa and 423 K over unsupported Mo₂C catalysts.

Catalyst	Reaction	Initial rate	H ₂ produced/g _{cat}
	temperature (K)	(mM g _{cat} min ⁻¹) ^a	(mmol/g _{cat}) ^a
Mo ₂ C	423	0.014	0.056
AT-2 Mo ₂ C	423	0.048	0.184

^a After 30 min reaction.

for THCZ conversion. The H_2 produced in the first 30 min of reaction was similarly higher on the alkali-treated catalyst. The activity (on a mass basis) of both Mo_2C catalysts was approximately two orders of magnitude lower than that reported for supported Pd catalysts used for the dehydrogenation reaction.

3.3. CO hydrogenation reaction

Several Mo compounds have also been investigated for synthesis gas conversion. MoS₂, Mo₂O₃ and Mo₂C show high selectivity towards liquid oxygenates, especially ethanol, when doped with alkali earth metals. In addition, the Mo₂C has high CO₂ yield rather than water, a consequence of high water-gas-shift activity [10]. For example, the rate of CO consumption over Mo₂C with low surface area (approximately 5 m²/g) at 573 K and 8.0 MPa with a H₂:CO ratio 1:1, was approximately 0.4 mmol gcat⁻¹ min⁻¹ based on a reported CO conversion of 58% at a GHSV of 2000 h^{-1} [29]. In the present work, Mo₂C and the 2 h alkali-treated Mo₂C were tested for synthesis gas conversion at 573 K and 8.0 MPa with a H₂:CO ratio 1:1 and a GHSV of 3960 h⁻¹. The initial catalyst activities (after a 2 h stabilization period) are reported in Table 3. The data show that alkali-treated Mo₂C increased the CO consumption rate by about 10% compared to the un-treated Mo₂C. The data show higher CO consumption rates than that reported by Xiang et al. [29–31] on both the Mo₂C and the alkali-treated Mo₂C. High CH₄ and CO₂ selectivities were also obtained on the two catalysts of the present study. Typically, Mo₂C catalysts are promoted with

Table 3

Syngas conversion on Mo₂C and alkali-treated Mo₂C. Reaction conditions: pressure e = 8.2 MPa, temperature = 573 K, CO:H₂ = 1 and GHSV = 3960 h^{-1} .

Catalyst	Initial CO consumption rate $(mmol g_{cat}^{-1} min^{-1})^a$	Initial	Initial product selectivity ^a		
()		CO ₂	CH ₄	C ₂ + alcohols and HC's	
		Cathorn	- 0/		
		C aton	n%		

^a Measured 2 h after the start of the experiment.

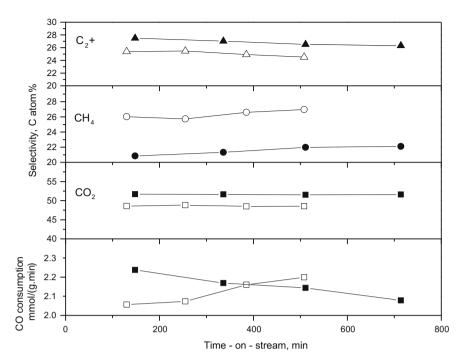


Fig. 6. CO consumption rate and product selectivities obtained over the un-treated Mo_2C (open symbols) and the 2 h alkali-treated Mo_2C (solid symbols) measured at 8.2 MPa, 573 K, CO:H₂ = 1 and GHSV = 3960 h⁻¹.

alkali metal to reduce selectivity to CH_4 so the high selectivity obtained in the present work was not unexpected. The alkali-treated catalysts had been thoroughly washed prior to use and EDX confirmed that the Mo₂C was Na-free. The product distribution also showed enhanced water–gas-shift activity on the alkali-treated sample compared to the un-treated Mo₂C. Fig. 6 shows the change in CO consumption rate and the product selectivity obtained over a period of approximately 10 h. The product selectivities remained relatively constant during the experiments, whereas the alkalitreated catalyst showed some deactivation, possibly because of carbon deposition. A loss in activity in the first 2 h of reaction may also explain why the differences in the CO consumption rates between the un-treated and alkali-treated Mo₂C were not as great as observed for the THCZ dehydrogenation reaction.

4. Conclusion

The surface area of an unsupported Mo_2C catalyst was increased by a simple alkali-treatment of the Mo_2C that had been prepared by temperature-programmed reaction of a MoO_3 precursor. The alkali-treatment increased the catalyst surface area by 50%, primarily through the creation of new pores of size <3 nm. The alkali-treatment did not change the Mo_2C morphology nor the catalyst composition. The alkali-treated Mo_2C showed enhanced activity for the dehydrogenation of THCZ and for CO hydrogenation, compared to the un-treated Mo_2C .

Acknowledgement

Funding for the present study from Natural Sciences and Engineering Research Council of Canada is gratefully acknowledged. L.Z. thanks the Ministry of Education of China for scholarship support.

References

[1] S.T. Oyama, Catal. Today 15 (2) (1992) 179-200.

- [2] M. Espinnoza, J. Cruz-Reyes, M.D. Valle-Granados, E. Flores-Aquino, M. Avalos-Borja, S. Fuentes-moyado, Catal. Lett. 120 (1–2) (2008) 137–142.
- [3] S.B. Derouane-Abd Hamid, J.R. Anderson, I. Schmidt, C. Bouchy, J.H. Jacobsen, E.G. Derouane, Catal. Today 63 (2-4) (2000) 461-469.
- [4] C. Bouhy, S.B. Derouane-Abd Hamid, E.G. Derouane, Chem. Commun. 2 (2000) 125–126.
- [5] S.Z. Li, J.S. Lee, T. Hyeon, K.S. Suslick, Appl. Catal. A 184 (1) (1999) 1-9.
- [6] M. Nagai, T. Miyao, T. Tuboi, Catal. Lett. 18 (1993) 9–14.
- [7] G. Djega-Mariadassou, M. Boudart, G. Bugli, C. Sayag, Catal. Lett. 31 (1995) 411–420.
- [8] M. Xiang, D. Li, H. Qi, W. Li, B. Zhong, Y. Sun, Fuel 86 (9) (2007) 1128-1303.
- [9] V. Keller, P. Weher, F. Garin, R. Ducros, G. Maire, J. Catal. 153 (1) (1995) 9-16.
- [10] M. Nagai, A.M. Zahidul, K. Matsuda, Appl. Catal. A: General 313 (2) (2006) 137– 145.
- [11] A. Szechenyi, F. Solymosi, J. Phys. Chem. C 111 (26) (2007) 9509-9515.
- [12] J.S. Lee, L. Volpe, F.H. Ribeiro, M. Boudart, J. Catal. 112 (1) (1988) 44-53
- [13] T.C. Xiao, A.P.E. York, V.C. Williams, H. Al-Megren, A. Hanif, Z.-Y. Zhou, M.L.H. Green, Chem. Mater. 12 (12) (2000) 3896–3905.
- [14] X. Li, D. Ma, L. Chen, X. Bao, Catal. Lett. 116 (1-2) (2007) 63-69.
- [15] J.M. Giraudon, L. Leclercq, G. Leclercq, A. Lofberg, A. Frennet, J. Mater. Sci. 28 (1993) 2449–2454.
- [16] D. Zeng, M. Hampden-Smith, J. Chem. Mater. 5 (1993) 681–689.
- [17] L.G. Rosa, J.C. Fernandes, P.M. Amaral, Int. J. Refract. Met. Hard Mater. 17 (1999) 351–356.
- [18] P.M. Patterson, T.K. Das, B.H. Davis, Appl. Catal. A 251 (2003) 449-455.
- [19] M.K. Neylon, S. Choi, H. Kwon, K.E. Curry, LT. Thompson, Appl. Catal. A 183 (1999) 253–263.
- [20] J.B. Claridge, A.P.E. York, A.J. Brungs, M.L.H. Green, Chem. Mater. 12 (2000) 132-142.
- [21] M. Ogura, S. Shinomiya, J. Tateno, Y. Nara, M. Nomura, E. Kikuchi, M. Matsukata, Appl. Catal. A 219 (2001) 33–43.
- [22] T. Suzuki, T. Okuhara, Microporous Mesoporous Mater. 43 (2001) 83-89.
- [23] J.C. Groen, L.A.A. Peffer, J.A. Moulijn, J. Pérez-Ramírez, Colloids Surf. A: Physicochem. Eng. Aspects 241 (2004) 53-58.
- [24] J.C. Groen, L.A.A. Peffer, J.A. Moulijn, J. Pérez-Ramírez, Microporous Mesoporous Mater. 69 (2004) 29–34.
- [25] L.L. Su, L. Liu, J.Q. Zhuang, H.X. Wang, Y.G. Li, W.J. Shen, Y. Xu, X.H. Bao, Catal. Lett. 91 (3-4) (2003) 155-167.
- [26] P. Crawford, R. Burch, C. Hardacre, K.T. Hindle, P. Hu, B. Kalirai, D.W. Rooney, Approach J. Phys. Chem. 111 (2007) 6434–6439.
- [27] K.T. Hindle, R. Burch, P. Crawford, C. Hardacre, P. Hu, B. Kalirai, D.W. Rooney, J. Catal. 251 (2007) 338–344.
- [28] F. Sotoodeh, L. Zhao, K.J. Smith, Appl. Catal. A 362 (2009) 155-162.
- [29] M. Xiang, D. Li, W. Li, B. Zhong, Y. Sun, Catal. Commun. 8 (2007) 513-518.
- [30] M. Xiang, D. Li, W. Li, B. Zhong, Y. Sun, Catal. Commun. 8 (2007) 503–507.
- [31] M. Xiang, D. Li, H. Xiao, J. Zhang, W. Li, B. Zhong, Y. Sun, Catal. Today 131 (1-4) (2008) 489-495.
- [32] F. Sotoodeh, K.J. Smith, Ind. Eng. Chem. Res., in press, doi:10.1021/ie9007002.