A novel synthesis of substituted quinolines using ring-closing metathesis (RCM): its application to the synthesis of key intermediates for anti-malarial agents

Chumpol Theeraladanon, Mitsuhiro Arisawa, Atsushi Nishida* and Masako Nakagawa*, \dagger
Graduate School of Pharmaceutical Sciences, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan

Received 26 November 2003; accepted 29 January 2004

Abstract

A method for synthesizing substituted quinolines using ruthenium-catalyzed ring-closing metathesis as a key step has been developed. Substituted 1,2-dihydroquinolines, 4 -silyloxy-1,2-dihydroquinoline and 4 -methoxy-1,2-dihydroquinoline, were successfully synthesized in excellent yields via ene-ene metathesis and silyl or alkyl enol ether-ene metathesis, respectively. The synthetic intermediates of the antimalarial agents quinine, chloroquine, and PPMP-quinine hybrid were efficiently synthesized by this methodology.

 © 2004 Elsevier Ltd. All rights reserved.Quinolines are a major class of alkaloids and play an important role in the fields of natural products and medicinal chemistry. Several methods for synthesizing quinoline have been known since the late $1800 \mathrm{~s} .{ }^{1}$ However, despite their versatility, these conventional methods have several drawbacks. First, these reactions usually require high temperature and/or strongly acidic conditions, which lead to the decomposition of products and a tedious isolation procedure. Regioselectivity is another problem with the intramolecular electrophilic substitution of unsymmetrically substituted aniline derivatives. To overcome these problems, modern synthetic methods for quinoline using a

A

B

Figure 1. Ruthenium carbene catalysts.

Scheme 1. Synthesis of 1,2-dihydroquinoline 2 using RCM.

[^0]Table 1. Synthesis of 1,2-dihydroquinoline 2 using RCM

$$
\mathbf{1} \quad \frac{\mathbf{A}}{\mathrm{CH}_{2} \mathrm{Cl}_{2} 0.01 \mathrm{M}} \quad \mathbf{2}
$$

Run	Catalyst A (mol\%)	Conditions		Yield (\%)
1	30	Room temperature	3 h	94
2	5	Room temperature	3 h	72
3	5	Reflux	1 h	92

(FPT) cycle) at room temperature for 3 h , the corresponding 1,2-dihydroquinoline 2 was obtained in 94% yield (Table 1, run 1), whereas the use of $5 \mathrm{~mol} \%$ of catalyst \mathbf{A} reduced the yield to 72% (run 2). However, the reaction at reflux temperature gave $\mathbf{2}$ in 92% yield within 1 h (run 3).

Under these optimized reaction conditions, we examined the scope and limitations of RCM for 1,2-dihydroquinoline synthesis. Various dienes were prepared from anthranilic acid derivatives (Scheme 2) and subjected to RCM reaction. The results are summarized in Table 2.

Initially, dienes $(\mathbf{9}, \mathbf{1 6}, \mathbf{2 3}, \mathbf{3 0}, \mathbf{3 7})$ were subjected to the optimized RCM conditions described above. As a result, cyclized 1,2-dihydroquinolines ($\mathbf{3 8}-\mathbf{4 2}$) were isolated in good to excellent yields, regardless of the substitution pattern on the aromatic ring (-OMe , runs 1 and 2 or -Cl , runs $3-5$). Benzoquinoline was obtained in 98% yield (run 6). According to recent reports, catalyst \mathbf{B} is more reactive in a metathesis reaction. ${ }^{4}$ Therefore, substrate $\mathbf{3 0}$ was re-examined with catalyst \mathbf{B}, which confirmed its superior

Scheme 2. Preparation of α, ω-dienes. (i) $\mathrm{Me}_{2} \mathrm{C}(\mathrm{OMe})_{2}, \mathrm{HCl}$; (ii) TsCl , pyridine; (iii) DIBAH ; (iv) MnO_{2}, benzene; (v) allyl bromide, $\mathrm{K}_{2} \mathrm{CO}_{3}$; (vi) $\mathrm{Ph}_{2} \mathrm{P}=\mathrm{CH}_{2}$.

Table 2. RCM of dienes $\mathbf{9}, \mathbf{1 6}, \mathbf{2 3}, \mathbf{3 0}$ and $\mathbf{3 7}$ using catalysts \mathbf{A} and $\mathbf{B}^{\text {a }}$
Run
${ }^{\text {a }}$ Conditions: $5 \mathrm{~mol} \%$ of catalyst \mathbf{A} or \mathbf{B} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.01 \mathrm{M}$, degassed) under Ar for 1 h at reflux temperature.
efficacy, the desired chloroquinoline 41 was obtained in 100% yield.

Having established the RCM conditions, we next examined the effect of protecting groups on nitrogen. Dienes 43a-43c, which were readily prepared from the commercially available o-aminostyrene, were reacted with both Grubbs' catalysts \mathbf{A} and \mathbf{B}. The reaction of N-benzyl derivative 43a with catalyst A gave 44a in excellent yield (Table 3, run 1), while N-acetyl derivative 43b did not give
the desired cyclized product (run 2). In this case, catalyst \mathbf{A} probably reacted with the terminal double bond in $\mathbf{4 3 b}$ to form a chelated intermediate 46, which prohibited further RCM. When N-tert-butoxycarbonyl derivative 43c was treated with catalyst A under similar conditions, 1,2-dihydroquinoline 44 c was obtained in modest yield. On the other hand, with catalyst B, the yields of 43b and 43c dramatically increased to give $\mathbf{4 4 b}$ and 44 c , respectively, in almost quantitative yields (runs 3 and 5). The protective groups on nitrogen of products $\mathbf{4 4 a}-\mathbf{c}$ were readily removed during

Table 3. Effect of protective groups on nitrogen

$$
\begin{aligned}
& 43 a ; P=B n \\
& 43 b ; P=A c
\end{aligned}
$$

$$
44 \mathbf{a} ; P=B n
$$

44b; P=Ac

$$
44 c ; P=B o c
$$

Run	Substrate	Ru-catalyst	Product (\%)
1	$\mathbf{4 3 a}$	\mathbf{A}	$\mathbf{4 5}(95)$
2	$\mathbf{4 3 b}$	\mathbf{A}	$\mathbf{4 5}(0)$
3	$\mathbf{4 3 b}$	\mathbf{B}	$\mathbf{4 5}(98)$
4	$\mathbf{4 3}$	\mathbf{A}	$\mathbf{4 5}(63)$
5	$\mathbf{4 3}$	\mathbf{B}	$\mathbf{4 5}(97)$

Table 4. Effect of Ru-catalysts on the RCM of dienes $\mathbf{4 7}$ and $\mathbf{5 0}$
Run
silica gel column chromatography to give 1,2-dihydroquinolines, which were spontaneously oxidized to give 4-methylquinoline $\mathbf{4 5}$ quantitatively.

We next investigated a similar RCM for medium-sized rings such as in benzoazepine and benzoazocine. Dienes 47 and 50 were subjected to the above reaction conditions using both Grubbs' catalysts A and B. The reaction of $\mathbf{4 7}$ and $\mathbf{5 0}$ in the presence of catalyst A gave only the dimeric products 48 and 51, respectively. In sharp contrast, the corresponding benzoazepine 49 and benzoazocine 52 were obtained with catalyst B in excellent yields (Table 4). Interestingly, isolated $\mathbf{4 8}$ and $\mathbf{5 1}$ were converted to $\mathbf{4 9}$ ($5 \mathrm{~h}, 98 \%$) and 52 ($6 \mathrm{~h}, 97 \%$), respectively, under the same conditions using catalyst B.

Many quinoline alkaloids which show important bioactivities, such as quinine and chloroquine, contain substituents at the 4-position. Therefore, we next focused our attention on extending this reaction to the synthesis of 4 -substituted quinolines. For this purpose, we studied the synthesis of 4-methoxy- and 4-siloxy-1,2-dihydroquinolines, which, in turn, could be converted to various 4 -substituted quinolines, using ene-enol ether metathesis (Table 5).

Enol methyl ether 53a and enol silyl ether 53b were prepared from commercially available o-aminoacetophenone and subjected to our reaction conditions using Grubbs' catalysts A and B, respectively. Surprisingly, when enol methyl ether 53a and enol silyl ether 53b were treated with \mathbf{A}, the cyclized product was not obtained at all and the starting materials were recovered (runs 1 and 3). In contrast,
treatment of the same substrates with Grubbs' catalyst B gave the corresponding 4-methoxy-1,2-dihydroquinoline 54a and 4-siloxy-1,2-dihydroquinoline 54b in 95% yield, respectively (runs 2 and 4). This novel synthetic method could be applied to large-scale, multigram, syntheses.

In the general procedure for RCM, degassing of the solution is an important process to prevent deactivation of the catalyst, although the highly active catalyst \mathbf{B} was designed to tolerate oxygen, moisture and some impurities in the solvent. ${ }^{7}$ High dilution was also required, such as 0.01 and

Table 5. Effect of Ru-catalyst on the ene-enol metathesis of 53a and 53b

Run	Substrate	Ru-catalyst	Concentration (M)	Product (\%)
1	53a	A	0.01^{a}	$\mathbf{5 4 a}(0)$
2	$\mathbf{5 3 a}$	\mathbf{B}	0.01^{a}	$\mathbf{5 4 a}(95)$
3	$\mathbf{5 3 b}$	\mathbf{A}	0.01^{a}	$\mathbf{5 4 b}(0)$
4	$\mathbf{5 3 b}$	\mathbf{B}	0.01^{a}	$\mathbf{5 4 b}(95)$
5	$\mathbf{5 3 b}$	B	0.01^{b}	$\mathbf{5 4 b}(99)$
6	53b	B	0.1^{a}	$\mathbf{5 4 b}(96)$
7	$\mathbf{5 3 b}$	B	0.1^{b}	$\mathbf{5 4 b}(97)$

[^1]

Quinine

Chloroquine

PPMP-Quinine Hybrid

Figure 2. Natural products with anti-malarial activity
0.001 M , to prevent an intermolecular reaction, however this procedure is inconvenient, especially in large-scale synthesis. Thus, we tried this silyl enol ether-ene metathesis without degassing at a concentration of 0.1 M . As a result, the reaction of $\mathbf{5 3} \mathbf{b}$ in 0.01 M solution gave $\mathbf{5 4 b}$ in almost quantitative yield regardless of degassing the reaction mixture (runs 5 and 7).

Encouraged by these results, we applied this novel method to the synthesis of key intermediates of anti-malarial agents, such as quinine, ${ }^{8}$ chloroquine, ${ }^{9}$ and PPMP-quinine hybrid, ${ }^{10}$ which are shown in Figure 2.

Malaria is one of the world's most devastating human infections and causes millions of deaths every year. Some effective anti-malarial agents are currently available, such as quinine, chloroquine, mefloquine, premaquine, and arteminicin. However, the development of new antimalarial agent is still required against resistant Plasmodium
species, the most virulent of malarias. We previously reported the synthesis of an inhibitor of sphingolipid synthase, PPMP (1-phenyl-2-palmitoylamino-3-morpho-lino-1-propanol), ${ }^{10}$ which has been reported to have antimalarial activity by Haldar. ${ }^{11}$ A PPMP-quinine hybrid is an interesting potential anti-malarial agent.

Acetylation of 2-isopropenyl-4-methoxyaniline ${ }^{12}$ gave 55 in 88% yield, which was in turn allylated with allyl bromide in the presence of sodium hydride to provide 56 in 70% yield. Highly efficient RCM was achieved by treatment of $\mathbf{5 6}$ with catalyst $\mathbf{B}(5 \mathrm{~mol} \%)$ at $50^{\circ} \mathrm{C}$ for 1 h to give the corresponding 1,2-dihydroquinoline 57 in 98% yield. The acetyl group was removed by treatment of NaOH in MeOH to give 4-methyl-6-methoxyquinoline (58), ${ }^{13}$ a key intermediate for the synthesis of quinine, in 98% yield (Scheme 3).

The synthesis of 4-hydroxy-6-methoxyquinoline as a key

Scheme 3. Preparation of 4-methyl-6-methoxy-quinoline (58).

Scheme 4. Preparation of 4-hydroxy-6-methoxy-quinoline (63). ${ }^{26}$

$$
\text { ref. } 15
$$

Scheme 5. Preparation of 4,7-dichloro-quinoline (69).
intermediate of PPMP-quinine hybrid is demonstrated to emphasize the effectiveness of RCM.

2-Amino-5-methoxyacetophenone, prepared according to a procedure developed by Fürstner and co-workers, ${ }^{14}$ was converted to 60 by tosylation followed by allylation. Allylated $\mathbf{6 0}$ was transformed to silyl enol ether 61, which was readily subjected to silyl enol ether-ene metathesis. The expected 1,2-dihydroquinoline (62) was obtained with catalyst B at $50^{\circ} \mathrm{C}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.01 \mathrm{M})$ for 1 h . Subsequent deprotection of both the silyl and tosyl groups gave $\mathbf{6 3}$ in excellent yield (Scheme 4).

4,7-Dichloroquinoline (69), a key intermediate for chloroquine synthesis, ${ }^{15}$ was also prepared in 6 steps from 2 -amino-6-chloroacetophenone by a similar methodology (Scheme 5). Tosylation of 2-amino-6-chloroacetophenone ${ }^{14}$ followed by N-allylation gave 65, which was converted to silyl enol ether 66. RCM of $\mathbf{6 6}$ using catalyst \mathbf{B} at $50^{\circ} \mathrm{C}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.01 \mathrm{M})$ for 1 h gave 67 in 98% yield. Deprotection of the silyl and tosyl groups of 67 afforded 68 . Treatment of 68 with POCl_{3} gave the 4,7-dichloroquinoline $(69)^{16}$ in 92%.

1. Conclusion

The development of a novel method for synthesizing substituted quinolines and 1,2-dihydroquinolines was achieved by applying RCM using well-defined Grubbs' catalysts and α, ω-dienes, prepared from anthranilic acid, o-isopropylaniline and o-aminoacetophenone. The reaction proceeded efficiently under mild conditions, which are suitable for the large-scale synthesis of substituted quinolines. Moreover, the highly regioselective synthesis of cyclic silyl enol ether was also developed as a powerful method for synthesizing 4-hetero-substituted quinolines. The utility of this novel quinoline synthesis was demonstrated by the efficient synthesis of 4-methyl-6-methoxyquinoline, the key intermediate for quinine, 4,7-dichloroquinoline, the key intermediate of chloroquine, and 4-hydro-6-methoxyquinoline, the key intermediate of PPMP-quinine hybrid. We believe that these findings
could lead to a new methodology for the synthesis of antimalarial agents as well as other biologically active natural products containing a quinoline ring system.

2. Experimental

2.1. General

All melting points are uncorrected. ${ }^{1} \mathrm{H}$ NMR (and ${ }^{13} \mathrm{C}$ NMR) spectra were recorded in CDCl_{3} at $25^{\circ} \mathrm{C}$ unless otherwise noted, at 400 MHz , with TMS as an internal standard. Silica gel 60 N (Spherical, neutral, Kanto Chemical Co., Inc.) was used for column chromatography and E. Merck precoated TLC plates, silica gel $60 \mathrm{~F}_{254}$, were used for preparative thin layer chromatography. The organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Ruthenium carbene catalysts \mathbf{A} and \mathbf{B} and substrates 4, 18, 24, and 31 were obtained commercially.

2.1.1. N-Allyl- N - p-toluenesulfonyl-2-isopropenylaniline

 (1). To a solution of 2-isopropenylaniline $(400 \mathrm{mg}$, 3.00 mmol) in 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under an Ar atmosphere, were added pyridine ($0.72 \mathrm{~mL}, 9.00 \mathrm{mmol}$) and TsCl $(686 \mathrm{mg}, 3.60 \mathrm{mmol})$. The mixture was stirred at room temperature for 1 h and the reaction was quenched by addition of water. The mixture was extracted with AcOEt and combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the residue was purified by column chromatography on silica gel (n-hexane/AcOEt=5:1) to give 838 mg (97%) of $N-p$ -toluenesulfonyl-2-isopropenylaniline as off white solid.To a solution of N - p-toluenesulfonyl-2-isopropenylaniline ($241 \mathrm{mg}, 0.84 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(174 \mathrm{mg}, 1.26 \mathrm{mmol})$ in 10 mL of DMF under an Ar atmosphere, was added allyl bromide ($0.15 \mathrm{~mL}, 1.26 \mathrm{mmol}$). The mixture was stirred at $80^{\circ} \mathrm{C}$ for 1 h and the reaction was quenched by the addition of saturated aqueous NaHCO_{3}. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the residue was purified by recrystallization from AcOEt to give $266 \mathrm{mg}(97 \%)$ of $\mathbf{1}$ as white plates.
$\mathrm{Mp} 74-75{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.67(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz})$, $7.27-7.31(4 \mathrm{H}, \mathrm{m}), 7.12(1 \mathrm{H}, \mathrm{ddd}, J=2.4,7.8,6.6 \mathrm{~Hz}), 6.74$ $(1 \mathrm{H}, \mathrm{d}, ~ J=8.0 \mathrm{~Hz}), 5.69(1 \mathrm{H}$, dddd, $J=6.8,6.9,11.2$, $17.1 \mathrm{~Hz}), 5.22(1 \mathrm{H}, \mathrm{dd}, J=1.4,1.6 \mathrm{~Hz}), 5.05(1 \mathrm{H}, \mathrm{dd}, J=0.9$, $1.2 \mathrm{~Hz}), 4.98(1 \mathrm{H}, \mathrm{d}, J=3.1 \mathrm{~Hz}), 4.94(1 \mathrm{H}, \mathrm{dd}, J=1.4$, $11.2 \mathrm{~Hz}), 4.12(2 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 2.44(3 \mathrm{H}, \mathrm{s}), 2.18(3 \mathrm{H}, \mathrm{s})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 144.9,143.6,143.4,136.9,136.4$, $132.6,130.1,129.4,128.6,128.2,128.1,127.2,119.2$, 116.6, 54.6, 24.3, 21.5: IR (KBr) 3461, 3070, 2958, 2902, 2865, 1646, 1596, 1491, 1450, 1341; HRMS (FAB) calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NO}_{2} \mathrm{~S} 328.1371$, found 328.1348 .
2.1.2. N - p-Toluenesulfonyl-4-methyl-1,2-dihydroquinoline (2). To a solution of olefin $1(80 \mathrm{mg}, 0.24 \mathrm{mmol})$ in 24 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under an Ar atmosphere, was added Grubbs' catalyst $\mathbf{A}(10.2 \mathrm{mg}, 0.012 \mathrm{mmol})$. The mixture was degassed and stirred at $50^{\circ} \mathrm{C}$ for 1 h . After removal of the solvent, the residue was purified by column chromatography on silica gel (n-hexane/AcOEt=10:1), and then recrystallized from n-hexane/AcOEt to give $66 \mathrm{mg}(92 \%)$ of 2 as colorless needles. Mp $82{ }^{\circ} \mathrm{C}$ (lit. ${ }^{17} 105-106{ }^{\circ} \mathrm{C}$ from methanol); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.70(1 \mathrm{H}, \mathrm{dd}, J=1.5$, $8.1 \mathrm{~Hz}), 7.30(1 \mathrm{H}, \mathrm{ddd}, J=1.4,7.6,7.6 \mathrm{~Hz}), 7.21-7.26(3 \mathrm{H}$, m), $7.11(1 \mathrm{H}, \mathrm{dd}, J=1.5,7.6 \mathrm{~Hz}), 7.05(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz})$, $5.31(1 \mathrm{H}, \mathrm{t}, J=1.5 \mathrm{~Hz}), 4.32(2 \mathrm{H}, \mathrm{d}, J=2.7 \mathrm{~Hz}), 2.33(3 \mathrm{H}, \mathrm{s})$, $1.57(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 143.1,136.1,135.1$, $131.6,131.4,128.8,127.8,127.4,127.2,126.7,123.2$, 120.3, 45.3, 21.4, 17.7; IR (KBr) 3395, 3042, 2921, 2846, 1609, 1451, 1321, 1153; LRMS (FAB) m/z 300 [10, $\left.\mathrm{M}^{+}+\mathrm{H}\right], 299\left[15, \mathrm{M}^{+}\right], 144$ [100].
2.1.3. N - p-Toluenesulfonyl-3,4,5-trimethoxyanthranilic acid methyl ester (5). To a solution of 3,4,5-trimethoxyanthranilic acid methyl ester $(2.40 \mathrm{~g}, 10.0 \mathrm{mmol})$ in 40 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under an Ar atmosphere, were added pyridine $(2.4 \mathrm{~mL}, 30.0 \mathrm{mmol})$ and $\mathrm{TsCl}(2.29 \mathrm{~g}, 12.0 \mathrm{mmol})$. The mixture was stirred at room temperature for 1 h and the reaction was quenched by the addition of water. The mixture was extracted with AcOEt and combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the residue was purified by recrystallization from acetone to give 3.28 g (83%) of $\mathbf{5}$ as white needles. Mp $107-108{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.96$ $(1 \mathrm{H}, \mathrm{s}), 7.71(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 7.26(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz})$, $7.16(1 \mathrm{H}, \mathrm{s}), 3.90(3 \mathrm{H}, \mathrm{s}), 3.86(3 \mathrm{H}, \mathrm{s}), 3.80(3 \mathrm{H}, \mathrm{s}), 3.41$ $(3 \mathrm{H}, \mathrm{s}), 2.42(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 167.31,150.43$, 148.35, 146.76, 142.93, 137.72, 128.96, 127.17, 127.13, 117.66, 108.28, 60.90, 60.12, 56.08, 52.32, 21.38; IR (KBr) 3163, 2933, 1684; LRMS (FAB) $m / z 396\left[40\right.$, M $\left.^{+}+\mathrm{H}\right], 395$ [40, M ${ }^{+}$], 241 100]. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{7} \mathrm{~S} ; \mathrm{C}, 54.67$; H, $5.35 ; \mathrm{N}, 3.54$; found C, $54.64 ; \mathrm{H}, 5.41$; N, 3.52.

2.1.4. N - p-Toluenesulfonyl-2-hydroxymethyl-4,5,6-tri-

 methoxyaniline (6). To a cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of ester $5(3.28 \mathrm{~g}, 8.30 \mathrm{mmol})$ in 50 mL of toluene under an Ar atmosphere, was added a solution of DIBAL in toluene $(1 \mathrm{M}, 24.9 \mathrm{~mL}, 24.9 \mathrm{mmol})$. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h and the reaction was quenched by the addition of MeOH and saturated aqueous Rochelle's salt, then the solution was allowed to stir at room temperature until it was separated into two layers. The mixture was extracted with AcOEt and the combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal ofthe solvent, the residue was purified by recrystallization from n-hexane/AcOEt to give 222 mg (73%) of 6 as colorless needles. Mp $166-167{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $7.51(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 7.22(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 6.82(1 \mathrm{H}$, s), 6.33 ($1 \mathrm{H}, \mathrm{br}$), $4.75(2 \mathrm{H}, \mathrm{s}), 3.89(3 \mathrm{H}, \mathrm{s}), 3.60(3 \mathrm{H}, \mathrm{s}), 3.29$ $(3 \mathrm{H}, \mathrm{s}), 2.38(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 153.21,148.04$, $143.65,140.35,136.25,135.54,129.19,127.71,119.36$, $107.75,61.60,60.49,60.15,55.94,21.35$; IR (KBr) 3518, 3181, 2929; LRMS (FAB) $m / z 368$ [20, M $\left.{ }^{+}+\mathrm{H}\right], 367$ [57, M^{+}], 212 [100]. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{6} \mathrm{~S} ; \mathrm{C}, 55.57$; H , 5.76; N, 3.81; found C, 55.55; H, 5.75; N, 3.79.
2.1.5. N - p-Toluenesulfonyl-2-formyl-4,5,6-trimethoxyaniline (7). To a solution of alcohol $6(500 \mathrm{mg}$, 1.36 mmol) in 70 mL of benzene, was added MnO_{2} ($355 \mathrm{mg}, 4.08 \mathrm{mmol}$). The mixture was refluxed for 4 h and filtered through a celite pad. After removal of the solvent, the residue was purified by recrystallization from acetone to give 309 mg (62%) of 7 as a white amorphous solid. Mp 97-99 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 10.20(1 \mathrm{H}, \mathrm{s}), 7.49$ $(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 7.22(1 \mathrm{H}, \mathrm{s}), 7.21(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz})$, $7.03(1 \mathrm{H}, \mathrm{br}), 3.92(3 \mathrm{H}, \mathrm{s}), 3.75(3 \mathrm{H}, \mathrm{s}), 3.31(3 \mathrm{H}, \mathrm{s}), 2.38$ $(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 189.53,152.41,147.09$, 145.94, 144.06, 135.81, 129.42, 127.60, 127.52, 125.42, 105.42, 60.78, 60.51, 56.12, 21.48; IR (KBr) 3248, 1685, 1164; LRMS (FAB) $m / z 366\left[30, \mathrm{M}^{+}+\mathrm{H}\right], 365\left[30, \mathrm{M}^{+}\right.$], 211 [100]. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{6} \mathrm{~S} ; \mathrm{C}, 55.88 ; \mathrm{H}, 5.24$; N, 3.83; found C, 55.49; H, 5.43; N, 3.72.

2.1.6. N-Allyl- N - p-toluenesulfonyl-2-formyl-4,5,6-tri-

 methoxyaniline (8). To a solution of aldehyde $7(0.79 \mathrm{~g}$, $2.17 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.45 \mathrm{~g}, 3.26 \mathrm{mmol})$ in 60 mL of DMF under an Ar atmosphere, was added allyl bromide $(0.28 \mathrm{~mL}, 3.26 \mathrm{mmol})$. The mixture was stirred at $80^{\circ} \mathrm{C}$ for 1 h and the reaction was quenched by the addition of saturated aqueous NaHCO_{3}. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the residue was purified by column chromatography on silica gel (n-hexane/AcOEt=1:1) to give $875 \mathrm{mg}(99 \%)$ of $\mathbf{8}$ as a pale yellow oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 10.04(1 \mathrm{H}, \mathrm{s}), 7.61$ $(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 7.29(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.22(1 \mathrm{H}, \mathrm{s})$, $5.71-5.81(1 \mathrm{H}, \mathrm{m}), 5.00-5.05(2 \mathrm{H}, \mathrm{m}), 4.59(1 \mathrm{H}, \mathrm{dd}$, $J=5.7,14.1 \mathrm{~Hz}), 3.98(1 \mathrm{H}, \mathrm{dd}, J=8.4,14.1 \mathrm{~Hz}), 3.92(3 \mathrm{H}$, s), $3.82(3 \mathrm{H}, \mathrm{s}), 3.52(3 \mathrm{H}, \mathrm{s}), 2.43(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 189.86,154.03,151.35,146.53,143.51,136.91$, $132.39,131.95,129.52,127.55,127.07,120.02,103.98$, 60.74, 60.45, 56.03, 53.75, 21.49; IR (neat) 2945, 2845, 1688; HRMS (FAB) calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NO}_{6} \mathrm{~S}$ 406.1324, found 406.1314.
2.1.7. N-Allyl- N - p-toluenesulfonyl-2-ethenyl-4,5,6-tri-

 methoxyaniline (9). To a cooled ($-78^{\circ} \mathrm{C}$) solution of $\mathrm{BrPh}_{3} \mathrm{PMe}(2.30 \mathrm{~g}, 6.48 \mathrm{mmol})$ in 72 mL of THF under an Ar atmosphere, was added a solution of KN(TMS) $)_{2}$ in THF $(0.5 \mathrm{M}, 13 \mathrm{~mL}, 6.48 \mathrm{mmol})$. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 15 min . Then, aldehyde $8(875 \mathrm{mg}, 2.16 \mathrm{mmol})$ was added to this solution, and the mixture was warmed to room temperature with stirring for 1 h . The solution was quenched by the addition of saturated aqueous Rochelle's salt. The mixture was extracted with AcOEt and the combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the residuewas purified by recrystallization from n-hexane/AcOEt to give 760 mg (87%) of 9 as white prisms. Mp $110-111^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.72(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 7.28(2 \mathrm{H}, \mathrm{d}$, $J=8.1 \mathrm{~Hz}), 6.88(1 \mathrm{H}, \mathrm{dd}, J=11.0,17.8 \mathrm{~Hz}), 6.83(1 \mathrm{H}, \mathrm{s})$, $5.70-5.77(1 \mathrm{H}, \mathrm{m}), 5.63(1 \mathrm{H}, \mathrm{d}, J=17.6 \mathrm{~Hz}), 5.22(1 \mathrm{H}, \mathrm{d}$, $J=12.0 \mathrm{~Hz}), 4.95-4.99(2 \mathrm{H}, \mathrm{m}), 4.29(1 \mathrm{H}, \mathrm{dd}, J=6.1$, $14.2 \mathrm{~Hz}), 3.97(1 \mathrm{H}, \mathrm{dd}, J=7.8,14.4 \mathrm{~Hz}), 3.90(3 \mathrm{H}, \mathrm{s}), 3.77$ $(3 \mathrm{H}, \mathrm{s}), 3.63(3 \mathrm{H}, \mathrm{s}), 2.43(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 153.72, 151.81, 142.90, 141.24, 137.87, 134.72, 133.47, 133.12, 129.21, 127.80, 122.46, 118.68, 114.80, 102.04, $60.63,60.41,55.77,53.71,21.47$; IR $(\mathrm{KBr}) \mathrm{cm}^{-1} 2942$, 1491, 1334; LRMS (FAB) $m / z 404$ [23, $\left.\mathrm{M}^{+}+\mathrm{H}\right], 149$ [100]. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{5} \mathrm{~S}$; C, 62.51; H, 6.25; N, 3.47; found C, 62.29; H, 6.36; N, 3.42.
2.1.8. $N-p$-Toluenesulfonyl-6,7,8-trimethoxy-1,2-dihydroquinoline (38). To a solution of olefin $9(100 \mathrm{mg}$, 0.29 mmol) in 29 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under an Ar atmosphere, was added catalyst $\mathbf{A}(12.2 \mathrm{mg}, 0.0245 \mathrm{mmol})$. The mixture was degassed and stirred at $50^{\circ} \mathrm{C}$ for 1 h . After removal of the solvent, the residue was purified by column chromatography on silica gel (n-hexane/AcOEt=1:1) to give 98 mg (90%) of $\mathbf{3 8}$ as a colorless amorphous solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.48(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 7.15(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz})$, $6.28(1 \mathrm{H}, \mathrm{s}), 5.94(1 \mathrm{H}, \mathrm{d}, J=9.5 \mathrm{~Hz}), 5.50(1 \mathrm{H}, \mathrm{td}, J=4.2$, $9.5 \mathrm{~Hz}), 4.29(2 \mathrm{H}, \mathrm{br}), 4.00(3 \mathrm{H}, \mathrm{s}), 3.90(3 \mathrm{H}, \mathrm{s}), 3.85$ $(3 \mathrm{H}, \mathrm{s}), 2.39(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 152.6$, $150.6, \quad 143.2,142.0,136.8,128.9,127.8,126.9$, $126.0,124.6,120.8,104.2,61.0,60.8,56.0,45.5,21.5$; IR (KBr) 3451, 2930, 2837, 1560, 1458, 1348; LRMS (EI) $\mathrm{m} / \mathrm{z} 375$ [60, M^{+}, 221[100]. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{5} \mathrm{~S}: \mathrm{C}, 60.78 ; \mathrm{H}, 5.64 ; \mathrm{N}, 3.73$, found: C, 60.72 ; H, 5.64; N, 3.60.
2.1.9. 5-Methoxyanthranilic acid (10). To a solution of 5-methoxy-2-nitrobenzoic acid ($5.05 \mathrm{~g}, 25.6 \mathrm{mmol}$) in 100 mL of EtOH) was added 5% palladium on charcoal (105 mg and stirred at room temperature for 12 h under an Ar atmosphere. After the starting material was disappeared on TLC, the solution was filtered through a celite pad and solvent was removed to give $4.00 \mathrm{~g}(97 \%)$ of $\mathbf{1 0}$ as a violet solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.40(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 7.03(1 \mathrm{H}$, $\mathrm{dd}, J=3.1,9.0 \mathrm{~Hz}), 6.66(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 3.78(3 \mathrm{H}, \mathrm{s})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 172.7,150.6,145.8,124.7,118.5$, 113.3, 109.4, 55.8; IR (KBr) 3500, 2951, 2598, 1930, 1707, 1583; HRMS (FAB) calcd for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{NO}_{3} 168.0661$, found 168.0653.
2.1.10. 5-Methoxyanthranilic acid methyl ester (11). ${ }^{18}$ To a solution of $10(15.0 \mathrm{~g}, 89.7 \mathrm{mmol})$ in 550 mL of 2,3-dimethoxypropane, was added 79 mL of 36% hydrochloric acid. The mixture was stirred at room temperature for 12 h and the reaction was quenched by addition of saturated aqueous NaHCO_{3}. The product was extracted with AcOEt , and the combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the residue was purified by column chromatography on silica gel (n-hexane/AcOEt=3:1) to give $5.20 \mathrm{~g}(32 \%)$ of $\mathbf{1 1}$ as a yellow-orange oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.35(1 \mathrm{H}, \mathrm{d}$, $J=3.1 \mathrm{~Hz}), 6.96(1 \mathrm{H}, \mathrm{dd}, J=3.1,8.8 \mathrm{~Hz}), 6.63(1 \mathrm{H}, \mathrm{d}, J=$ $8.9 \mathrm{~Hz}), 5.42(2 \mathrm{H}, \mathrm{br}), 3.88(3 \mathrm{H}, \mathrm{s}), 3.76(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 168.3,150.5,145.1,123.3,118.2,113.1,110.7$, 55.8, 51.6; IR (KBr) 3373, 2995, 2952, 2837, 1691, 1593;

HRMS (FAB) calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{3}$; 181.0739, found 181.0747.
2.1.11. N-p-Toluenesulfonyl-5-methoxyanthranilic acid methyl ester (12). To a solution of ester $\mathbf{1 1}(100 \mathrm{mg}$, 0.55 mmol) in 4 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under an Ar atmosphere, were added pyridine ($0.13 \mathrm{~mL}, 1.65 \mathrm{mmol}$) and TsCl $(126 \mathrm{mg}, 0.66 \mathrm{mmol})$. The mixture was stirred at room temperature for 1 h and the reaction was quenched by the addition of water. The mixture was extracted with AcOEt and the combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the residue was purified by recrystallization from AcOEt to give 150 mg (82%) of $\mathbf{1 2}$ as pale yellow prisms. Mp $110^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 10.0(1 \mathrm{H}, \mathrm{s}), 7.66(1 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}), 7.63$ $(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 7.34(1 \mathrm{H}, \mathrm{d}, J=2.9 \mathrm{~Hz}), 7.18(2 \mathrm{H}, \mathrm{d}, J=$ $8.5 \mathrm{~Hz}), 7.04(1 \mathrm{H}, \mathrm{dd}, J=2.9,9.0 \mathrm{~Hz}), 3.81(3 \mathrm{H}, \mathrm{s}), 3.76$ $(3 \mathrm{H}, \mathrm{s}), 2.35(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 167.7,155.4$, 143.6, 136.1, 133.4, 129.4, 127.2, 122.6, 120.9, 118.1, 114.6, 55.6, 52.4, 21.5; IR (KBr) 3174, 2951, 2843, 1691, 1612; LRMS (FAB) $m / z 336\left[50, \mathrm{M}^{+}+\mathrm{H}\right], 335\left[80, \mathrm{M}^{+}\right.$], 181 [100]. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{5} \mathrm{~S}: \mathrm{C}, 57.30 ; \mathrm{H}, 5.11$; N, 4.18, found: C, 57.16; H, 5.06; N, 4.10.
2.1.12. N - p-Toluenesulfonyl-2-hydroxymethyl-4-methoxyaniline (13). To a cooled ($-78{ }^{\circ} \mathrm{C}$) solution of ester $12(5.50 \mathrm{~g}, 16.4 \mathrm{mmol})$ in 120 mL of toluene under an Ar atmosphere, was added a solution of DIBAL in toluene ($1 \mathrm{M}, 54.1 \mathrm{~mL}, 54.1 \mathrm{mmol})$. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h and the reaction was quenched by the addition of MeOH and saturated aqueous Rochelle's salt, then the solution was allowed to stir at room temperature until two layers were separated. The mixture was extracted with AcOEt and the combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the residue was purified by recrystallization from MeOH to give $4.57 \mathrm{~g}(91 \%)$ of $\mathbf{1 3}$ as colorless needles. Mp $130{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.56(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.30$ $(1 \mathrm{H}, \mathrm{br}), 7.21(2 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}), 7.10(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz})$, $6.74(1 \mathrm{H}, \mathrm{d}, J=3.1 \mathrm{~Hz}), 6.72(1 \mathrm{H}, \mathrm{dd}, J=3.3 \mathrm{~Hz}), 4.30(2 \mathrm{H}$, s), $3.76(3 \mathrm{H}, \mathrm{s}), 2.39(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 158.0$, $143.8,136.6,136.3,129.6,127.9,127.4,127.2,114.7$, 113.8, 63.1, 55.4, 21.5; IR (KBr) 3489, 3130, 2964, 2837, 1612, 1498; LRMS (FAB) m/z 308 [30, M $\left.{ }^{+}+\mathrm{H}\right], 307$ [100, M^{+}]. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{4} \mathrm{~S}: \mathrm{C}, 58.61 ; \mathrm{H}, 5.57$; N, 4.56, found: C, 58.52 ; H, 5.53; N, 4.42.

2.1.13. N-p-Toluenesulfonyl-2-formyl-4-methoxyaniline

(14). To a solution of alcohol $13(75 \mathrm{mg}, 0.24 \mathrm{mmol})$ in 10 mL of benzene, was added $\mathrm{MnO}_{2}(510 \mathrm{mg}, 0.59 \mathrm{mmol})$. The mixture was refluxed for 4 h and filtered through a celite pad. After removal of the solvent, the residue was purified by recrystallization from AcOEt to give 70 mg (91%) of $\mathbf{1 4}$ as yellow plates. $\mathrm{Mp} 110{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 10.22(1 \mathrm{H}, \mathrm{s}), 9.74(1 \mathrm{H}, \mathrm{s}), 7.68(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 7.67$ $(1 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}), 7.20(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 7.09(1 \mathrm{H}, \mathrm{dd}$, $J=2.9,9.0 \mathrm{~Hz}), 7.05(1 \mathrm{H}, \mathrm{d}, J=2.9 \mathrm{~Hz}), 3.81(3 \mathrm{H}, \mathrm{s}), 2.35$ $(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 194.5,155.7,143.9,136.2$, 132.9, 129.6, 127.2, 123.5, 122.0, 121.0, 119.3, 55.7, 21.5; IR (KBr) 3390, 1652, 1583; LRMS (FAB) m/z 306 $\left[5, \mathrm{M}^{+}+\mathrm{H}\right], 305\left[7, \mathrm{M}^{+}\right], 154$ [100]. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{5} \mathrm{~S}: \mathrm{C}, 59.00 ; \mathrm{H}, 4.95$; N, 4.59, found: C, 58.87; H, 5.04; N, 4.49.
2.1.14. N-Allyl- N - \boldsymbol{p}-toluenesulfonyl-2-formyl-4-methoxyaniline (15). To a solution of aldehyde $14(100 \mathrm{mg}$, $0.33 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(68 \mathrm{mg}, 0.50 \mathrm{mmol})$ in 10 mL of DMF under an Ar atmosphere, was added allyl bromide $(0.04 \mathrm{~mL}, 0.50 \mathrm{mmol})$. The mixture was stirred at $80^{\circ} \mathrm{C}$ for 1 h and the reaction was quenched by the addition of saturated aqueous NaHCO_{3}. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the residue was purified by recrystallization from n-hexane/ AcOEt to give $110 \mathrm{mg}(97 \%)$ of $\mathbf{1 5}$ as orange needles. Mp $77{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 10.27(1 \mathrm{H}, \mathrm{s}), 7.37(2 \mathrm{H}, \mathrm{d}$, $J=8.3 \mathrm{~Hz}), 7.33(1 \mathrm{H}, \mathrm{d}, J=3.2 \mathrm{~Hz}), 7.19(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz})$, $6.88(1 \mathrm{H}, \mathrm{dd}, J=3.2,8.8 \mathrm{~Hz}), 6.50(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 5.62$ $(1 \mathrm{H}$, dddd, $J=6.8,6.8,8.5,17.1 \mathrm{~Hz}), 4.95\left({ }^{1} \mathrm{H}, \mathrm{d}, ~ J=\right.$ $4.6 \mathrm{~Hz}), 4.92(1 \mathrm{H}, \mathrm{d}, J=11.6 \mathrm{~Hz}), 4.48(2 \mathrm{H}, \mathrm{br}), 3.71(3 \mathrm{H}$, br), $2.33(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR (CDCl3) δ 190.1, 159.3, 144.1, 136.9, 134.5, 134.0, 131.7, 129.6, 129.2, 127.9, 121.5, 120.4, 110.6, 55.7, 54.5, 21.6; IR (KBr) 3367, 3068, 2864, 2750, 1693; LRMS (FAB) m/z 346 [40, M ${ }^{+}+\mathrm{H}$], 191 [100]. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{~S}$: C, 62.59; H, 5.54; N, 4.06; found: C, 62.44; H, 5.44; N, 3.93.

2.1.15. N-Allyl- N - p-toluenesulfonyl-2-ethenyl-4-methoxy-

 aniline (16). To a cooled ($-78^{\circ} \mathrm{C}$) solution of $\mathrm{BrPh}_{3} \mathrm{PMe}$ ($34.1 \mathrm{mg}, 0.96 \mathrm{mmol}$) in 5 mL of THF under an Ar atmosphere, was added a solution of $\mathrm{KN}(\mathrm{TMS})_{2}$ in THF $(0.5 \mathrm{M}, 1.91 \mathrm{~mL}, 0.96 \mathrm{mmol})$. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 15 min . To this solution, aldehyde 15 (110 mg , 0.32 mmol) was added and the mixture was warmed to room temperature with stirring for 1 h . The reaction was quenched by the addition of saturated aqueous Rochelle's salt. The mixture was extracted with AcOEt and combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the residue was purified by column chromatography on silica gel (n-hexane/AcOEt $=10: 1$) to give $107 \mathrm{mg}(98 \%)$ of $\mathbf{1 6}$ as a yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 7.59(2 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 7.28(2 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}), 7.10(1 \mathrm{H}$, d, $J=2.9 \mathrm{~Hz}), 7.00(1 \mathrm{H}, \mathrm{dd}, J=2.2,7.8 \mathrm{~Hz}), 6.67(1 \mathrm{H}, \mathrm{dd}$, $J=2.9,8.8 \mathrm{~Hz}), 6.57(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 5.67-6.77(2 \mathrm{H}, \mathrm{m})$, $5.29(1 \mathrm{H}, \mathrm{dd}, J=1.2,11.2 \mathrm{~Hz}), 5.00(1 \mathrm{H}, \mathrm{dd}, J=1.2,5.8 \mathrm{~Hz})$, $4.96(1 \mathrm{H}, \mathrm{dd}, J=1.2,4.9 \mathrm{~Hz}), 4.23(1 \mathrm{H}, \mathrm{br}), 3.93(1 \mathrm{H}, \mathrm{br})$, $3.81(3 \mathrm{H}, \mathrm{s}), 2.44(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 159.2,152.0$, $143.4,139.7,136.1,132.8,132.5,130.1,129.4,127.8$, $119.2,115.8,113.9,110.3,55.3,54.9,21.5$; IR (neat) 3091 , 3012, 2939, 2837, 1603, 1571; LRMS (FAB) m/z 344 [25, $\left.\mathrm{M}^{+}+\mathrm{H}\right], 188$ [100]. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{~S}: \mathrm{C}, 66.45$; H, 6.16; N, 4.08, found: C, 66.31; H, 6.09; N, 3.93.2.1.16. N - p-Toluenesulfonyl-6-methoxy-1,2-dihydroquinoline (39). To a solution of olefin $16(34 \mathrm{mg}$, 0.10 mmol) in 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under an Ar atmosphere, was added Grubbs' catalyst A ($4.11 \mathrm{mg}, 0.005 \mathrm{mmol}$). The mixture was degassed and stirred at $50^{\circ} \mathrm{C}$ for 1 h . After removal of the solvent, the residue was purified by column chromatography on silica gel (n-hexane/AcOEt=3:1) followed by recrystallization from n-hexane/AcOEt to give 30 mg (95%) of 39 as colorless needles. Mp $152{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.61(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 7.27(2 \mathrm{H}, \mathrm{d}$, $J=8.2 \mathrm{~Hz}), 7.07(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 6.81(1 \mathrm{H}, \mathrm{dd}, J=2.9$, $8.8 \mathrm{~Hz}), 6.46(1 \mathrm{H}, \mathrm{d}, J=2.9 \mathrm{~Hz}), 5.94(1 \mathrm{H}, \mathrm{d}, J=9.7 \mathrm{~Hz})$, $5.55(1 \mathrm{H}, \mathrm{td}, J=4.0,9.7 \mathrm{~Hz}), 4.40(2 \mathrm{H}, \mathrm{d}, J=4.0 \mathrm{~Hz}), 3.80$ $(3 \mathrm{H}, \mathrm{s}), 2.35(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 158.1,143.2$,
136.1, 130.6, 129.0, 128.3, 127.7, 127.3, 125.8, 124.5, $112.9,111.5,55.4,45.5,21.5$; IR (KBr) 3383, 2962, 1574, 1485; HRMS (FAB) calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{3} \mathrm{~S} 315.0929$, found 315.0943.

2.1.17. N - p-Toluenesulfonyl-5-chloro-anthranilic acid

 methyl ester (19). To a solution of commercially available 5-chloro-anthranilic acid methyl ester $(0.50 \mathrm{~g}, 2.69 \mathrm{mmol})$ in 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under an Ar atmosphere, were added pyridine ($0.64 \mathrm{~mL}, 8.08 \mathrm{mmol}$) and $\mathrm{TsCl}(0.62 \mathrm{~g}$, $3.23 \mathrm{mmol})$. The mixture was stirred at room temperature for 1 h and the reaction was quenched by the addition of water. The mixture was extracted with AcOEt and the combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the residue was purified by recrystallization from acetone to give 0.83 g (91%) of $\mathbf{1 9}$ as colorless needles. Mp $115{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 10.50(1 \mathrm{H}, \mathrm{s}), 7.87(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}), 7.71(2 \mathrm{H}$, d, $J=8.5 \mathrm{~Hz}), 7.66(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 7.39(1 \mathrm{H}, \mathrm{dd}, J=2.4$, $9.0 \mathrm{~Hz}), 7.22(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 3.88(3 \mathrm{H}, \mathrm{s}), 2.36(3 \mathrm{H}, \mathrm{s})$; ${ }^{13}{ }^{13}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 167.1,144.1,139.0,136.1,134.3$, 130.7, 129.7, 128.1, 127.2, 120.4, 117.0, 52.7, 21.5; IR (KBr) 3451, 3170, 2954, 1935, 1696; LRMS (FAB) m/z 342 $\left[25, \mathrm{M}^{+}+\mathrm{H}\right], 340\left[63, \mathrm{M}^{+}+\mathrm{H}\right], 154$ [100]. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{ClNO}_{4} \mathrm{~S}: \mathrm{C}, 53.02$; H, 4.15; N, 4.12, found: C, 52.94; H, 4.28; N, 4.05.2.1.18. N - p-Toluenesulfonyl-4-chloro-2-hydroxymethylaniline (20). To a cooled $\left(-78^{\circ} \mathrm{C}\right)$ solution of ester 19 $(0.74 \mathrm{~g}, 2.17 \mathrm{mmol})$ in 10 mL of toluene under an Ar atmosphere, was added a solution of DIBAL in toluene ($1 \mathrm{M}, 6.51 \mathrm{~mL}, 6.51 \mathrm{mmol})$. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h and the reaction was quenched by the addition of MeOH and Rochelle's salt, and then the solution was allowed to stir at room temperature until two layers were separated. The mixture was extracted with AcOEt and combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the residue was purified by recrystallization from MeOH to give 417 mg (62\%) of 20 as colorless prisms. Mp $174{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (acetone- d_{6}) $\delta 8.58(1 \mathrm{H}, \mathrm{br}), 7.60(2 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}), 7.30$ $(2 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}), 7.26(1 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}), 7.23(1 \mathrm{H}, \mathrm{s})$, $7.19(1 \mathrm{H}, \mathrm{dd}, J=2.6,8.6 \mathrm{~Hz}), 4.73(1 \mathrm{H}, \mathrm{br}), 4.44(2 \mathrm{H}, \mathrm{s})$, $2.34(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR (acetone- d_{6}) δ 144.3, 137.7, 137.1, $134.9,130.6,130.0,128.2,128.0,127.4,125.5,61.6,20.9$; IR (KBr) 3468, 3120, 2921, 2809, 1586, 1480, 1327; LRMS (FAB) $m / z 314\left[8, \mathrm{M}^{+}+\mathrm{H}\right], 312$ [20, $\left.\mathrm{M}^{+}+\mathrm{H}\right], 154$ [100]. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{ClNO}_{3} \mathrm{~S}$: C, 53.93; H, 4.53; N, 4.49, found: C, 53.80; H, 4.63; N, 4.49.

2.1.19. N-p-Toluenesulfonyl-4-chloro-2-formylaniline

 (21). To a solution of alcohol $20(0.22 \mathrm{~g}, 0.69 \mathrm{mmol})$ in 10 mL of benzene, was added $\mathrm{MnO}_{2}(0.18 \mathrm{~g}, 2.07 \mathrm{mmol})$. The mixture was refluxed for 4 h and filtered through a celite pad. After removal of the solvent, the residue was purified by recrystallization from acetone to give 116 mg (54\%) of 21 as colorless needles. Mp $146{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 10.88(1 \mathrm{H}, \mathrm{s}), 9.79(1 \mathrm{H}, \mathrm{s}), 7.79(2 \mathrm{H}, \mathrm{d}, J=$ $6.6 \mathrm{~Hz}), 7.72(1 \mathrm{H}, \mathrm{d}, J=1.7 \mathrm{~Hz}), 7.51(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz})$, $7.28(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 7.12(1 \mathrm{H}, \mathrm{dd}, J=1.7,8.1 \mathrm{~Hz}), 2.34$ (3H, s); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 193.7,144.4,138.4,136.0$, 135.6, 135.1, 129.8, 128.3, 127.2, 122.8, 119.5, 21.5; IR $(\mathrm{KBr}) 3433,3178,3051,2753,1667,1573,1489$; LRMS(FAB) $m / z 312\left[20, \mathrm{M}^{+}+\mathrm{H}\right], 310\left[50, \mathrm{M}^{+}+\mathrm{H}\right], 154$ [100]. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{ClNO}_{3} \mathrm{~S}$: C, 54.28; H, 3.90; N, 4.52, found: C, 54.28; H, 4.03; N, 4.47.
2.1.20. N-Allyl- N - p-toluenesulfonyl-4-chloro-2-formylaniline (22). To a solution of aldehyde $21(0.24 \mathrm{~g}$, $0.77 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.16 \mathrm{~g}, 1.16 \mathrm{mmol})$ in 20 mL of DMF under an Ar atmosphere, was added allyl bromide $(0.1 \mathrm{~mL}, 1.16 \mathrm{mmol})$. The mixture was stirred at $80^{\circ} \mathrm{C}$ for 1 h and the reaction was quenched by the addition of saturated aqueous NaHCO_{3}. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the residue was purified by column chromatography on silica gel (n-hexane/AcOEt=2:1) to give $260 \mathrm{mg}(97 \%)$ of 22 as a pale yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 10.32(1 \mathrm{H}, \mathrm{s})$, $7.94(1 \mathrm{H}, \mathrm{d}, J=2.6 \mathrm{~Hz}), 7.48(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 7.40(1 \mathrm{H}$, dd, $J=2.5,8.4 \mathrm{~Hz}), 7.30(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 6.64(1 \mathrm{H}, \mathrm{d}$, $J=8.6 \mathrm{~Hz}), 5.70(1 \mathrm{H}$, dddd, $J=6.8,6.9,10.1,17.0 \mathrm{~Hz}), 5.08$ $(1 \mathrm{H}, \mathrm{d}, J=10.1 \mathrm{~Hz}), 5.03(1 \mathrm{H}, \mathrm{d}, J=17.0 \mathrm{~Hz}), 4.68(1 \mathrm{H}, \mathrm{br})$, $3.89(1 \mathrm{H}, \mathrm{br}), 2.46(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 188.7$, $144.5,139.6,137.2,135.0,134.1,133.8,131.3,129.8$, $129.3,128.4,127.9,120.9,54.3,21.6$; IR (neat) 3451,3070 , 2921, 2874, 1690; HRMS (FAB) calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ClNO}_{3} \mathrm{~S}$ 350.0618, found 350.0586 .
2.1.21. N-Allyl- N-p-toluenesulfonyl-4-chloro-2-ethenylaniline (23). To a cooled $\left(-78^{\circ} \mathrm{C}\right)$ solution of $\mathrm{BrPh}_{3} \mathrm{PMe}$ ($270 \mathrm{mg}, 0.75 \mathrm{mmol}$) in 20 mL of THF under an Ar atmosphere, was added a solution of $\mathrm{KN}(\mathrm{TMS})_{2}$ in THF $(0.5 \mathrm{M}, 1.5 \mathrm{~mL}, 0.75 \mathrm{mmol})$. After the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 15 min , aldehyde 22 ($220 \mathrm{mg}, 0.63 \mathrm{mmol}$) was added and the mixture was warmed to room temperature for 1 h . The reaction was quenched by the addition of Rochelle's salt. The mixture was extracted with AcOEt and combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the residue was purified by column chromatography on silica gel (n-hexane/ $\mathrm{AcOEt}=2: 1)$ to give $210 \mathrm{mg}(96 \%)$ of $\mathbf{2 3}$ as a yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.59(1 \mathrm{H}, \mathrm{s}), 7.57(2 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 7.29$ $(2 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}), 7.09(1 \mathrm{H}, \mathrm{dd}, J=2.5,8.6 \mathrm{~Hz}), 6.96(1 \mathrm{H}$, dd, $J=11.0,17.6 \mathrm{~Hz}), 6.60(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 5.65-5.75$ ($2 \mathrm{H}, \mathrm{m}$), $5.34(1 \mathrm{H}, \mathrm{d}, J=11.1 \mathrm{~Hz}$), $5.00(1 \mathrm{H}, \mathrm{dd}, J=1.1$, $8.7 \mathrm{~Hz}), 4.96(1 \mathrm{H}, \mathrm{dd}, J=1.3,7.0 \mathrm{~Hz}), 4.23(1 \mathrm{H}, \mathrm{br}), 3.94$ $(1 \mathrm{H}, \mathrm{s}), 2.44(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 143.8,140.4$, 135.7, 135.1, 134.4, 132.0, 131.7, 130.3, 129.6, 127.9, 127.8, 126.1, 119.6, 117.0, 54.7, 21.5.; IR (neat) 3087, 3023, 2977, 2923, 2856, 1477; HRMS (FAB) calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{ClNO}_{2} \mathrm{~S} 348.0825$, found: 348.0825 .

2.1.22. N - p-Toluenesulfonyl-6-chloro-1,2-dihydroquino-

 line (40). To a solution of olefin $23(100 \mathrm{mg}, 0.29 \mathrm{mmol})$ in 29 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under an Ar atmosphere, was added catalyst A $(12.2 \mathrm{mg}, 0.0245 \mathrm{mmol})$. The mixture was degassed and stirred at $50^{\circ} \mathrm{C}$ for 1 h . After removal of the solvent, the residue was purified by column chromatography on silica gel (n-hexane/AcOEt=1:1) to give $84 \mathrm{mg}(90 \%)$ of 40 as a colorless amorphous solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.63$ $(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 7.30(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 7.20(1 \mathrm{H}, \mathrm{dd}$, $J=2.4,8.5 \mathrm{~Hz}), 7.09(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 6.92(1 \mathrm{H}, \mathrm{d}, J=$ $2.4 \mathrm{~Hz}), 5.96(1 \mathrm{H}, \mathrm{d}, J=9.8 \mathrm{~Hz}), 5.63(1 \mathrm{H}, \mathrm{td}, J=4.1$, $4.2 \mathrm{~Hz}), 4.42(2 \mathrm{H}, \mathrm{dd}, J=1.7,4.1 \mathrm{~Hz}), 2.35(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 143.6,135.9,133.3,132.0,130.7,129.1$,128.0, 127.6, 127.1, 126.1, 125.4, 124.8, 60.3, 21.4; IR (KBr) 3451, 3060, 2921, 1560, 1179, 1354; HRMS (FAB) calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{ClNO}_{2} \mathrm{~S} 319.0434$, found: 319.0427.
2.1.23. 4-Chloro-anthranilic acid methyl ester (25). To solution of purified 2 -amino-4-chlorobenzoic acid 24 ($5.00 \mathrm{~g}, 29.1 \mathrm{mmol}$) in 291 mL of 2,2-dimethoxypropane, was added 58.2 mL of hydrochloric acid (36\%). The mixture was stirred at $50^{\circ} \mathrm{C}$ for 12 h and the reaction was quenched by addition of saturated aqueous NaHCO_{3}. The product was extracted with AcOEt and the combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the residue was purified by recrystallization from n-hexane to give 3.59 g (67%) of $\mathbf{2 5}$ as white needles. $\mathrm{Mp} 60-61^{\circ} \mathrm{C}$ (lit. ${ }^{19}$ 66$\left.68{ }^{\circ} \mathrm{C}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.77(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 6.66$ $(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}), 6.60(1 \mathrm{H}, \mathrm{dd}, J=2.2,8.5 \mathrm{~Hz}), 5.80(2 \mathrm{H}$, s), $3.86(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 149.3,138.9,131.9$, 118.8, 115.4, 115.2, 67.5, 51.1; IR (KBr) 3454, 3357, 1685; LRMS (EI) $\mathrm{m} / \mathrm{z} 187$ [10, M ${ }^{+}$], 185 [40, M ${ }^{+}$], 98 [100]. Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{ClNO}_{2}$: C, 51.77; H, 4.34; N, 7.55 , found: C, 51.76; H, 4.29; N, 7.42.
2.1.24. N - p-Toluenesulfonyl-4-chloro-anthranilic acid methyl ester (26). To a solution of ester $25(1.80 \mathrm{~g}$, 9.70 mmol) in 30 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under an Ar atmosphere, were added pyridine ($2.31 \mathrm{~mL}, 29.1 \mathrm{mmol}$) and TsCl $(2.22 \mathrm{~g}, 11.6 \mathrm{mmol})$. The mixture was stirred at room temperature for 1 h and the reaction was quenched by the addition of water. The mixture was extracted with AcOEt and the combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the residue was purified by recrystallization from acetone to give $2.37 \mathrm{~g}(72 \%)$ of $\mathbf{2 6}$ as colorless needles. Mp $143{ }^{\circ} \mathrm{C}$ (lit. ${ }^{20} 134-136{ }^{\circ} \mathrm{C}$ from ethanol); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 10.72$ $(1 \mathrm{H}, \mathrm{s}), 7.84(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.77(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz})$, $7.72(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 7.25(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 6.98(1 \mathrm{H}$, dd, $J=1.8,8.5 \mathrm{~Hz}), 3.88(3 \mathrm{H}, \mathrm{s}), 2.38(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 168.1,143.7,136.3,136.0,133.5,128.9,128.7$, 127.3, 125.8, 116.9, 116.5, 52.6, 21.4; IR (KBr) 3114, 2956, 1687, 1597; LRMS (FAB) $m / z 342\left[25, \mathrm{M}^{+}+\mathrm{H}\right], 340$ [65, $\left.\mathrm{M}^{+}+\mathrm{H}\right], 154$ [100]. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{ClNO}_{4} \mathrm{~S}: \mathrm{C}$, 53.02; H, 4.15; N, 4.12, found: C, 52.84; H, 4.09; N, 3.84.
2.1.25. N - p-Toluenesulfonyl-5-chloro-2-hydroxymethylaniline (27). To a cooled ($-78^{\circ} \mathrm{C}$) solution of ester 26 $(0.16 \mathrm{~g}, 0.47 \mathrm{mmol})$ in 5 mL of toluene under an Ar atmosphere, was added a solution of DIBAL in toluene ($1 \mathrm{M}, 1.55 \mathrm{~mL}, 1.55 \mathrm{mmol}$). After the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h , the reaction was quenched by the addition of MeOH and saturated aqueous Rochelle's salt. Then the solution was allowed to stir at room temperature until two layers were separated. The mixture was extracted with AcOEt and the combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the residue was purified by recrystallization from MeOH to give 100 mg (70%) of 27 as colorless prisms. Mp 123$124^{\circ} \mathrm{C}$ (lit. ${ }^{20} 108-110{ }^{\circ} \mathrm{C}$ from ethanol); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 7.65(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.45(1 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}), 7.24(2 \mathrm{H}$, d, $J=8.4 \mathrm{~Hz}), 7.02(1 \mathrm{H}, \mathrm{dd}, J=1.5,8.1 \mathrm{~Hz}), 6.99(1 \mathrm{H}, \mathrm{d}$, $J=8.1 \mathrm{~Hz}), 4.37(2 \mathrm{H}, \mathrm{s}), 2.39(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 144.2, 137.6, 136.5, 134.7, 129.9, 129.8, 129.4, 127.0, $125.0,122.7,63.3,21.5$; IR (KBr) 3500, 3249, 1600, 1491;

LRMS (FAB) $m / z 314\left[8, \mathrm{M}^{+}+\mathrm{H}\right], 312\left[20, \mathrm{M}^{+}+\mathrm{H}\right], 154$ [100]. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{ClNO}_{3} \mathrm{~S}: \mathrm{C}, 53.93 ; \mathrm{H}, 4.53$; N, 4.49, found: C, 53.78 ; H, 4.52; N, 4.37.

2.1.26. N-p-Toluenesulfonyl-5-chloro-2-formylaniline

 (28). To a solution of alcohol 27 ($590 \mathrm{mg}, 1.89 \mathrm{mmol}$) in 100 mL of benzene, was added $\mathrm{MnO}_{2}(400 \mathrm{mg}, 4.54 \mathrm{mmol})$. The mixture was refluxed for 4 h and filtered through a celite pad. After removal of the solvent, the residue was purified by recrystallization from acetone to give 420 mg (71\%) of 27 as colorless prisms. Mp $139-140{ }^{\circ} \mathrm{C}$ (lit. ${ }^{20}$ $138-140{ }^{\circ} \mathrm{C}$ from ethanol); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 10.88(1 \mathrm{H}$, s), $9.78(1 \mathrm{H}, \mathrm{s}), 7.79(2 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 7.72(1 \mathrm{H}, \mathrm{d}$, $J=1.7 \mathrm{~Hz}), 7.51(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 7.28(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz})$, $7.12(1 \mathrm{H}, \mathrm{dd}, J=1.7,8.1 \mathrm{~Hz}), 2.39(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 193.9,144.6,142.6,141.0,137.0,136.1,129.9$, 127.3, 123.2, 120.1, 117.7, 21.6; IR (KBr) 3153, 3105, 2858, 1672, 1597; LRMS (FAB) m/z $312\left[20, \mathrm{M}^{+}+\mathrm{H}\right], 310$ $\left[50, \mathrm{M}^{+}+\mathrm{H}\right], 154$ [100]. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{ClNO}_{3} \mathrm{~S}: \mathrm{C}$, 54.28; H, 3.90; N, 4.52, found: C, 54.17; H, 3.90; N, 4.35.2.1.27. N-Allyl- N-p-toluenesulfonyl-5-chloro-2-formylaniline (29). To a solution of aldehyde $\mathbf{2 8}(1.11 \mathrm{~g}$, $3.58 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(740 \mathrm{mg}, 5.38 \mathrm{mmol})$ in 100 mL of DMF under an Ar atmosphere, was added allyl bromide ($0.47 \mathrm{~mL}, 5.38 \mathrm{mmol}$). The mixture was stirred at $80^{\circ} \mathrm{C}$ for 1 h and the reaction was quenched by the addition of saturated aqueous NaHCO_{3}. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the residue was purified by recrystallization from AcOEt to give $1.15 \mathrm{~g}(92 \%)$ of 29 as white prisms. Mp $117-118^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 10.31(1 \mathrm{H}, \mathrm{s}), 7.94(1 \mathrm{H}, \mathrm{d}, J=2.6 \mathrm{~Hz})$, $7.50(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 7.42(1 \mathrm{H}, \mathrm{dd}, J=2.0,8.3 \mathrm{~Hz}), 7.33$ $(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 6.67(1 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 5.22(1 \mathrm{H}$, dddd, $J=3.4,6.6,10.0,17.0 \mathrm{~Hz}), 5.10(1 \mathrm{H}, \mathrm{dd}, J=0.7,10.0 \mathrm{~Hz})$, $5.06(1 \mathrm{H}, \mathrm{dd}, J=1.2,17.1 \mathrm{~Hz}), 4.53(1 \mathrm{H}, \mathrm{br}), 3.82(1 \mathrm{H}, \mathrm{br})$, $2.47(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 188.9,144.7,142.4$, 134.6, 131.2, 129.9, 129.6, 129.1, 128.3, 127.9, 121.0, 60.4, 54.4, 21.6, 14.2; IR (KBr) 3089, 3068, 2924, 2870, 1691; LRMS (FAB) m/z $352\left[40, \mathrm{M}^{+}+\mathrm{H}\right], 350\left[100, \mathrm{M}^{+}+\mathrm{H}\right]$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{ClNO}_{3} \mathrm{~S}: \mathrm{C}, 58.37 ; \mathrm{H}, 4.61 ; \mathrm{N}, 4.00$; found: C, 58.30; H, 4.59; N, 3.82.
2.1.28. N-Allyl- N - p-toluenesulfonyl-5-chloro-2-ethenylaniline (30). To a cooled ($-78{ }^{\circ} \mathrm{C}$) solution of $\mathrm{BrPh}_{3} \mathrm{PMe}$ ($613 \mathrm{mg}, 1.72 \mathrm{mmol}$) in 20 mL of THF under an Ar atmosphere, was added a solution of $\mathrm{KN}(\mathrm{TMS})_{2}$ in THF $(0.5 \mathrm{M}, 3.43 \mathrm{~mL}, 1.72 \mathrm{mmol})$. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 15 min . Then, to the mixture, aldehyde 29 ($200 \mathrm{mg}, 0.57 \mathrm{mmol}$) was added and the reaction mixture was stirred at room temperature for 1 h . The solution was quenched by the addition of saturated aqueous Rochelle's salt and MeOH . The mixture was extracted with AcOEt and the combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the residue was purified by recrystallization from n-hexane to give $193 \mathrm{mg}(97 \%)$ of $\mathbf{3 0}$ as orange prisms. Mp $115{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.59(3 \mathrm{H}, \mathrm{m}), 7.29(2 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}), 7.09(1 \mathrm{H}$, dd, $J=2.4,8.6 \mathrm{~Hz}), 6.97(1 \mathrm{H}, \mathrm{dd}, J=11.0,17.6 \mathrm{~Hz}), 6.60$ $(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 5.65-5.75(2 \mathrm{H}, \mathrm{m}), 5.34(1 \mathrm{H}, \mathrm{d}, J=$ $11.0 \mathrm{~Hz}), 4.94-5.02(2 \mathrm{H}, \mathrm{m}), 4.23(1 \mathrm{H}, \mathrm{br}), 3.94(1 \mathrm{H}, \mathrm{br})$, $2.44(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 143.9,137.5,137.3$,
135.5, 132.9, 131.8, 131.7, 129.6, 129.1, 128.7, 127.8, 127.0, 119.6, 116.3, 54.6, 21.7; IR (KBr) 3448, 3074, 2925, 2867, 1699, 1595, 1352; LRMS (FAB) m/z 350 [20, $\left.\mathrm{M}^{+}+\mathrm{H}\right], 348\left[40, \mathrm{M}^{+}+\mathrm{H}\right], 192$ [100]. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{ClNO}_{2} \mathrm{~S}: \mathrm{C}, 62.15 ; \mathrm{H}, 5.22$; N, 4.03, found: C, 62.27; H, 5.40; N, 3.94.
2.1.29. N - p-Toluenesulfonyl-7-chloro-1,2-dihydroquinoline (41). To a solution of olefin 30 ($197 \mathrm{mg}, 0.57 \mathrm{mmol}$) in 57 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under an Ar atmosphere, was added catalyst B $(24 \mathrm{mg}, \quad 0.0285 \mathrm{mmol})$. The mixture was degassed and stirred at $50^{\circ} \mathrm{C}$ for 1 h . After removal of the solvent, the residue was purified by column chromatography on silica gel (n-hexane/AcOEt=5:1) and recrystallization from MeOH to give $181 \mathrm{mg}(100 \%)$ of 41 as colorless needles. Mp $156{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.73(1 \mathrm{H}, \mathrm{d}, J=$ $2.0 \mathrm{~Hz}), 7.35(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 7.14(1 \mathrm{H}, \mathrm{dd}, J=2.0$, $8.2 \mathrm{~Hz}), 7.10(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 6.86(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz})$, $6.01(1 \mathrm{H}, \mathrm{d}, J=9.5 \mathrm{~Hz}), 5.60(1 \mathrm{H}, \mathrm{td}, J=4.2,9.4 \mathrm{~Hz}), 4.43$ $(2 \mathrm{H}, \mathrm{d}, J=4.2 \mathrm{~Hz}), 2.35(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 143.8$, 136.2, 136.1, 133.2, 129.3, 127.4, 126.8, 125.2, 124.2, 45.3, 29.8, 21.6, 1.09, 0.07; IR (KBr) 3448, 3065, 2926, 2858, 1593; LRMS (FAB) $m / z 322\left[10, \mathrm{M}^{+}+\mathrm{H}\right], 320$ [35, $\left.\mathrm{M}^{+}+\mathrm{H}\right], 164$ [100]. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{ClNO}_{2} \mathrm{~S}$: C, 60.09; H, 4.41; N, 4.38, found: C, 59.97; H, 4.51; N, 4.28.
2.1.30. 2-Aminonaphthalene-3-carboxylic acid methyl ester (32). To a solution of 2-aminonaphthalene-3-carboxylic acid ($0.10 \mathrm{~g}, 0.53 \mathrm{mmol}$) in 5 mL of 2,2-dimethoxypropane, was added 1 mL of 36% hydrochloric acid. The mixture was stirred at room temperature for 12 h and the reaction was quenched by addition of saturated aqueous NaHCO_{3}. The product was extracted with AcOEt and the combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the residue was purified by recrystallization from n-hexane to give 43 mg (40%) of 32 as yellow needles. $\mathrm{Mp} 102{ }^{\circ} \mathrm{C}$ (lit. ${ }^{21}$ 104$\left.105{ }^{\circ} \mathrm{C}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.49(1 \mathrm{H}, \mathrm{s}), 7.71(1 \mathrm{H}, \mathrm{d}$, $J=8.3 \mathrm{~Hz}), 7.52(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 7.38(1 \mathrm{H}, \mathrm{dd}, J=7.6$, $8.3 \mathrm{~Hz}), 7.17(1 \mathrm{H}, \mathrm{dd}, J=7.6,8.3 \mathrm{~Hz}), 6.95(1 \mathrm{H}, \mathrm{s}), 5.56$ (2H, br), $3.94(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 168.3,145.9$, 137.3, 133.4, 129.2, 128.8, 126.0, 125.1, 122.5, 114.7, 109.9, 51.9; IR (KBr) 3496, 3389, 2961, 1694; LRMS (FAB) m/z $202\left[50, \mathrm{M}^{+}+\mathrm{H}\right]$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NO}_{2}$: C, $71.63 ; \mathrm{H}, 5.51 ; \mathrm{N}, 6.96$, found: C, $71.48 ; \mathrm{H}, 5.51 ; \mathrm{N}, 6.86$.
2.1.31. N - p-Toluenesulfonyl-2-aminonaphthalene-3-carboxylic acid methyl ester (33). To a solution of ester 32 ($50 \mathrm{mg}, 0.25 \mathrm{mmol}$) in 5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under an Ar atmosphere, were added pyridine ($0.06 \mathrm{~mL}, 0.75 \mathrm{mmol}$) and $\mathrm{TsCl}(57.2 \mathrm{mg}, 0.30 \mathrm{mmol})$. The mixture was stirred at room temperature for 1 h and the reaction was quenched by the addition of water. The mixture was extracted with AcOEt and the combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the residue was purified by recrystallization from acetone to give 40 mg (78%) of $\mathbf{3 3}$ as colorless needles. Mp 136$137{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 10.39(1 \mathrm{H}, \mathrm{s}), 8.50(1 \mathrm{H}, \mathrm{s}), 8.07$ $(1 \mathrm{H}, \mathrm{s}), 7.77(2 \mathrm{H}, \mathrm{d}, J=9.1 \mathrm{~Hz}), 7.73(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz})$, $7.56(1 \mathrm{H}, \mathrm{dd}, J=7.1,8.1 \mathrm{~Hz}), 7.42(1 \mathrm{H}, \mathrm{dd}, J=7.3,8.3 \mathrm{~Hz})$, $7.17(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 3.92(3 \mathrm{H}, \mathrm{s}), 2.31(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 168.1,143.7,136.3,136.0,135.2,133.5,129.5$, 129.4, 128.9, 128.7, 127.32, 127.30, 125.8, 116.9, 116.5,
52.6, 21.4; IR (KBr) 3445, 3173, 2952, 1941, 1830, 1682; LRMS (FAB) m/z $356\left[60, \mathrm{M}^{+}+\mathrm{H}\right], 355\left[65, \mathrm{M}^{+}\right], 154$ [100]. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}_{4} \mathrm{~S}: \mathrm{C}, 64.21 ; \mathrm{H}, 4.82$; N, 3.94, found: C, 64.05; H, 4.95; N, 3.85.
2.1.32. N-(p-Toluenesulfonyl)-2-amino-3-hydroxymethylnaphthalene (34). To a cooled ($-78^{\circ} \mathrm{C}$) solution of ester $33(0.10 \mathrm{~g}, 0.28 \mathrm{mmol})$ in 3 mL of toluene under an Ar atmosphere, was added a solution of DIBAL in toluene $(1 \mathrm{M}, 1.13 \mathrm{~mL}, 1.13 \mathrm{mmol})$. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h and the reaction was quenched by the addition of MeOH and saturated aqueous Rochelle's salt. Then the solution was allowed to stir at room temperature until two layers were separated. The mixture was extracted with AcOEt and the combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the residue was purified by recrystallization from MeOH to give 88 mg (96%) of $\mathbf{3 4}$ as light brown needles. Mp 183-185 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.08(1 \mathrm{H}, \mathrm{s}), 7.94(1 \mathrm{H}$, s), $7.78(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.72(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.68$ $(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 7.54(1 \mathrm{H}, \mathrm{s}), 7.48(2 \mathrm{H}, \mathrm{dd}, J=7.1$, $7.9 \mathrm{~Hz}), 7.42(1 \mathrm{H}, \mathrm{dd}, J=7.8,6.8 \mathrm{~Hz}), 7.18(2 \mathrm{H}, \mathrm{d}, J=$ $8.0 \mathrm{~Hz}), 4.52(2 \mathrm{H}, \mathrm{d}, J=4.9 \mathrm{~Hz}), 2.35(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 144.6,140.9,136.3,131.6,126.5,126.3,125.9$, $125.8,125.4,124.0,123.9,120.9,116.3,106.6,59.8,21.1$; IR (KBr): 3455, 3110, 2917, 2867, 2806, 2710, 1597; LRMS (FAB) $m / z 328\left[10, \mathrm{M}^{+}+\mathrm{H}\right], 327\left[25, \mathrm{M}^{+}\right], 154$ [100]. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{3} \mathrm{~S}: \mathrm{C}, 66.03 ; \mathrm{H}, 5.23$; N, 4.28, found: C, 65.85 ; H, 5.14; N, 4.14.
2.1.33. N-(p-Toluenesulfonyl)-2-amino-3-formylnaphthalene (35). To a solution of alcohol $34(0.42 \mathrm{~g}$, 1.28 mmol) in 100 mL of benzene, was added MnO_{2} $(0.40 \mathrm{~g}, 3.08 \mathrm{mmol})$. The mixture was refluxed for 4 h and filtered through a celite pad. After removal of the solvent, the residue was purified by recrystallization from AcOEt to give 350 mg (84%) of $\mathbf{3 5}$ as yellow prisms. Mp $163{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 10.44(1 \mathrm{H}, \mathrm{s}), 9.95(1 \mathrm{H}, \mathrm{s}), 8.12(1 \mathrm{H}, \mathrm{s})$, $8.03(1 \mathrm{H}, \mathrm{s}), 7.85(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 7.79(1 \mathrm{H}, \mathrm{d}, J=$ $2.3 \mathrm{~Hz}), 7.76(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 7.62(1 \mathrm{H}, \mathrm{dd}, J=7.1$, $7.1 \mathrm{~Hz}), 7.45(1 \mathrm{H}, \mathrm{dd}, J=7.1,7.1 \mathrm{~Hz}), 7.18(2 \mathrm{H}, \mathrm{d}, ~ J=$ $7.1 \mathrm{~Hz}), 2.31(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 194.9,144.0$, 140.3, 136.6, 136.4, 134.7, 130.7, 129.7, 129.2, 128.9, 127.7, 127.4, 126.1, 123.1, 115.9, 21.6; IR (KBr) 3204, 3066, 2843, 1670; LRMS (FAB) $m / z 326\left[60, \mathrm{M}^{+}+\mathrm{H}\right], 325$ $\left[50, \mathrm{M}^{+}\right], 154$ [100]. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{NO}_{3} \mathrm{~S}: \mathrm{C}$, 66.44; H, 4.65; N, 4.30, found: C, 66.15; H, 4.62; N, 4.20.
2.1.34. N-Allyl- N-(p-toluenesulfonyl)-2-amino-3-formylnaphthalene (36). To a solution of aldehyde $35(36 \mathrm{mg}$, $0.11 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(23 \mathrm{mg}, 0.17 \mathrm{mmol})$ in 10 mL of DMF, was added allyl bromide ($0.01 \mathrm{~mL}, 0.17 \mathrm{mmol}$) under an Ar atmosphere. The mixture was stirred at $80^{\circ} \mathrm{C}$ for 1 h and quenched by the addition of saturated aqueous NaHCO_{3}. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the residue was purified by recrystallization from AcOEt to give 35.7 mg (89%) of $\mathbf{3 6}$ as colorless prisms. Mp 137-138 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 10.49(1 \mathrm{H}, \mathrm{s}), 8.52(1 \mathrm{H}, \mathrm{s}), 8.00(1 \mathrm{H}, \mathrm{dd}, J=3.6$, $6.0 \mathrm{~Hz}), 7.66(1 \mathrm{H}, \mathrm{dd}, J=4.8,4.9 \mathrm{~Hz}), 7.58-7.61(2 \mathrm{H}, \mathrm{m})$, $7.51(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.28(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 7.19(1 \mathrm{H}$, s), $5.80(1 \mathrm{H}$, dddd, $J=6.8,6.8,10.2,16.8 \mathrm{~Hz}), 5.05(1 \mathrm{H}, \mathrm{d}$,
$J=3.1 \mathrm{~Hz}), 5.01(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}), 4.58(1 \mathrm{H}, \mathrm{s}), 4.02$ $(1 \mathrm{H}, \mathrm{s}), 2.46(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 190.3,144.1$, $136.8,135.4,134.5,132.9,131.9,131.7,130.6,129.9$, 129.6, 129.0, 128.0, 127.9, 127.7, 127.6, 120.4, 55.0, 21.6; IR (KBr) 3447, 3055, 2979, 2892, 1685; LRMS (FAB) m/z. $366\left[40, \mathrm{M}^{+}+\mathrm{H}\right], 211$ [100]. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{~S}$: C, 69.02; H, 5.24; N, 3.83, found: C, 68.92; H, 5.22; N, 3.77.
2.1.35. N-Allyl- N-(p-toluenesulfonyl)-2-amino-3-ethenylnaphthalene (37). To a cooled ($-78^{\circ} \mathrm{C}$) solution of $\mathrm{BrPh}_{3} \mathrm{PMe}$ ($68 \mathrm{mg}, 0.19 \mathrm{mmol}$) in 5 mL of THF, was added a solution of $\mathrm{KN}(\mathrm{TMS})_{2}$ in THF $(0.5 \mathrm{M}, 0.38 \mathrm{~mL}$, 0.19 mmol) under an Ar atmosphere. After the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 15 min , aldehyde $36(35 \mathrm{mg}$, 0.10 mmol) in THF (5 mL) was added and the mixture warmed to room temperature for 1 h . The solution was quenched by the addition of saturated aqueous Rochelle's salt. The mixture was extracted with AcOEt and the combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the residue was purified by recrystallization from n-hexane to give $34 \mathrm{mg}(97 \%)$ of $\mathbf{3 7}$ as white needles. Mp $145{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.06(1 \mathrm{H}, \mathrm{s}), 7.83(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}), 7.61(2 \mathrm{H}, \mathrm{d}$, $J=8.2 \mathrm{~Hz}), 7.58(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 7.48(1 \mathrm{H}, \mathrm{ddd}, J=1.3$, $6.8,6.8 \mathrm{~Hz}), 7.43(1 \mathrm{H}, \mathrm{ddd}, J=1.3,6.8,6.8 \mathrm{~Hz}), 7.29(2 \mathrm{H}, \mathrm{d}$, $J=7.9 \mathrm{~Hz}), 7.24(1 \mathrm{H}, \mathrm{s}), 7.13(1 \mathrm{H}, \mathrm{dd}, J=11.0,17.4 \mathrm{~Hz})$, $5.86(1 \mathrm{H}, \mathrm{dd}, J=1.3,16.3 \mathrm{~Hz}), 5.72-5.82(1 \mathrm{H}, \mathrm{m}), 5.35$ $(1 \mathrm{H}, \mathrm{dd}, J=1.3,11.0 \mathrm{~Hz}), 4.99(1 \mathrm{H}, \mathrm{d}, J=1.3 \mathrm{~Hz}), 4.95(1 \mathrm{H}$, dd, $J=1.3,6.4 \mathrm{~Hz}$), 4.29 ($1 \mathrm{H}, \mathrm{br}$), 4.13 ($1 \mathrm{H}, \mathrm{br}$), 2.46 ($3 \mathrm{H}, \mathrm{s}$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 143.6,136.4,136.1,135.3,133.3$, 133.0, 132.6, 132.3, 129.5, 128.4, 128.0, 127.8, 127.4, 126.9, 126.2, 125.4, 119.4, 116.1, 55.1, 21.6; IR (KBr) 3447, 3059, 2918, 2849, 1645, 1596; LRMS (FAB) m/z 364 $\left[25, \mathrm{M}^{+}+\mathrm{H}\right], 208$ [100]. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{~S}: \mathrm{C}$, 72.70; H, 5.82; N, 3.58, found: C, 72.55; H, 5.79; N, 3.77.
2.1.36. N-(p-Toluenesulfonyl)-1,2-dihydrobenzo[g]quinoline (42). To a solution of olefin $37(20 \mathrm{mg}$, 0.055 mmol) in 5.5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, was added catalyst \mathbf{A} $(2.26 \mathrm{mg}, 0.00275 \mathrm{mmol})$ under an Ar atmosphere. The mixture was degassed and stirred at $50^{\circ} \mathrm{C}$ for 1 h . After removal of the solvent, the residue was purified by column chromatography (n-hexane/AcOEt=4:1) on silica gel followed by recrystallization from n-hexane/AcOEt to give 19.1 mg (98%) of $\mathbf{4 2}$ as pale yellow needles. Mp $156{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.15(1 \mathrm{H}, \mathrm{s}), 7.87(1 \mathrm{H}, \mathrm{d}$, $J=9.0 \mathrm{~Hz}), 7.73(1 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}), 7.43-7.49(2 \mathrm{H}, \mathrm{m})$, $7.36(1 \mathrm{H}, \mathrm{s}), 7.29(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.03(2 \mathrm{H}, \mathrm{d}, J=$ $7.9 \mathrm{~Hz}), 6.23(1 \mathrm{H}, \mathrm{d}, J=9.7 \mathrm{~Hz}), 5.72(1 \mathrm{H}, \mathrm{ddd}, J=1.3,4.0$, $9.7 \mathrm{~Hz}), 4.51(2 \mathrm{H}, \mathrm{dd}, J=1.3,4.0 \mathrm{~Hz}), 2.32(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 143.4,136.4,132.9,132.7,131.9,129.1$, 128.3, 127.6, 127.5, 127.3, 126.4, 126.3, 126.2, 125.3, 125.1, 125.0, 45.5, 21.5; IR (KBr) 3347, 3052, 2923, 2865, 1918, 1636, 1598; LRMS (FAB) $m / z 336\left[35\right.$, M $\left.^{+}+\mathrm{H}\right], 335$ [40, M^{+}], 180 [100]. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{NO}_{2} \mathrm{~S}$: C, 71.62 ; H, 5.11 ; N, 4.18, found: C, 71.60; H, 5.11; N, 4.13.
2.1.37. N-Allyl- N-benzyl-2-isopropenylaniline (43a). To a solution of 2-isopropenylaniline ($400 \mathrm{mg}, 3.00 \mathrm{mmol}$) in 2 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under an Ar atmosphere, was added BnBr $(0.31 \mathrm{~mL}, 3.30 \mathrm{mmol})$. The mixture was stirred at room temperature for 4 h and the reaction was quenched by the addition of saturated aqueous NaHCO_{3}. The mixture was
extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the residue was purified by column chromatography on silica gel (n-hexane/AcOEt=10:1) to give 315 mg (61%) of N-benzyl-2-isopropenylaniline as a pale yellow oil. To a mixture of N -benzyl-2-isopropenylaniline ($223 \mathrm{mg}, 1.00 \mathrm{mmol}$) and $60 \% \mathrm{NaH}$ in mineral oil ($43.9 \mathrm{mg}, 1.10 \mathrm{mmol}$) in 10 mL of DMF under an Ar atmosphere, was added allyl bromide ($0.1 \mathrm{~mL}, 1.10 \mathrm{mmol}$). The mixture was stirred at $80^{\circ} \mathrm{C}$ for 1 h and the reaction was quenched by the addition of saturated aqueous NaHCO_{3}. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the residue was purified by column chromatography on silica gel (n-hexane/ $\mathrm{AcOEt}=20: 1)$ to give $54 \mathrm{mg}(20 \%)$ of 43a as a yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.13-7.28(7 \mathrm{H}, \mathrm{m}), 6.95(1 \mathrm{H}, \mathrm{dd}, J=$ $1.2,7.3 \mathrm{~Hz}), 6.90(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 5.71-5.81(1 \mathrm{H}, \mathrm{m})$, $5.05-5.22(4 \mathrm{H}, \mathrm{m}), 4.21(2 \mathrm{H}, \mathrm{s}), 3.60(2 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz})$, $2.24(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 148.1,147.8,138.5$, $138.4,124.8,130.3,128.9,128.1,127.4,126.8,122.3$, 121.1, 117.5, 114.7, 56.1, 54.3, 22.3: IR (KBr) 3080, 2975, 2924, 1661, $1488 \mathrm{~cm}^{-1}$; HRMS (FAB) calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}$ 264.1752, found 264.1771.
2.1.38. N-Allyl- N-acetyl-2-isopropenylaniline (43b). To a solution of 2-isopropenylaniline ($266 \mathrm{mg}, 2.00 \mathrm{mmol}$) in 2 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, was added $\mathrm{Ac}_{2} \mathrm{O}(0.20 \mathrm{~mL}, 2.20 \mathrm{mmol})$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 10 min and the reaction was quenched by the addition of saturated aqueous NaHCO_{3}. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the residue was purified by column chromatography on silica gel (n-hexane/ $\mathrm{AcOEt}=5: 1$) to give 316 mg (90%) of N-acetyl-2-isopropenylaniline as a colorless oil. To a solution of N -acetyl-2isopropenylaniline ($250 \mathrm{mg}, 1.43 \mathrm{mmol}$) and $\mathrm{NaH}(60 \%$ in mineral oil, $114 \mathrm{mg}, 2.86 \mathrm{mmol}$) in 10 mL of DMF under an Ar atmosphere, was added allyl bromide $(0.25 \mathrm{~mL}$, 2.86 mmol). The mixture was stirred at $80^{\circ} \mathrm{C}$ for 1 h and the reaction was quenched by the addition of saturated aqueous NaHCO_{3}. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the residue was purified by column chromatography on silica gel (n-hexane/AcOEt=5:1) to give $209 \mathrm{mg}(68 \%)$ of 43b as a yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.28-7.32(3 \mathrm{H}, \mathrm{m}), 7.07$ $(1 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}), 5.82-5.92(1 \mathrm{H}, \mathrm{m}), 5.21(1 \mathrm{H}, \mathrm{t}, J=$ $1.7 \mathrm{~Hz}), 4.95-5.10(3 \mathrm{H}, \mathrm{m}), 4.92(1 \mathrm{H}, \mathrm{dd}, J=5.2,14.6 \mathrm{~Hz})$, 3.45 ($1 \mathrm{H}, \mathrm{dd}, J=7.8,14.8 \mathrm{~Hz}$), 2.04 ($3 \mathrm{H}, \mathrm{s}$), $1.87(3 \mathrm{H}, \mathrm{s})$; ${ }^{13}{ }^{3} \mathrm{CMR}\left(\mathrm{CDCl}_{3}\right) \delta 170.1,143.1,141.1,139.5,133.0$, 130.0, 129.7, 128.1, 127.9, 117.7, 116.9, 51.2, 22.9, 22.5: IR (KBr) 3080, 2975, 2924, 1661, $1488 \mathrm{~cm}^{-1}$; HRMS (FAB) calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO} 216.1388$, found 216.1394.
2.1.39. N-Allyl- N-(t-butoxycarbonyl)-2-isopropenylaniline (43c). To a solution of 2-isopropenylaniline (266 mg , 2.00 mmol) in 3 mL of 1 N NaOH , was added di- t-butyl dicarbonate ($655 \mathrm{mg}, 3.00 \mathrm{mmol}$). The mixture was stirred at $50^{\circ} \mathrm{C}$ for 3 h and the reaction was quenched by the addition of water. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the
residue was purified by column chromatography on silica gel (n-hexane/AcOEt=10:1) to give 234 mg (50%) of N-(t-butoxycarbonyl)-2-isopropenylaniline as yellow oil. To a solution of N-(t-butoxycarbonyl)-2-isopropenylaniline $(233 \mathrm{mg}, 1.00 \mathrm{mmol})$ and $\mathrm{NaH}(60 \%$ in mineral oil, $43.9 \mathrm{mg}, 1.10 \mathrm{mmol}$) in 10 mL of DMF under an Ar atmosphere, was added allyl bromide ($0.10 \mathrm{~mL}, 1.10 \mathrm{mmol}$). The mixture was stirred at $80^{\circ} \mathrm{C}$ for 1 h and the reaction was quenched by the addition of saturated aqueous NaHCO_{3}. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the residue was purified by column chromatography on silica gel (n-hexane/ $\mathrm{AcOEt}=20: 1$) to give 52 mg (19\%) of 43c as a yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.26(4 \mathrm{H}, \mathrm{br}), 5.82-5.92(1 \mathrm{H}, \mathrm{m}), 5.15$ $(1 \mathrm{H}, \mathrm{s}), 5.06(2 \mathrm{H}, \mathrm{d}, J=11.2 \mathrm{~Hz}), 4.98(1 \mathrm{H}, \mathrm{s}), 4.55(1 \mathrm{H}, \mathrm{d}$, $J=2.8 \mathrm{~Hz}), 3.57(1 \mathrm{H}$, dd. $J=6.8,15.6 \mathrm{~Hz}), 2.04(3 \mathrm{H}, \mathrm{s}), 1.34$ $(9 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 153.7,143.8,141.3,139.5$, 134.0, 129.6, 128.6, 127.4, 126.3, 116.0, 114.7, 78.7, 52.2, 27.6, 22.3: $\mathrm{IR}(\mathrm{KBr}) 3080,2976,2928,1698,1490 \mathrm{~cm}^{-1}$; HRMS (FAB) calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{NO}_{2}$ 274.1807, found 274.1780.
2.1.40. 4-Methylquinoline (45). ${ }^{12}$ Method A. To a solution of olefin $43 \mathbf{a}$ ($65 \mathrm{mg}, 0.25 \mathrm{mmol}$) in 25 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under an Ar atmosphere, was added Grubbs' catalyst A (10.5 mg , 0.012 mmol). The mixture was degassed and stirred at $50^{\circ} \mathrm{C}$ for 1 h . After removal of the solvent, the residue was purified by column chromatography on silica gel (n-hexane/ $\mathrm{AcOEt}=5: 1$) to give $34 \mathrm{mg}(95 \%)$ of $\mathbf{4 5}$ as a colorless oil.

Method B. To a solution of olefin 43b ($86 \mathrm{mg}, 0.40 \mathrm{mmol}$) in 40 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under an Ar atmosphere, was added Grubbs' catalyst B ($17 \mathrm{mg}, 0.02 \mathrm{mmol}$). The mixture was degassed and stirred at $50^{\circ} \mathrm{C}$ for 1 h . After removal of the solvent, the residue was purified by column chromatography on silica gel (n-hexane/AcOEt=5:1) to give $55.6 \mathrm{mg}(97 \%)$ of 45 as a colorless oil.

Method C. To a solution of olefin $43 \mathrm{c}(49.2 \mathrm{mg}, 0.18 \mathrm{mmol})$ in 18 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under an Ar atmosphere, was added Grubbs' catalyst B $(7.64 \mathrm{mg}, 0.009 \mathrm{mmol})$. The mixture was degassed and stirred at $50^{\circ} \mathrm{C}$ for 1 h . After removal of the solvent, the residue was purified by column chromatography on silica gel (n-hexane/AcOEt=20:1) to give $25 \mathrm{mg}(97 \%)$ of 45 as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.74(1 \mathrm{H}, \mathrm{d}$, $J=8.1 \mathrm{~Hz}), 8.10(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 7.92(1 \mathrm{H}, \mathrm{d}, J=4.4 \mathrm{~Hz})$, $7.67(1 \mathrm{H}$, dd, $J=8.3,8.3 \mathrm{~Hz}), 7.53(1 \mathrm{H}, \mathrm{dd}, J=8.1,8.1 \mathrm{~Hz})$, $7.15(1 \mathrm{H}, \mathrm{d}, J=4.1 \mathrm{~Hz}), 2.62(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 150.1, 148.0, 144.1, 130.0, 129.0, 128.2, 126.2, 123.7, 121.7, 18.5; IR (KBr) 3408, 3397, 3061, 2981, 2924, 1618, 1597, 1571; LRMS (EI) $m / z 143$ [100, M ${ }^{+}$].

2.1.41. N - n-Butenyl- N - p-toluenesulfonyl-2-isopropenyl-

 aniline (47). To a solution of N - p-toluenesulfonyl-2-isopropenylaniline ($287 \mathrm{mg}, 1.00 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(207 \mathrm{mg}$, 1.50 mmol) in 10 mL of DMF under an Ar atmosphere, was added 4 -bromo-1-butene ($0.15 \mathrm{~mL}, 1.50 \mathrm{mmol}$). The mixture was stirred at $80^{\circ} \mathrm{C}$ for 1 h and the reaction was quenched by the addition of saturated aqueous NaHCO_{3}. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the residue waspurified by column chromatography on silica gel (n-hexane/ $\mathrm{AcOEt}=5: 1$) to give $266 \mathrm{mg}(97 \%)$ of 47 as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.66(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 7.27-7.31(4 \mathrm{H}$, m), $7.16(1 \mathrm{H}, \mathrm{dd}, J=2.7,8.0 \mathrm{~Hz}), 6.80(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz})$, $5.54-5.64(1 \mathrm{H}, \mathrm{m}), 5.22(1 \mathrm{H}, \mathrm{s}), 5.05(1 \mathrm{H}, \mathrm{s}), 4.91-4.96$ $(2 \mathrm{H}, \mathrm{m}), 3.53(2 \mathrm{H}, \mathrm{br}), 2.44(3 \mathrm{H}, \mathrm{s}), 2.18(3 \mathrm{H}, \mathrm{s}), 2.08(2 \mathrm{H}$, br); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 144.9,143.6,143.4,136.7,136.4$, $134.5,130.2,129.4,128.3,128.2,128.1,127.4,116.9$, 116.7, 50.8, 32.3, 24.4, 21.5; IR (neat) 3461, 3070, 2958, 2902, 2865, 1646, 1596, 1491, 1450, 1341, 1158, $1091 \mathrm{~cm}^{-1}$; LRMS (EI) m/z 341 [20, M ${ }^{+}$], 186 [100]. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{~S}$: C, 70.35; H, 6.79; N, 4.10; found: C, 70.26; H, 6.94; N, 3.96.
2.1.42. [N, N^{\prime} - $\operatorname{Bis}\left(o\right.$-isopropenylphenyl)- N, N^{\prime}-bis- p-toluene-sulfonyl]hex-3-ene-1,6-diamine (48). To a solution of olefin $47(102 \mathrm{mg}, 0.30 \mathrm{mmol})$ in 30 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under an Ar atmosphere, was added catalyst $\mathbf{A}(12.3 \mathrm{mg}$, 0.006 mmol). The mixture was degassed and stirred at $50^{\circ} \mathrm{C}$ for 1 h . After removal of the solvent, the residue was purified by column chromatography on silica gel (n-hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 1$) to give 36 mg (70%, E / Z mixture) of 48 as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.62(4 \mathrm{H}, \mathrm{dd}, J=8.3$, $11.5 \mathrm{~Hz}), 7.26-7.30(8 \mathrm{H}, \mathrm{m}), 7.09-7.16(2 \mathrm{H}, \mathrm{m}), 6.72(2 \mathrm{H}$, dd, $J=4.9,7.6 \mathrm{~Hz}), 5.14-5.19(4 \mathrm{H}, \mathrm{m}), 5.01(2 \mathrm{H}, \mathrm{s}), 3.40$ $(4 \mathrm{H}, \mathrm{br}), 2.44(6 \mathrm{H}, \mathrm{s}), 2.15(6 \mathrm{H}, \mathrm{s}), 1.97(4 \mathrm{H}, \mathrm{br}){ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 144.8,143.6,143.4,136.6,130.2,129.5,128.5$, $128.2,128.1,128.0,127.6,127.4,127.3,116.7,53.4,51.1$, 50.8, 31.2, 26.2, 24.3, 21.5, 14.1; IR (neat) 3451, 3060, 3023, 2921, 2846, 1637, 1598, 1489, 1346, $1160 \mathrm{~cm}^{-1}$; LRMS (FAB) $m / z 655$ [10, $\left.\mathrm{M}^{+}+\mathrm{H}\right], 144$ [100]. Anal. Calcd for $\mathrm{C}_{38} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}$: C, $69.69 ; \mathrm{H}, 6.46$; $\mathrm{N}, 4.28$; found: C, 69.35; H, 6.54; N, 4.15.
2.1.43. 5-Methyl-1-p-toluenesulfonyl-2,3-dihydro-1Hbenzo[b]azepine (49). To a solution of olefin 47 (102 mg , 0.30 mmol) in 30 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under an Ar atmosphere, was added catalyst $\mathbf{B}(12.7 \mathrm{mg}, 0.006 \mathrm{mmol})$. The mixture was degassed and stirred at $50^{\circ} \mathrm{C}$ for 1 h . After removal of the solvent, the residue was purified by column chromatography on silica gel (n-hexane/AcOEt=1:1), followed by recrystallization from n-hexane/AcOEt to give $90 \mathrm{mg}(96 \%)$ of 49 as white prisms. $\mathrm{Mp} 92{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.52$ $(1 \mathrm{H}, \mathrm{dd}, J=1.7,7.5 \mathrm{~Hz}), 7.42(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 7.23-7.34$ $(2 \mathrm{H}, \mathrm{m}), 7.15-7.17(3 \mathrm{H}, \mathrm{m}), 5.61(1 \mathrm{H}, \mathrm{dd}, J=1.2,6.6 \mathrm{~Hz})$, $4.13(2 \mathrm{H}, \mathrm{br}), 2.37(3 \mathrm{H}, \mathrm{s}), 2.05-2.10(2 \mathrm{H}, \mathrm{m}), 1.54(3 \mathrm{H}, \mathrm{s})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 142.6,140.8,137.8,136.5,136.2$, $131.9,129.0,128.1,127.5,127.4,127.1,125.6,57.2,26.3$, 22.0, 21.4; IR (KBr) 3451, 2921, 2884, 2846, 1655, 1339, $1160 \mathrm{~cm}^{-1}$; LRMS (EI) m/z 313 [100, M ${ }^{+}$]. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{~S} \mathrm{C}, 68.98 ; \mathrm{H}, 6.11 ; \mathrm{N}, 4.47$; found C, 68.76 ; H, 6.07; N, 4.33.
2.1.44. N - \boldsymbol{n}-Pentenyl- \boldsymbol{N} - \boldsymbol{p}-toluenesulfonyl-2-isopropenylaniline (50). To a solution of N - p-toluenesulfonyl-2-isopropenylaniline ($287 \mathrm{mg}, 1.00 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(207 \mathrm{mg}$, 1.50 mmol) in 10 mL of DMF under an Ar atmosphere, was added 5 -bromo-1-pentene ($0.18 \mathrm{~mL}, 1.50 \mathrm{mmol}$). The mixture was stirred at $80^{\circ} \mathrm{C}$ for 1 h and the reaction was quenched by the addition of saturated aqueous NaHCO_{3}. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the residue was
purified by column chromatography on silica gel (n-hexane/ $\mathrm{AcOEt}=5: 1$) to give 347 mg (98%) of $\mathbf{5 0}$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.66(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 7.25-7.31(4 \mathrm{H}$, m), $7.16(1 \mathrm{H}, \mathrm{dd}, J=2.7,6.3 \mathrm{~Hz}), 6.78(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz})$, $5.60-5.70(1 \mathrm{H}, \mathrm{m}), 5.21(1 \mathrm{H}, \mathrm{s}), 5.05(1 \mathrm{H}, \mathrm{s}), 4.91(2 \mathrm{H}, \mathrm{d}$, $J=12.4 \mathrm{~Hz}), 3.47(2 \mathrm{H}, \mathrm{br}), 2.44(3 \mathrm{H}, \mathrm{s}), 2.18(3 \mathrm{H}, \mathrm{s}), 1.94$ $(2 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}), 1.48(2 \mathrm{H}, \mathrm{br}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 145.0, 143.6, 143.3, 137.3, 136.72, 136.69, 130.2, 129.4, 128.2, 128.12, 128.07, 127.4, 116.7, 115.2, 51.2, 30.9, 26.9, 24.4, 21.5; IR (neat) 3461, 3076, 2977, 2924, 1638, 1598, 1488, 1347, 1162, $1092 \mathrm{~cm}^{-1}$; LRMS (EI) m/z 355 [10, M^{+}], 200 [100]. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{2} \mathrm{~S} \mathrm{C}, 70.95 ; \mathrm{H}$, 7.09; N, 3.94; found C, 71.03; H, 7.31; N, 3.81.

2.1.45. [N, N^{\prime} - $\operatorname{Bis}\left(o\right.$-isopropenylphenyl)- N, N^{\prime}-bis- p-toluene-

 sulfonyl]oct-4-ene-1,8-diamine (51). To a solution of olefin $50(60 \mathrm{mg}, 0.17 \mathrm{mmol})$ in 17 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under an Ar atmosphere, was added catalyst $\mathbf{A}(7.0 \mathrm{mg}$, $0.0085 \mathrm{mmol})$. The mixture was degassed and stirred at $50^{\circ} \mathrm{C}$ for 4 h . After removal of the solvent, the residue was purified by column chromatography on silica gel (n-hexane/ $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 1\right)$ to give $26 \mathrm{mg}(70 \%, E / Z$ mixture $)$ of $\mathbf{5 1}$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.64(4 \mathrm{H}, \mathrm{dd}, J=1.7$, $8.2 \mathrm{~Hz}), 7.24-7.30(8 \mathrm{H}, \mathrm{m}), 7.11-7.15(2 \mathrm{H}, \mathrm{m}), 6.77(2 \mathrm{H}$, dd, $J=8.1,8.1 \mathrm{~Hz}), 5.16-5.19(4 \mathrm{H}, \mathrm{m}), 5.01(2 \mathrm{H}, \mathrm{s}), 4.43$ $(4 \mathrm{H}, \mathrm{br}), 2.43(6 \mathrm{H}, \mathrm{s}), 2.16(6 \mathrm{H}, \mathrm{s}), 1.82(4 \mathrm{H}, \mathrm{s}), 1.39(4 \mathrm{H}$, br); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 144.9,143.62,143.61,143.4$, $143.3,136.6,136.66,136.63,130.2,129.6,129.4,129.2$, 128.2, 128.17, 128.09, 128.05, 127.4, 116.6, 51.24, 51.18, 29.7, 27.7, 27.5, 24.5, 24.4, 21.5; IR (neat) 3442, 2921, 2856, 1637, 1441, 1345, $1159 \mathrm{~cm}^{-1}$; LRMS (EI) 682 [15, M^{+}] 158 [100]. Anal. Calcd for $\mathrm{C}_{40} \mathrm{H}_{46} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2} 1 / 2 \mathrm{H}_{2} \mathrm{O} \mathrm{C}$, 69.43; H, 6.85; N, 4.05; found C, 69.17; H, 6.94; N, 3.77.2.1.46. 6-Methyl-1-p-toluenesulfonyl-1,2,3,4-tetrahydro$\mathbf{1 H}$-benzo[b]azocine (52). To a solution of olefin 50 ($275 \mathrm{mg}, 0.77 \mathrm{mmol}$) in 77 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under an Ar atmosphere, was added catalyst $\mathbf{B}(32.9 \mathrm{mg}, 0.015 \mathrm{mmol})$. The mixture was degassed and stirred at $50^{\circ} \mathrm{C}$ for 4 h . After removal of the solvent, the residue was purified by column chromatography on silica gel (n-hexane/AcOEt=10:1) followed by recrystallization from n-hexane/AcOEt to give 234 mg (86%) of $\mathbf{5 2}$ as white prisms. Mp $111{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.62(2 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}), 7.25-7.34(4 \mathrm{H}$, m), $7.15(1 \mathrm{H}, \mathrm{dd}, J=2.4,8.3 \mathrm{~Hz}), 6.76(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz})$, $5.73(1 \mathrm{H}, \mathrm{dd}, J=1.2,7.9 \mathrm{~Hz}), 4.21(1 \mathrm{H}, \mathrm{br}), 2.84(1 \mathrm{H}, \mathrm{br})$, $2.43(3 \mathrm{H}, \mathrm{s}), 2.18(1 \mathrm{H}, \mathrm{br}), 2.06(3 \mathrm{H}, \mathrm{s}), 1.60(3 \mathrm{H}, \mathrm{br}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 143.7,142.8,138.6,138.1,133.7,129.3$, 129.0, 128.6, 128.3, 127.8, 127.3, 126.9, 51.5, 26.7, 26.4, 24.3, 21.5; IR (KBr) 3451, 2934, 2856, 1488, 1342, $1159 \mathrm{~cm}^{-1}$; LRMS (EI) $\mathrm{m} / \mathrm{z} 327$ [3, M ${ }^{+}$], 91 [100]. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{~S}: \mathrm{C}, 69.69 ; \mathrm{H}, 6.46 ; \mathrm{N}, 4.28$; found C, 69.72; H, 6.47; N, 4.23.
2.1.47. N-Allyl- N-p-toluenesulfonyl-2-(1-methoxyvinyl)aniline (53a). To a solution of 2 -aminoacetophenone ($400 \mathrm{mg}, 3.00 \mathrm{mmol}$) in 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under an Ar atmosphere, were added pyridine ($0.72 \mathrm{~mL}, 9.00 \mathrm{mmol}$) and $\mathrm{TsCl}(686 \mathrm{mg}, 3.60 \mathrm{mmol})$. The mixture was stirred at room temperature for 1 h and the reaction was quenched by the addition of water. The mixture was extracted with AcOEt and the combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the
residue was purified by column chromatography on silica gel (n-hexane/AcOEt=5:1) to give $838 \mathrm{mg}(97 \%)$ of N - p -toluenesulfonyl-2-aminoacetophenone as off white solid. To a solution of N - p-toluenesulfonyl-2-aminoacetophenone ($241 \mathrm{mg}, 0.84 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(174 \mathrm{mg}, 1.26 \mathrm{mmol})$ in 10 mL of DMF under an Ar atmosphere, was added allyl bromide ($0.15 \mathrm{~mL}, 1.26 \mathrm{mmol}$). The solution was stirred at $80^{\circ} \mathrm{C}$ for 1 h and the reaction was quenched by the addition of saturated aqueous NaHCO_{3}. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the residue was purified by column chromatography on silica gel (n-hexane/AcOEt=5:1) to give $266 \mathrm{mg}(97 \%)$ of N-allyl- N - p-toluenesulfonyl-2-aminoacetophenone as a white solid. To a solution of N-allyl- N - p-toluenesulfonyl-2aminoacetophenone ($50 \mathrm{mg}, 0.15 \mathrm{mmol}$) and trimethoxymethane ($0.04 \mathrm{~mL}, 0.38 \mathrm{mmol}$), was added p-toluenesulfonic acid monohydrate ($2.85 \mathrm{mg}, 0.15 \mathrm{mmol}$) in 3 mL of MeOH . The solution was stirred at room temperature for 4 h and the reaction was quenched by the addition of $\mathrm{Et}_{3} \mathrm{~N}$. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the residue was purified by column chromatography on silica gel (n-hexane/AcOEt $=5: 1$) to give 55 mg (99%) of N-allyl- N - p-toluenesulfonyl-2-(1,1dimethoxyethyl)aniline as a yellow solid. To N-allyl-N-p-toluenesulfonyl-2-(1,1-dimethoxyethyl)aniline (55 mg , 0.15 mL), were added pyridine (1.0 mL), $\mathrm{TMSCl}(1.0 \mathrm{~mL}$, $0.80 \mathrm{mmol})$ and benzoic acid ($1.83 \mathrm{mg}, 0.015 \mathrm{mmol})$. The solution was stirred at $65^{\circ} \mathrm{C}$ for 2 h and the reaction was quenched by the addition of saturated aqueous NaHCO_{3}. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the residue was purified by column chromatography on silica gel (n-hexane/ $\mathrm{AcOEt}=5: 1)$ to give $41 \mathrm{mg}(80 \%)$ of 53a as a yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.66(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 7.43(1 \mathrm{H}$, dd, $J=1.7,7.5 \mathrm{~Hz}), 7.27-7.31(4 \mathrm{H}, \mathrm{m}), 6.94(1 \mathrm{H}, \mathrm{dd}, J=1.1$, $7.7 \mathrm{~Hz}), 5.54-5.64(1 \mathrm{H}, \mathrm{m}), 4.91-4.96(2 \mathrm{H}, \mathrm{m}), 4.40(1 \mathrm{H}$, s), $4.31(1 \mathrm{H}, \mathrm{s}), 4.13(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}), 3.59(3 \mathrm{H}, \mathrm{s}), 2.43$ (3H, s); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 160.2,143.1,138.5,137.5$, $136.8,133.1,130.6,130.4,129.3,128.6,128.1,128.0$, 118.8, 86.4, 55.1, 54.2, 21.5: IR (neat) 3070, 2933, 2846, 1597, 1490, 1474, $1347 \mathrm{~cm}^{-1}$; LRMS (EI) $\mathrm{m} / \mathrm{z} 343$ [100, M^{+}]. HRMS (FAB) calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{SK} 382.0879$, found 382.0873.

2.1.48. N-p-Toluenesulfonyl-4-methoxy-1,2-dihydro-

 quinoline (54a). To a solution of olefin 53a $(24 \mathrm{mg}$, 0.07 mmol) in 7 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under an Ar atmosphere, was added catalyst \mathbf{B} ($3.1 \mathrm{mg}, 0.0035 \mathrm{mmol}$). The mixture was degassed and stirred at $50^{\circ} \mathrm{C}$ for 1 h . After removal of the solvent, the residue was purified by column chromatography on silica gel (n-hexane $/ \mathrm{AcOEt}=5: 1$) to give 21 mg (97%) of $\mathbf{5 4 a}$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.69$ (1 H , dd, $J=1.1,8.1 \mathrm{~Hz}$), $7.38(1 \mathrm{H}, \mathrm{dd}, J=1.7,7.7 \mathrm{~Hz}), 7.34$ $(1 \mathrm{H}, \mathrm{dd}, J=1.6,7.5 \mathrm{~Hz}), 7.30(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 7.23(1 \mathrm{H}$, ddd, $J=1.2,7.5,15.0 \mathrm{~Hz}), 7.07(2 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}), 4.44(3 \mathrm{H}$, s), $3.31(3 \mathrm{H}, \mathrm{s}), 2.34(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 151.1$, 143.3, 136.4, 135.8, 128.9, 128.6, 127.5, 127.4, 126.7, 126.5, 122.2, 91.2, 54.4, 44.9, 21.4; IR (neat) 3447, 3086, 3020, 2985, 2869, 2840, 1920, 1651, $1599 \mathrm{~cm}^{-1}$; HRMS (FAB) calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NO}_{3} \mathrm{~S} 316.1007$, found 316.1013.2.1.49. N-Allyl- N - p-toluenesulfonyl-2-[1-(t-butyldimethylsilyloxy)vinyl]aniline (53b). To N-allyl- N - p-toluene-sulfonyl-2-aminoacetophenone ($100 \mathrm{mg}, 0.30 \mathrm{mmol}$) under an Ar atmosphere, were added $\mathrm{NaI}(180 \mathrm{mg}, 1.20 \mathrm{mmol})$ and $\mathrm{TBSCl}(180.8 \mathrm{mg}, 1.20 \mathrm{mmol})$ in 10 mL of $\mathrm{CH}_{3} \mathrm{CN}$ and $\mathrm{Et}_{3} \mathrm{~N}(0.18 \mathrm{~mL}, 1.32 \mathrm{mmol})$. The mixture was stirred at $100^{\circ} \mathrm{C}$ for 2 h . and quenched by the addition of $\mathrm{Et}_{3} \mathrm{~N}$. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the residue was purified by column chromatography on basic alumina (n-hexane/acetone $=5: 1$) to give $106 \mathrm{mg}(85 \%)$ of $\mathbf{5 3 b}$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.69(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 7.51(1 \mathrm{H}, \mathrm{dd}, J=1.4$, $7.0 \mathrm{~Hz}), 7.28(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 7.26(1 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz})$, $7.52(1 \mathrm{H}, \mathrm{ddd}, J=1.6,7.7,10.7 \mathrm{~Hz}), 6.81(1 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz})$, $5.75(1 \mathrm{H}$, dddd, $J=4.4,6.7,11.4,17.0 \mathrm{~Hz}), 4.97(1 \mathrm{H}, \mathrm{d}, J=$ $4.4 \mathrm{~Hz}), 4.93(1 \mathrm{H}, \mathrm{d}, J=11.4 \mathrm{~Hz}), 4.74(2 \mathrm{H}, \mathrm{dd}, J=1.3$, $17.0 \mathrm{~Hz}), 4.17(2 \mathrm{H}, \mathrm{dd}, J=6.7 \mathrm{~Hz}), 2.43(3 \mathrm{H}, \mathrm{s}), 0.95(9 \mathrm{H}$, s), $0.22(6 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 153.2,143.3,139.6$, 137.3, 136.3, 132.7, 129.9, 129.6, 129.4, 128.0, 127.9, 119.1, 96.3, 54.5, 29.6, 25.8, 21.5, 18.2, -4.6: IR (neat) 3429, 3084, 2924, 2867, 1697, 1596, $1487 \mathrm{~cm}^{-1}$, HRMS (FAB) calcd for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{NO}_{3} \mathrm{SSi} 444.2029$, found 444.2030.
2.1.50. N-p-Toluenesulfonyl-4-(tert-butyldimethylsilyl$\mathbf{o x y}$)-1,2-dihydroquinoline (54b). To a solution of olefin 53b ($31 \mathrm{mg}, 0.07 \mathrm{mmol}$) in 7 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under an Ar atmosphere, was added catalyst $\mathbf{B}(3.12 \mathrm{mg}, 0.0035 \mathrm{mmol})$. The mixture was degassed and stirred at $50^{\circ} \mathrm{C}$ for 1 h . After removal of the solvent, the residue was purified by column chromatography on basic alumina gel (n-hexane/acetone $=$ $5: 1)$ to give $21 \mathrm{mg}(95 \%)$ of $\mathbf{5 4 b}$ as a yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.92(1 \mathrm{H}, \mathrm{dd}, J=1.3,8.1 \mathrm{~Hz}), 7.57(1 \mathrm{H}, \mathrm{dd}, J=$ $1.7,7.7 \mathrm{~Hz}), 7.48-7.55(3 \mathrm{H}, \mathrm{m}), 7.43(1 \mathrm{H}, \mathrm{ddd}, J=1.3,7.5$, $7.5 \mathrm{~Hz}), 7.29(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 4.83(1 \mathrm{H}, \mathrm{t}, J=4.4 \mathrm{~Hz})$, $4.67(2 \mathrm{H}, \mathrm{d}, J=4.4 \mathrm{~Hz}), 2.53(3 \mathrm{H}, \mathrm{s}), 1.11(9 \mathrm{H}, \mathrm{s}), 0.15(6 \mathrm{H}$, $\mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 155.1,141.2,136.3,129.5,128.5$, 127.0, 125.4, 116.8, 112.3, 88.0, 42.6, 42.5, 40.9, 20.8, 20.5, 15.1, -6.1; IR (neat) 3422, 2956, 2856, 1920, 1686, $1597 \mathrm{~cm}^{-1}$; LRMS (EI) $\mathrm{m} / \mathrm{z} 415$ [15, M ${ }^{+}$], 374 [100]. HRMS (FAB) calcd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{NO}_{3} \mathrm{SSi} 416.1716$, found 416.1727.
2.1.51. N-Acetyl-2-isopropenyl-4-methoxyaniline (55). To the stirring solution of 2-isopropenyl-4-methoxyaniline ${ }^{7}$ ($40 \mathrm{mg}, 0.25 \mathrm{mmol}$) in 5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C}$, was added $\mathrm{Ac}_{2} \mathrm{O}(0.25 \mathrm{~mL}, 0.27 \mathrm{mmol})$ and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 10 min . The reaction mixture was quenched by NaHCO_{3} until pH 8 and was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of solvent, the residue was recrystallized from AcOEt to give 45 mg (88%) of 55 as pale yellow plates. Mp $73{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.01(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 7.31(1 \mathrm{H}, \mathrm{br}), 6.81(1 \mathrm{H}$, dd, $J=3.0,9.0 \mathrm{~Hz}), 6.69(1 \mathrm{H}, \mathrm{d}, J=2.9 \mathrm{~Hz}), 5.35(1 \mathrm{H}, \mathrm{s})$, $5.05(1 \mathrm{H}, \mathrm{s}), 3.79(3 \mathrm{H}, \mathrm{s}), 2.13(3 \mathrm{H}, \mathrm{s}), 2.05(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 168.0,156.0,142.9,135.7,127.0,123.3$, 116.6, 113.4, 112.6, 55.4, 24.4, 24.2; IR (KBr) 3451, 3237, 1641, $1545 \mathrm{~cm}^{-1}$; HRMS (FAB) calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{NO}_{2}$ 206.1181, found 206.1191.
2.1.52. N-Allyl- N-acetyl-2-isopropenyl-4-methoxyaniline (56). To a solution of $55(44 \mathrm{mg}, 0.21 \mathrm{mmol})$ and $\mathrm{NaH}(60 \%$ in mineral oil, $11.3 \mathrm{mg}, 0.26 \mathrm{mmol}$) in 5 mL of DMF under
an Ar atmosphere, was added allyl bromide $(0.01 \mathrm{~mL}$, 0.26 mmol). The mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h and quenched by the addition of saturated aqueous NaHCO_{3}. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the residue was purified by column chromatography on silica gel (n-hexane/ $\mathrm{AcOEt}=1: 1)$ to give $35 \mathrm{mg}(70 \%)$ of $\mathbf{5 6}$ as a yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.97(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 6.82(1 \mathrm{H}, \mathrm{d}, J=$ $2.9 \mathrm{~Hz}), 6.79(2 \mathrm{H}, \mathrm{dd}, J=2.9,8.4 \mathrm{~Hz}), 5.85(1 \mathrm{H}$, dddd, $J=5.1,11.0,14.6,17.0 \mathrm{~Hz}), 5.20(1 \mathrm{H}, \mathrm{dd}, J=1.7,1.7 \mathrm{~Hz})$, $5.08(1 \mathrm{H}, \mathrm{d}, J=11.0 \mathrm{~Hz}), 5.00(1 \mathrm{H}, \mathrm{d}, J=17.0 \mathrm{~Hz}), 4.90(1 \mathrm{H}$, dd, $J=5.1,14.6 \mathrm{~Hz}), 3.83(3 \mathrm{H}, \mathrm{s}), 3.40(1 \mathrm{H}, \mathrm{dd}, J=7.9$, $14.6 \mathrm{~Hz}), 2.03(3 \mathrm{H}, \mathrm{s}), 1.86(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 170.78, 158.89, 143.27, 142.42, 133.18, 132.51, 130.85, 117.76, 116.92, 115.14, 112.95, 55.39, 51.54, 23.03, 22.60; IR (neat) 2921, 1655, 1491, 1395, $1311 \mathrm{~cm}^{-1}$; HRMS (FAB) calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}_{2}$ 246.1494, found 246.1513.
2.1.53. N-Acetyl-4-methyl-6-methoxy-1,2-dihydroquinoline (57). To a solution of olefin 56 ($35 \mathrm{mg}, 0.14 \mathrm{mmol}$) in 14 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under an Ar atmosphere, was added catalyst $\mathbf{B}(6.1 \mathrm{mg}, 0.007 \mathrm{mmol})$. The mixture was degassed and stirred at $50^{\circ} \mathrm{C}$ for 1 h . After removal of the solvent, the residue was purified by column chromatography on silica gel (n-hexane/AcOEt=3:1) to give $30 \mathrm{mg}(98 \%)$ of 57 as a pale yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.04(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz})$, $6.84(1 \mathrm{H}, \mathrm{d}, J=2.7 \mathrm{~Hz}), 6.77(1 \mathrm{H}, \mathrm{dd}, J=2.7,8.6 \mathrm{~Hz}), 5.91$ $(1 \mathrm{H}, \mathrm{s}), 4.39(2 \mathrm{H}, \mathrm{s}), 3.88(3 \mathrm{H}, \mathrm{s}), 2.15(3 \mathrm{H}, \mathrm{s}), 2.04(3 \mathrm{H}, \mathrm{s})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 169.91,157.32,132.35,131.28$, $130.26,125.20,124.51,111.28,109.48,55.47,41.23,21.97$, 18.07 ; IR (neat) 3448, 2921, 2856, $1655,1237 \mathrm{~cm}^{-1}$; HRMS (FAB) calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{2}$ 217.1103, found 217.1098.
2.1.54. 6-Methoxy-4-methylquinoline (58). A solution of $57(10 \mathrm{mg}, 0.05 \mathrm{mmol})$ in a mixture of 1 mL of 10% aq. NaOH and 2 mL of MeOH was stirred at $50^{\circ} \mathrm{C}$ overnight. The reaction was diluted with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the residue was purified by column chromatography on silica gel (n-hexane/acetone $=5: 2$) followed by recrystallization from acetone to give 8.0 mg (98%) of $\mathbf{5 8}$ as white prisms. Mp 55-56 ${ }^{\circ} \mathrm{C}\left(\right.$ lit. $\left.{ }^{22} 52^{\circ} \mathrm{C}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.65(1 \mathrm{H}, \mathrm{d}$, $J=4.4 \mathrm{~Hz}), 8.01(1 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}), 7.36(1 \mathrm{H}, \mathrm{dd}, J=2.8$, $9.2 \mathrm{~Hz}), 7.20(2 \mathrm{H}, \mathrm{dd}, J=4.8,3.2 \mathrm{~Hz}), 3.96(3 \mathrm{H}, \mathrm{s}), 2.67$ (3H, s); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 157.6,147.7,144.0,142.7$, 131.5, 129.1, 122.1, 121.4, 101.8, 55.5, 18.9; IR (KBr) 3372, 3209 2921, 2828, 1619, $1509 \mathrm{~cm}^{-1}$; HRMS (FAB) calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{NO}$ 174.0919, found 174.0927.
2.1.55. N - p-Toluenesulfonyl-2-acetyl-4-methoxyaniline (59). To a solution of 2-acetyl-4-methoxyaniline ${ }^{13}$ ($100 \mathrm{mg}, 0.61 \mathrm{mmol}$) in 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under an Ar atmosphere, were added pyridine $(0.15 \mathrm{~mL}, 1.82 \mathrm{mmol})$ and $\mathrm{TsCl}(139 \mathrm{mg}, 0.73 \mathrm{mmol})$. The mixture was stirred at room temperature for 1 h and the reaction was quenched by the addition of water. The mixture was extracted with AcOEt and combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the residue was recrystallized from AcOEt to give 184 mg (94%) of $\mathbf{5 9}$ as yellow crystals. $\mathrm{Mp} 120{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 10.66$
$(1 \mathrm{H}, \mathrm{s}), 7.86(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 7.61(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz})$, $7.21(1 \mathrm{H}, \mathrm{d}, J=2.9 \mathrm{~Hz}), 7.18(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.05(1 \mathrm{H}$, dd, $J=2.9,9.8 \mathrm{~Hz}), 3.80(3 \mathrm{H}, \mathrm{s}), 2.43(3 \mathrm{H}, \mathrm{s}), 2.36(3 \mathrm{H}, \mathrm{s})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 200.43,155.23,143.59,136.34$, 132.56, 129.47, 127.26, 124.90, 122.75, 119.84, 116.63, 55.67, 28.05, 21.49; IR (KBr) 3423, 3070, 2920, 2846, 1654, $1503 \mathrm{~cm}^{-1}$; LRMS (EI) $m / z 319$ [20, $\left.\mathrm{M}^{+}+\mathrm{H}\right], 317$ [100, M^{+}]. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{4} \mathrm{~S}: \mathrm{C}, 60.17$; $\mathrm{H}, 5.37$; $\mathrm{N}, 4.39$; found: C, $60.22 ; \mathrm{H}, 5.56 ; \mathrm{N}, 4.34$.
2.1.56. N-Allyl- N - p-toluenesulfonyl-2-acetyl-4-methoxyaniline (60). To a solution of ketone 59 (180 mg , $0.56 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(117 \mathrm{mg}, 0.85 \mathrm{mmol})$ in 10 mL of DMF under an Ar atmosphere, was added allyl bromide $(0.07 \mathrm{~mL}, 0.85 \mathrm{mmol})$. The mixture was stirred at $80^{\circ} \mathrm{C}$ for 1 h and reaction was quenched by the addition of saturated aqueous NaHCO_{3}. The mixture were extracted with $\mathrm{Et}_{2} \mathrm{O}$ and combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the residue was purified by column chromatography on silica gel (n-hexane/AcOEt $=2: 1$) to give 174 mg (86%) of $\mathbf{6 0}$ as a pale yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.46(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz})$, $7.25(2 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}), 7.14(1 \mathrm{H}, \mathrm{d}, J=3.1 \mathrm{~Hz}), 6.82(1 \mathrm{H}$, dd, $J=2.9,8.8 \mathrm{~Hz}), 6.57(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 5.80-5.90(1 \mathrm{H}$, $\mathrm{m}), 5.10(1 \mathrm{H}, \mathrm{s}), 5.06(1 \mathrm{H}, \mathrm{d}, J=5.9 \mathrm{~Hz}), 4.39(1 \mathrm{H}, \mathrm{s}), 4.00$ $(1 \mathrm{H}, \mathrm{s}), 3.83(3 \mathrm{H}, \mathrm{s}), 2.64(3 \mathrm{H}, \mathrm{s}), 2.43(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 200.4,158.9,143.7,142.7,134.9,132.3,129.7$, $129.4,128.9,128.0,119.9,116.8,113.7,55.6,54.5,30.3$, 21.5; IR (neat) 3427, 3065, 3005, 2909, 2841, 1654, $1502 \mathrm{~cm}^{-1}$; HRMS (FAB) calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NO}_{4} \mathrm{~S}$ 360.1270 , found 360.1250 .
2.1.57. N-Allyl- N - p-toluenesulfonyl-2-[1-(tert-butyldi-methylsiloxy)-vinyl]-4-methoxyaniline (61). To a mixture of $60(170 \mathrm{mg}, 0.47 \mathrm{mmol}), \mathrm{NaI}(283 \mathrm{mg}, 1.89 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.28 \mathrm{~mL}, 2.07 \mathrm{mmol})$, was added a solution of TBSCl ($285 \mathrm{mg}, 1.89 \mathrm{mmol}$) in 20 mL of MeCN . The mixture was refluxed for 1 h and then the reaction was quenched by addition of saturated aqueous NaHCO_{3}. After the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$, combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the residue was purified by column chromatography on alumina (n-hexane $/ \mathrm{AcOEt}=3: 1$) to give 210 mg (94%) of 61 as a light brown oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.66(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 7.26(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz})$, $7.06(1 \mathrm{H}, \mathrm{dd}, J=1.7,1.7 \mathrm{~Hz}), 6.65(2 \mathrm{H}, \mathrm{d}, J=1.7 \mathrm{~Hz}), 5.70-$ $5.79(1 \mathrm{H}, \mathrm{m}), 4.96(2 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}), 4.93(2 \mathrm{H}, \mathrm{dd}, J=1.5$, $15.4 \mathrm{~Hz}), 4.57(2 \mathrm{H}, \mathrm{d}, J=1.7 \mathrm{~Hz}), 3.78(3 \mathrm{H}, \mathrm{s}), 2.41(3 \mathrm{H}, \mathrm{s})$, $0.94(9 \mathrm{H}, \mathrm{s}), 0.85(6 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 158.7,152.7$, 143.2, 137.1, 132.7, 130.6, 129.4, 128.9, 128.0, 119.1, 114.4, 113.6, 96.5, 55.2, 54.6, 25.8, 21.5, 18.2, -3.0, -4.6; IR (neat) 2960, 2924, 2851, 1513, $1260 \mathrm{~cm}^{-1}$; HRMS (FAB) calcd for $\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{NO}_{4} \mathrm{SSi} 474.2134$, found 474.2105.
2.1.58. N - p-Toluenesulfonyl-4-(tert-butyldimethyl-siloxy)-6-methoxy-1,2-dihydroquinoline (62). To a solution of olefin $61(100 \mathrm{mg}, 0.21 \mathrm{mmol})$ in 21 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under an Ar atmosphere, was added catalyst $\mathbf{B}(8.9 \mathrm{mg}$, $0.01 \mathrm{mmol})$. The mixture was degassed and stirred at $50^{\circ} \mathrm{C}$ for 1 h . After removal of the solvent, the residue was recrystallized from acetone to give 91 mg (98%) of $\mathbf{6 2}$ as pale yellow needles. Mp $108{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.62$ $(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 7.30(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 7.08(2 \mathrm{H}, \mathrm{d}$,
$J=8.1 \mathrm{~Hz}), 6.89(1 \mathrm{H}, \mathrm{d}, J=2.6 \mathrm{~Hz}), 6.85(1 \mathrm{H}, \mathrm{dd}, J=2.8$, $8.8 \mathrm{~Hz}), 4.59(1 \mathrm{H}, \mathrm{d}, J=4.1 \mathrm{~Hz}), 4.22(2 \mathrm{H}, \mathrm{d}, J=4.2 \mathrm{~Hz})$, $3.80(3 \mathrm{H}, \mathrm{s}), 2.32(3 \mathrm{H}, \mathrm{s}), 0.89(9 \mathrm{H}, \mathrm{s}), 0.08(6 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 158.00,146.34,143.04,136.54,130.29$, 129.17, 128.75, 127.87, 127.25, 113.59, 107.65, 99.49, 55.30, 45.09, 25.43, 21.40, 17.94, -5.07; IR (KBr) 3428, 2949, 2860, 1639, 1604, $1491 \mathrm{~cm}^{-1}$; HRMS (FAB) calcd for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{NO}_{4} \mathrm{SSi} 445.1743$, found 445.1700 .
2.1.59. 4-Hydroxy-6-methoxyquinoline (63). A mixture of $62(50 \mathrm{mg}, 0.11 \mathrm{mmol}), 2 \mathrm{~mL}$ of 20% aq. NaOH and 5 mL of MeOH was refluxed overnight. The reaction was diluted with water and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the residue was purified by column chromatography on silica gel (AcOEt/ $\mathrm{MeOH}=10: 1$) followed by recrystallization from acetone to give $17 \mathrm{mg}(98 \%)$ of $\mathbf{6 3}$ as pale yellow prisms. $\mathrm{Mp} 246{ }^{\circ} \mathrm{C}$ (lit. ${ }^{23} 244-247{ }^{\circ} \mathrm{C}$ from ethanol); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 119$ $(1 \mathrm{H}, \mathrm{s}) 7.84(1 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}), 7.52(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 7.47$ $(1 \mathrm{H}, \mathrm{d}, J=2.9 \mathrm{~Hz}), 7.27(1 \mathrm{H}, \mathrm{dd}, J=2.9,9.0 \mathrm{~Hz}), 5.99(1 \mathrm{H}$, d, $J=7.3 \mathrm{~Hz}), 3.81(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 176.12$, 155.44, 138.40, 134.70, 126.78, 122.08, 120.09, 107.45, 104.12, 55.30; IR (KBr) 3428, 3076, 1594, 1385, $1229 \mathrm{~cm}^{-1}$.

2.1.60. N-p-Toluenesulfonyl-2-acetyl-5-chloroaniline

 (64). To a solution of 2-acetyl-5-chloroaniline ${ }^{14}$ (280 mg , 1.65 mmol) in 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under an Ar atmosphere, were added pyridine $(0.41 \mathrm{~mL}, 4.95 \mathrm{mmol})$ and TsCl $(378 \mathrm{mg}, 1.98 \mathrm{mmol})$. The mixture was stirred at room temperature for 1 h and the reaction was quenched by the addition of water. The mixture was extracted with AcOEt and combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the residue was purified by recrystallization from AcOEt to give $400 \mathrm{mg}(75 \%)$ of 64 as yellow needles. Mp $182{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 11.59(1 \mathrm{H}, \mathrm{s}), 7.76(2 \mathrm{H}, \mathrm{dd}, J=2.0,8.3 \mathrm{~Hz})$, $7.73(1 \mathrm{H}, \mathrm{d}, J=3.9 \mathrm{~Hz}), 7.71(1 \mathrm{H}, \mathrm{d}, J=2.7 \mathrm{~Hz}), 7.27(2 \mathrm{H}, \mathrm{d}$, $J=8.5 \mathrm{~Hz}), 7.00(1 \mathrm{H}, \mathrm{dd}, J=2.1,8.7 \mathrm{~Hz}), 2.55(3 \mathrm{H}, \mathrm{s}), 2.38$ (3H, s); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 201.4,144.2,141.3,141.2$, 136.3, 133.0, 129.8, 127.2, 122.6, 120.2, 118.6, 28.1, 21.5; IR (KBr) 3451, 3060, 1656, 1572, 1497, $1405 \mathrm{~cm}^{-1}$; LRMS (EI) $m / z 325\left[45, \mathrm{M}^{+}\right], 323\left[100, \mathrm{M}^{+}\right]$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{ClNO}_{3} \mathrm{~S}: \mathrm{C}, 55.64 ; \mathrm{H}, 4.36$; N, 4.33; Found: C, 55.67; H, 4.41; N, 4.29.2.1.61. N-Allyl- N - p-toluenesulfonyl-2-acetyl-5-chloroaniline (65). To a solution of aldehyde 64 (300 mg , $0.93 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(192 \mathrm{mg}, 1.40 \mathrm{mmol})$ in 10 mL of DMF under an Ar atmosphere, was added allyl bromide $(0.11 \mathrm{~mL}, 1.40 \mathrm{mmol})$. The mixture was stirred at $80^{\circ} \mathrm{C}$ for 1 h and the reaction was quenched by the addition of saturated aqueous NaHCO_{3}. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the residue was purified by recrystallization from AcOEt to give 320 mg (95%) of $\mathbf{6 5}$ as pale yellow plates. Mp $103{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.62(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 7.45(2 \mathrm{H}, \mathrm{d}$, $J=8.3 \mathrm{~Hz}), 7.34(1 \mathrm{H}, \mathrm{dd}, J=2.0,8.3 \mathrm{~Hz}), 7.30(2 \mathrm{H}, \mathrm{d}, J=$ $7.8 \mathrm{~Hz}), 6.63(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}), 5.77-5.87(1 \mathrm{H}, \mathrm{m}), 5.13$ $(1 \mathrm{H}, \mathrm{s}), 5.09(1 \mathrm{H}, \mathrm{dd}, J=1.2,6.8 \mathrm{~Hz}), 4.09(2 \mathrm{H}, \mathrm{br}), 2.64$ $(3 \mathrm{H}, \mathrm{s}), 2.45(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 199.2,144.2$,
139.9, 137.9, 136.6, 134.3, 131.7, 130.4, 129.6, 128.6, 128.4, 127.9, 120.4, 54.3, 30.1, 21.5; IR (KBr) 3442, 1693, 1646, 1591, 1469, $1404 \mathrm{~cm}^{-1}$; LRMS (EI) $\mathrm{m} / \mathrm{z} 365$ [2, M^{+}], $363\left[3, \mathrm{M}^{+}\right], 210$ [100]. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{ClNO}_{3} \mathrm{~S}$: C, 59.42; H, 4.99; N, 3.85; Found: C, 59.60; H, 5.05; N, 3.83.
2.1.62. N-Allyl- N - p-toluenesulfonyl-2-[1-(tert-butyldi-methylsilyloxy)vinyl]-5-chloroaniline (66). To a mixture of $65(290 \mathrm{mg}, 0.80 \mathrm{mmol}), \mathrm{NaI}(480 \mathrm{mg}, 3.20 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.47 \mathrm{~mL}, 3.52 \mathrm{mmol})$, was added a solution of TBSCl ($482 \mathrm{mg}, 3.20 \mathrm{mmol}$) in 20 mL of MeCN . The mixture was refluxed for 1 h and then the reaction was quenched by addition of saturated aqueous NaHCO_{3}. After the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$, combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the residue was purified by recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give 375 mg (98%) of $\mathbf{6 6}$ as light brown needles. Mp $99^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.67(2 \mathrm{H}, \mathrm{d}, J=$ $8.2 \mathrm{~Hz}), 7.45(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.29(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz})$, $7.23(1 \mathrm{H}, \mathrm{dd}, J=2.0,8.4 \mathrm{~Hz}), 6.75(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}), 5.65-$ $5.75(1 \mathrm{H}, \mathrm{m}), 4.97(2 \mathrm{H}, \mathrm{d}, J=9.8 \mathrm{~Hz}), 4.70(2 \mathrm{H}, \mathrm{dd}, J=1.6$, $26.1 \mathrm{~Hz}), 4.11(2 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 2.42(3 \mathrm{H}, \mathrm{s}), 0.92(9 \mathrm{H}, \mathrm{s})$, $0.20(6 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 152.2,143.7,138.2$, 137.4, 136.7, 133.0, 132.1, 130.8, 129.5, 128.2, 128.0, 119.6, 96.7, 54.4, 25.7, 25.6, 21.5, 18.2, -3.0, -4.6; IR $(\mathrm{KBr}) 3433,1693,1656,1590,1367 \mathrm{~cm}^{-1}$; LRMS (FAB) $m / z 480\left[1, \mathrm{M}^{+}+\mathrm{H}\right], 478\left[3, \mathrm{M}^{+}+\mathrm{H}\right], 364$ [100].

2.1.63. N - p-Toluenesulfonyl-4-(t-butyldimethylsilyloxy)-

 7-chloro-1,2-dihydroquinoline (67). To a solution of olefin $66(200 \mathrm{mg}, 0.42 \mathrm{mmol})$ in 42 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under an Ar atmosphere, was added catalyst $\mathbf{B}(17.8 \mathrm{mg}, 0.02 \mathrm{mmol})$. The mixture was degassed and stirred at $50^{\circ} \mathrm{C}$ for 1 h . After removal of the solvent, the residue was purified by column chromatography on silica gel (n-hexane/AcOEt $=10: 1$) followed by recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give 180 mg (95%) of 67 as pale yellow crystals. Mp $124^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.80(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}), 7.44(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz})$, $7.34(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 7.24(1 \mathrm{H}, \mathrm{dd}, J=2.2,8.2 \mathrm{~Hz}), 7.17$ ($2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}$), $4.71(1 \mathrm{H}, \mathrm{dd}, J=4.4,4.4 \mathrm{~Hz}), 4.52(2 \mathrm{H}$, d, $J=4.2 \mathrm{~Hz}), 2.40(3 \mathrm{H}, \mathrm{s}), 0.95(9 \mathrm{H}, \mathrm{s}), 0.00(6 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 146.0,143.5,137.0,136.5,133.6,129.3$, 127.4, 127.1, 126.3, 126.2, 123.5, 99.3, 60.3, 45.1, 25.4, 21.4, 17.9, 14.1, -5.1; IR (KBr) 3442, 2958, 2926, 2856, 1641, 1596, 1474, $1352 \mathrm{~cm}^{-1}$; LRMS (EI) $\mathrm{m} / \mathrm{z} 451$ [50, $\left.\mathrm{M}^{+}\right], 449\left[100, \mathrm{M}^{+}\right]$. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{ClNO}_{3} \mathrm{SSi}: \mathrm{C}$, 58.71; H, 6.27; N, 3.11; Found: C, 58.74; H, 6.27; N, 3.13.2.1.64. 4-Hydroxy-7-chloroquinoline (68). A mixture of $67(100 \mathrm{mg}, 0.22 \mathrm{mmol}), 1.1 \mathrm{~mL}$ of aq NaOH , and 5 mL MeOH was refluxed overnight. The reaction was quenched by water and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Combined extracts were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the residue was purified by column chromatography on silica gel (n-hexane/ $\mathrm{AcOEt}=10: 1$) followed by recrystallized from MeOH to give 32 mg (81%) of $\mathbf{6 8}$ as white prisms. Mp $272{ }^{\circ} \mathrm{C}$ (lit. ${ }^{24}$ 277-279 ${ }^{\circ} \mathrm{C}$ from water); ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 11.76$ $(1 \mathrm{H}, \mathrm{br}), 8.06(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 7.92(1 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz})$, $7.57(1 \mathrm{H}, \mathrm{s}), 7.31(1 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}), 7.04(1 \mathrm{H}, \mathrm{d}, J=$ 6.8 Hz); ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}) 176.3, 145.2, 139.9, 136.2, $127.3,124.4,123.4,117.4,109.3$; IR (KBr) 3421, 3239,

3056, 2801, 2634, 1635, 1555, 1458, $1361 \mathrm{~cm}^{-1}$, LRMS (EI) $m / z 181\left[35, \mathrm{M}^{+}\right], 179$ [100, $\left.\mathrm{M}^{+}\right], 163$ [100].
2.1.65. 4,7-Dichloroquinoline (69). A solution of 68 ($180 \mathrm{mg}, 1.00 \mathrm{mmol}$) in 2 mL of POCl_{3} was refluxed for 1 h . To this mixture, was added $10 \% \mathrm{HCl}$ and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. Combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the residue was purified by column chromatography on silica gel ($\mathrm{AcOEt} / \mathrm{MeOH}=10: 1$) followed by recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give 186 mg (94%) of $\mathbf{6 9}$ as white needles. $\mathrm{Mp} 84-85{ }^{\circ} \mathrm{C}$ (lit. ${ }^{25} 84-85.5^{\circ} \mathrm{C}$ from aqueous ethanol): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 8.77(1 \mathrm{H}, \mathrm{d}, J=$ $4.8 \mathrm{~Hz}), 8.17(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 8.14(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz})$, $7.59(1 \mathrm{H}, \mathrm{dd}, J=2.2,9.0 \mathrm{~Hz}), 7.47(1 \mathrm{H}, \mathrm{d}, J=4.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 150.4,149.4,142.5,136.4,128.7,128.5$, $125.5,124.9,121.3$; IR (KBr) 3449, 3057, 2924, 1609, 1556, $1488 \mathrm{~cm}^{-1}$; LRMS (EI) $m / z 201\left[10, \mathrm{M}^{+}\right], 199$ [65, M^{+}], 197 [100, M^{+}].

Acknowledgements

This research was supported by a Grant-in-Aid for Scientific Research on Priority Areas (A) 'Exploitation of MultiElement Cyclic Molecules' and a Grant-in-Aid for Exploratory Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan. Financial support from the Uehara Memorial Foundation is also gratefully acknowledged. M. A. is also grateful for a Takeda Chemical Industries, Ltd Award in Synthetic Organic Chemistry, Japan for financial support.

References and notes

1. For examples, (a) Skraup, Z. H. Ber. 1880, 13, 2086-2087. (b) Doebner, O.; Miller, W. V. Ber 1883, 16, 2464-2472.
(c) Comb, A. Bull. Soc. Chim. Fr. 1888, 49, 89-92.
(d) Friedländer, P. Ber. 1882, 15, 2572-2575. (e) Pfitzinger, W. J. Prakt. Chem. 1886, 33(2), 100. (f) Niementowski, W. V. Ber. 1894, 27, 1394-1403.
2. For examples, ruthenium-catalyzed versions; (a) Tsuji, Y.; Huh, K. T.; Watanabe, Y. J. Org. Chem. 1987, 52, 1673-1680. (b) Cho, C. S.; Oh, B. H.; Kim, J. S.; Kim, T. J.; Shim, S. C. Chem. Commun. 2000, 1885-1886. (c) Evans, P. A.; Robinson, J. E.; Moffett, K. K. Org. Lett. 2001, 3, 3269-3271. Palladium-catalyzed versions; (d) Cortese, N. A.; Ziegler, C. B.; Hrnjez, B. J.; Heck, R. F. J. Org. Chem. 1978, 43, 2952-2958. (e) Hegedus, L. S.; Allen, G. F.; Bozell, J. J.; Waterman, E. L. J. Am. Chem. Soc. 1978, 100, 5800-5807. (f) Laborde, E.; Lesheski, L. E.; Kiely, J. S. Tetrahedron Lett. 1990, 31, 1837-1840. (g) Larock, R. C.; Kuo, M. Y. Tetrahedron Lett. 1991, 32, 569-572. (h) Kundu, N. G.; Mahanty, J. S.; Das, P.; Das, B. Tetrahedron Lett. 1993, 34, 1625-1628. (i) Dupont, J.; Halfen, R. A. P.; Zinn, F. K.; Pfeffer, M. J. Organomet. Chem. 1994, 484, c8-c9. (j) Cacchi, S.; Fabrizi, G.; Marinelli, F. Synlett 1999, 401-404. (k) Pita, B.; Masaguer, C. F.; Raviña, E. Tetrahedron Lett. 2002, 43, 7929-7932. (1) Hatano, M.; Mikami, K. J. Am. Chem. Soc. 2003, 125, 4704-4705. Rhodium-catalyzed versions; (m) Diamond, S. E.; Szalkiewicz, A.; Mares, F. J. Am.

Chem. Soc. 1979, 101, 490-491. (n) Watanabe, Y.; Yamamoto, M.; Shim, S. C.; Mitsudo, T.; Takegami, Y. Chem. Lett. 1979, 1025-1026. (o) Watanabe, Y.; Suzuki, N.; Shim, S. C.; Yamamoto, M.; Mitsudo, T.; Takegami, Y. Chem. Lett. 1980, 429-430. (p) Boyle, W. J.; Mares, F. Organometallics 1982, 1, 1003-1006. (q) Amii, H.; Kishikawa, Y.; Uneyama, K. Org. Lett. 2001, 3, 1109-1112. Iron-catalyzed version; (r) Watanabe, Y.; Takatsuki, K.; Shim, S. C.; Mitsudo, T.; Takegami, Y. Bull. Chem. Soc. Jpn 1978, 51, 3397-3398. Copper-catalyzed version; (s) Huma, H. Z. S.; Halder, R.; Kalra, S. S.; Das, J.; Iqbal, J. Tetrahedron Lett. 2002, 43, 6485-6488. (6) Manganese-catalyzed version; (t) Kobayashi, K.; Nakahashi, R.; Mano, M.; Morikawa, O.; Konishi, H. Bull. Chem. Soc. Jpn 2003, 76, 1257-1259. Cobalt-catalyzed version; (u) Domínguez, G.; Casarrubios, L.; Rodríguez-Noriega, J.; Pérez-Castells, J. Helv. Chim. Acta 2002, 85, 2856-2861.
3. (a) Schwab, P.; France, M. B.; Ziller, J. W.; Grubbs, R. H. Angew. Chem. Int. Ed. Engl. 1995, 34, 2039-2041. (b) Novak, B. M.; Grubbs, R. H. J. Am. Chem. Soc. 1988, 110, 960-961.
4. Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett. 1999, 1, 953-956.
5. (a) Arisawa, M.; Takezawa, E.; Nishida, A.; Mori, M.; Nakagawa, M. Synlett 1997, 1179-1180. (b) Nakagawa, M.; Torisawa, Y.; Uchida, H.; Nishida, A. J. Synth. Org. Chem. Jpn 1999, 57, 1004-1015. (c) Arisawa, M.; Kato, C.; Kaneko, H.; Nishida, A.; Nakagawa, M. J. Chem. Soc. Perkin Trans. 1 2000, 1873-1876. (d) Arisawa, M.; Kaneko, H.; Nishida, A.; Yamaguchi, K.; Nakagawa, M. Synlett 2000, 841-843. (e) Arisawa, M.; Takahashi, M.; Takezawa, E.; Yamaguchi, T.; Torisawa, Y.; Nishida, A.; Nakagawa, M. Chem. Pharm. Bull. 2000, 48, 1593-1596. (f) Arisawa, M.; Kaneko, H.; Nishida, A.; Nakagawa, M. J. Chem. Soc. Perkin Trans. 1 2002, 959-964. (g) Arisawa, M.; Terada, Y.; Nakagawa, M.; Nishida, A. Angew. Chem. Int. Ed. Engl. 2002, 41, 4732-4734.
6. Arisawa, M.; Theeraladanon, C.; Nishida, A.; Nakagawa, M. Tetrahedron Lett. 2001, 42, 8029-8033.
7. For reviews, see (a) Trnka, T. M.; Grubbs, R. H. Acc. Chem. Res. 2001, 34, 18-29. (b) Grubbs, R. H.; Chang, S. Tetrahedron 1998, 54, 4413-4450. (c) Fürstner, A. Angew. Chem. Int. Ed. Engl. 2000, 39, 3012-3043. (d) Connon, S. J.; Blechert, S. Angew. Chem. Int. Ed. Engl. 2003, 42, 1900-1923.
8. (a) Turner, R. B.; Woodward, R. B. In The chemistry of the cinchona alkaloids. The alkaloids; Manske, R. H. F., Ed.; Academic: New York, 1953; Vol. 3, pp 1-63 Chapter 16. (b) Uskokoviac, M. R.; Grethe, G. In The cinchona alkaloids. The alkaloids; Manske, R. H. F., Ed.; Academic: New York, 1973; Vol. 14, pp 181-223. (c) Grethe, G.; Uskokovic, M. R. The chemistry of heterocyclic compounds; Sexton, J. E., Ed.; Wiley-Interscience: New York, 1983; Vol. 23, p 279 Part 4. (d) Dutta, N. L.; Quasim, C. Indian J. Chem. 1968, 6, 566-567. For stereoselective total synthesis (e) Stork, G.; Niu, D.; Fujimoto, A.; Koft, E. R.; Balkovec, J. M.; Tata, J. R.; Dake, G. R. J. Am. Chem. Soc. 2001, 123, 3239-3242.
9. (a) Andersag, H.; Breitner, S.; Jung, H. German Patent 683, 692, October 26, 1939; C.A. 1942, 36, 4973. (b) Andersag, H.; Breitner, S.; Jung, H. US Patent 2,233,970, March 4, 1941; C.A. 1941, 35, 3771.
10. Nishida, A.; Sorimachi, H.; Iwaida, M.; Matsumizu, M.; Kawate, T.; Nakagawa, M. Synlett 1998, 389-390.
11. (a) Lauer, S. A.; Ghori, N.; Haldar, K. Proc. Natl. Acad. Sci.
U. S. A. 1995, 92, 9181-9185. (b) Lauer, S. A.; Rathod, P. K.; Ghori, N.; Haldar, K. Science 1997, 276, 1122-1125. (c) Akompong, T.; VanWye, J.; Ghori, N.; Haldar, K. Mol. Biochem. Parasitol. 1999, 101, 71-79.
12. Shishido, K.; Azuma, T.; Shibuya, M. Tetrahedron Lett. 1990, 31, 219-220.
13. Wilson, S. R.; Grandi, M. J. D. J. Org. Chem. 1991, 56, 4766-4772.
14. Fürstner, A.; Jumbam, D. N.; Seidel, G. Chem. Ber. 1994, 127, 1125-1130.
15. Bailey, D. M. J. Med. Chem. 1969, 12, 184-185.
16. Heindel, N. D.; Bechara, I. S.; Ohnmacht, C. J.; Molnar, J.; Lemke, T. F.; Kennewell, P. D. J. Med. Chem. 1969, 12, 797-801.
17. Schweizer, E. E.; Smucker, L. D. J. Org. Chem. 1966, 31, 3146-3149.
18. Rewcastle, G. W.; Denny, W. A. Synthesis 1985, 2, 220-222.
19. Cai, S. X.; Zhon, Z.; Huang, J.; Whittemore, E. R.; Egbuwoku, Z. O.; Lü, Y.; Hawkinson, J. E.; Woodward, R. M.; Weber, E.; Keana, J. F. W. J. Med. Chem. 1996, 39, 3248-3255.
20. Hewson, A. T.; Hughes, K.; Richardson, S. K.; Sharpe, D. A.; Wadsworth, A. H. J. Chem. Soc. Perkin Trans. 1 1991, 6, 1565-1569.
21. Hambly, A. N.; O’Grady, B. V. Aust. J. Chem. 1963, 16, 459-474.
22. Campbell, K. N.; Schaffner, I. J. J. Am. Chem. Soc. 1945, 67, 86-89.
23. Elderfield, R. C.; Maggiolo, A. J. Am. Chem. Soc. 1949, 71, 1906-1911.
24. Surrey, A. R.; Hammer, H. F. J. Am. Chem. Soc. 1946, 68, 113-116.
25. Kwart, H.; Miller, L. J. J. Am. Chem. Soc. 1958, 80, 884-887.
26. Unpublished results.

[^0]: Keywords: Quinine; Chloroquine; Quinoline alkaloid; Anti-malaria; Ring-closing metathesis (RCM); Silylenol-ether.

 * Corresponding authors. Tel.: +81-43-290-2907; fax: $+81-43-290-2909$; e-mail address: nishida@ athenaeum.p.chiba-u.ac.jp
 ${ }^{\dagger}$ Present address: Department of Chemistry, Faculty of Science, Kanagawa University, 2946 Tsuchiya Hiratsuka, Kanagawa 259-1293, Japan.

[^1]: ${ }^{\text {a }}$ Degassed conditions.
 ${ }^{\mathrm{b}}$ Without degassing.

